INNOVATION IN ASTRONOMY EDUCATION

Astronomy leads to an understanding of the history and nature of science, and attracts many young people to education in science and technology. But while in many countries astronomy is not part of the standard curriculum, many scientific and educational societies and government agencies have produced materials and educational resources in astronomy for all educational levels. This volume highlights the general strategies for effective teaching and introduces innovative points of view regarding methods of teaching and learning, particularly those using new technologies. Technology is used in astronomy, both for obtaining observations and for teaching. The book also presents ideas for how astronomy can be connected to environmental issues and other topics of public interest. This valuable overview is based on papers and posters presented by many of the world’s leading astronomy educators at a Special Session of the International Astronomical Union General Assembly in Prague in 2006.

JAY M. PASACHOFF is Field Memorial Professor of Astronomy at Williams College, and was President of the Commission on Education and Development of the International Astronomical Union.

ROSA M. ROS is Professor of Mathematics at the Technical University of Catalonia in Barcelona and Vice-President of the International Astronomical Union’s Commission on Education and Development.

NAOMI PASACHOFF is a Research Associate at Williams College and an author of science textbooks and biographies of scientists.

Cover: The Astronomical Clock of Prague, one of the main tourist sites in this city that hosted the 2006 International Astronomical General Assembly, in which the Special Session on which this book is based was included. The clock shows the Sun’s position in the sky, the lunar phase, the zodiac, the positions of the Sun and Moon on the ecliptic, and other items of interest to astronomers. The oldest part of the clock dates back to 1410, though the clock’s current appearance comes from major repairs after World War II devastation. Moving statues, for which tourists gather on the hour, were added in the seventeenth century. (Richard Nebesky/Lonely Planet Images/Getty Images)
Johannes Kepler’s heliocentric idea, from his *Mysterium Cosmographicum* (1596), that the planets’ spacing was determined by the Platonic solids. Kepler moved to Prague, the site of the International Astronomical Union’s 2006 General Assembly at which this Special Session on Innovation in Teaching and Learning Astronomy was held, to work with Tycho Brahe, leading to Kepler’s three laws of planetary motion. (Photo courtesy of Jay M. Pasachoff with the assistance of Wayne Hammond, Williams College’s Chapin Library.)
INNOVATION IN ASTRONOMY EDUCATION

JAY M. PASACHOFF
Williams College, Massachusetts, USA

ROSA M. ROS
University of Catalonia, Barcelona

NAOMI PASACHOFF
Williams College, Massachusetts, USA
Contents

Preface

<table>
<thead>
<tr>
<th>Preface</th>
<th>page xi</th>
</tr>
</thead>
</table>

Part I General strategies for effective teaching

Introduction

<table>
<thead>
<tr>
<th>1 Main objectives for the meeting on innovation in teaching/learning astronomy</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jay M. Pasachoff and Rosa M. Ros</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2 Learning astronomy by doing astronomy</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>John R. Percy</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3 Hands-On Universe – Europe (EU-HOU)</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roger Ferlet</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 Life on Earth in the atmosphere of the Sun: a multimedia manual</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. V. Kononovich, T. V. Matvejchuk, O. B. Smirnova, G. V. Jakunina, and S. A. Krasotkin</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 A model of teaching astronomy to pre-service teachers</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bill MacIntyre</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6 How to teach, learn about, and enjoy astronomy</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosa M. Ros</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7 Clickers: a new teaching tool of exceptional promise</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Duncan</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8 Educational opportunities in pro–am collaboration</th>
<th>55</th>
</tr>
</thead>
<tbody>
<tr>
<td>Richard Tresch Fienberg and Robert Stencel</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9 Teaching history of astronomy to second-year engineering students at the University of Chile</th>
<th>58</th>
</tr>
</thead>
<tbody>
<tr>
<td>José Maza</td>
<td></td>
</tr>
</tbody>
</table>
Contents

10 Teaching the evolution of stellar and Milky Way concepts through the ages: a tool for the construction of a scientific culture using astrophysics
G. Theureau and L. Klein 62

11 International Astronomical Union – education programs
Jay M. Pasachoff 70

12 Astronomy in culture
Magda Stavinschi 75

13 Light pollution: a tool for astronomy education
Margarita Metaxa 85

14 Worldwide distance-learning university astronomy
Stewart Eyres, Barbara Hassall, and Ian Butchart 91

15 Edible astronomy demonstrations
Donald Lubowich 98

16 Amateur astronomers as public outreach partners
Michael A. Bennett 106

17 Does the Sun rotate around Earth or does Earth rotate around the Sun? An important aspect of science education
Syuzo Isobe 110

18 Using sounds and sonifications for astronomy outreach
Fernando J. Ballesteros and Bartolo Luque 113

19 Teaching astronomy and the crisis in science education
Nick Lomb and Toner Stevenson 116

20 Astronomy for all as part of a general education
J. E. F. Baruch, D. G. Hedges, J. Machell, K. Norris, and C. J. Tallon 122

21 Cosmic deuterium and social networking software
Jay M. Pasachoff, Terry-Ann K. Suer, Donald A. Lubowich, and Tom Glaisyer 128

Poster highlights
Astronomy in the laboratory
Bunjí Suzuki 132
Contents

Crayon-colored planets: using children’s drawings as guides for improving astronomy teaching
Ana Beatriz de Mello, D. N. Epitácio Pereira, E. A. M. Gonzalez, R. V. Nader, and B. C. G. Lima 134

Challenges of astronomy: classification of eclipses
S. Vidojevic and S. Segan 135

Malargüe light pollution: a study carried out by measuring real cases

Simple, joyful, instructive: ignite the joy for astronomy
Yasuharu Hanaoka and Shinpei Shibata 138

Successive innovative methods in introducing astronomy courses
Tapan K. Chatterjee 139

The 2005 annular eclipse: a classroom activity at EPLA
Herminia Filgaira-Alcalá 139

The Armagh Observatory Human Orrery
M. E. Bailey, D. J. Asher, and A. A. Christou 140

What mathematics is hidden behind the astronomical clock of Prague?
Michal Krizek, Alena Solcová, and Lawrence Somer 142

Solar System – Practical Exercises and Astronomy – Practical Works for secondary scholars
Aleksandar S. Tomic 143

Astronomy in the training of teachers and the role of practical rationality in sky observation
Paulo S. Bretones and M. Compiani 143

Part II Connecting astronomy with the public

Introduction 147

22 The IAU Working Group on communicating astronomy with the public: status report
Dennis R. Crabtree, Lars Lindberg Christensen, and Ian Robson 151

23 Astronomy outreach: informal education
Julieta Fierro 156

24 Integrating audio and video podcasting into existing E/PO programs
Aaron Price 160

25 The IAU’s communication strategy, hands-on science communication, and the communication of the planet definition discussion
Lars Lindberg Christensen 163
Contents

26 Getting a word in edgeways: the survival of discourse in audiovisual astronomy
 T. J. Mahoney 177

27 A critical evaluation of the new Hall of Astronomy of the University of Mexico Science Museum
 Silvia Torres-Peimbert and Consuelo Doddoli 183

28 Revitalizing astronomy teaching through research on student understanding
 Timothy F. Slater 189

29 The TENPLA project (1): popularization of astronomy under cooperation between students and educators in Japan
 M. Hiramatsu, K. Kamegai, N. Takanashi, and K. Tsukada 198

30 The TENPLA project (2): activities for the popularization of astronomy
 K. Kamegai, M. Hiramatsu, N. Takanashi, and K. Tsukada 199

Poster highlights
An astronomer in the classroom: Observatoire de Paris’s partnership between teachers and astronomers
 Alain Doressoundiram and Caroline Barban 203
Astronomy and space sciences in Portugal: communication and education
 Pedro Russo and Mariana Barrosa 204
Gemini Observatory outreach
 Maria Antonieta Garcia 204

Part III Effective use of instruction and information technology

Introduction

31 ESO’s astronomy education program
 Douglas Pierce-Price, Claus Madsen, Henri Boffin, and Gonzalo Argandoña 212

32 US student astronomy research and remote observing projects
 Mary Ann Kadooka, James Bedient, Sophia Hu, Rosa Hemphill, and Karen J. Meech 218

33 A global network of autonomous observatories dedicated to student research
 Richard Gelderman 226
Contents

34 Remote telescopes in education: report of an Australian study
 David H. McKinnon and Lena Danaia 233

35 Visualizing large astronomical data holdings
 C. Christian, A. Conti, and N. Gaffney 243

Poster highlights
 An educational CD-Rom based on the making of the Second Guide Star Catalogue
 R. L. Smart, G. Bernardi, and A. Vecchiato 245
 Astronomia.pl portal as a partner for projects aimed at students or the public
 Krzysztof Czart and Jan Pomierny 245
 Development of a remote cooperative observation system for telescopes with
 P2P agent network by using location information
 Takuya Okamoto, Seiichi X. Kato, Yuji Konishi, and Masato Soga 247
 Image processing for educators in Global Hands-On Universe
 James P. Miller, C. R. Pennypacker, and G. L. White 248
 The Pomona College undergraduate 1-meter telescope, astronomy laboratory, and remote observing program
 B. E. Penprase 250

Part IV Practical issues connected with the implementation
 of the 2003 IAU resolution on the Value of Astronomy Education,
 passed by the IAU General Assembly, 2003 251

 Introduction 253

36 Stellar evolution for students of Moscow University
 E. V. Kononovich and I. V. Mironova 258

37 Astronomy for everybody: an approach from the
 CASAO/NAUH view
 María Cristina Pineda de Carías 262

38 Toward a new program in astronomy education in secondary
 schools in Turkey
 Z. Aslan and Z. Tunca 272

39 Universe awareness for young children: some educational
 aspects and a pilot project
 Cecilia Scorza, George Miley, Carolina Ódman, and Claus Madsen 276

40 Education in Egypt and Egyptian response to eclipses
 Ahmed A. Hady 281
Contents

41 Astronomy in the cultural heritage of African societies
Paul Baki 288

42 Education at the Pierre Auger Observatory: movies as a tool in science education
Beatriz García and Cristina Raschia 293

43 Freshman seminars: interdisciplinary engagements in astronomy
Mary Kay Hemenway 300

44 Astronomy for teachers
Julieta Fierro 306

45 Daytime utilization of a university observatory for laboratory instruction
John R. Mattox 310

Poster highlights 315
Astronomy education in the Republic of Macedonia
O. Galbova and G. Apostolovska 315
L’Aula del Cel: communicating astronomy at school level
A. T. Gallego, A. Ortiz-Gil, and M. Gómez Collado 315
Gemini Observatory’s innovative education and outreach for 2006 and beyond
Janice Harvey 316
A history of astronomy teaching in Serbian schools
S. Vidojevic and S. Segan 317
News from the Cosmos: daily astronomical news web page in Spanish
Amelia Ortiz-Gil 317
Reproduction of William Herschel’s metallic mirror telescope
N. Okamura, S. Hirabayashi, A. Ishida, A. Komori, and M. Nishitani 318
History of Ukrainian culture and science in astronomical toponymy
Iryna B. Vavilova 321
The Universe: helping to promote astronomy
Rosa M. Ros and Javier Moldón Vara 321
Astronomy education in Ukraine, the school curriculum, and a lecture course at Kyiv Planetarium
N. S. Kovalenko, K. I. Churyumov, and E. V. Dirdovskaya 323

Conclusions 324

Author index 325
Index 329
Preface

This book is based on the proceedings of a conference on education in astronomy. On August 17 and 18, 2006, the International Astronomical Union’s Commission on Astronomy Education and Development held a Special Session at the IAU General Assembly in Prague. The session, on Innovation in Teaching/Learning Astronomy, was organized around four themes: (1) general strategies for effective teaching, (2) connecting astronomy with the public, (3) effective use of instruction and information technology, and (4) practical issues connected with the implementation of the 2003 IAU Resolution that recommended including astronomy in school curricula, assisting schoolteachers in their training and backup, and informing them about available resources. Approximately 40 papers were presented orally; in addition, 60 poster papers were displayed.

Some of these topics had been considered in the Special Session at the 25th General Assembly in 2003 in Sydney, the subject of a book published in 2005, Jay M. Pasachoff and John R. Percy, *Teaching and Learning Astronomy: Effective Strategies for Educators Worldwide* (Cambridge University Press, 2005). But it is necessary to continue and extend the work started then in order to increase the quality and quantity of astronomy in schools.

The Organizing Committee for the conference consisted of:

Rosa M. Ros (Spain, co-chair), Spanish National Liaison to IAU Commission 46; Vice-President of the Commission 2006–2009

Jay M. Pasachoff (USA, co-chair), President, IAU Commission 46

Michael Bennett (USA), *Executive Director, Astronomical Society of the Pacific*

Julieta Fierro (Mexico), *Former President of IAU Commission 46*

Michele Gerbaldi (France), *Chair, IAU International Schools for Young Astronomers Program Group*

Petr Heinzel (Czech Republic), *Astronomical Institute of the Czech Academy of Sciences*

Bambang Hidayat (Indonesia), *Bosscha Observatory, Institute of Technology Bandung, Past Vice-President of the IAU*

Syuzo Isobe (Japan), *Former President of IAU Commission 46*

Edward Kononovich (Russia), *Russian National Liaison to IAU Commission 46*

Margarita Metaxa (Greece), *Greek National Liaison to IAU Commission 46*

John R. Percy (Canada), *Former President of IAU Commission 46*

Magda Stavinschi (Romania), *Astronomical Institute of the Romanian Academy of Sciences; President of the Commission 2006–2009*

Richard West (Germany), *Former Chair, Department of Outreach and Education, European Southern Observatory*
Preface

Lars Lindberg Christensen (Germany, webmaster), PIO/Head of Communication, ESA Hubble/James Webb Space Telescope, IAU Press Officer

The meeting was supported not only by Commission 46 on Education and Development but also Commission 41 on the History of Astronomy and Division XII on Union-wide Activities.

Over 400 astronomers and educators from 63 countries registered for this conference. The conference was part of the triennial General Assembly of the International Astronomical Union, which this year gained notoriety from the resolution defining the word “planet” and putting Pluto and some other objects in a new category of “dwarf planet.” One of the papers in this symposium, by Lars Lindblad Christensen, dealt with public-information aspects of that situation—which may wind up continuing until the next IAU General Assembly to be held in Rio de Janeiro in 2009.

We thank all the authors and other contributors.

Prague was a particularly apt site for a conference on astronomy, since Tycho Brahe and Johannes Kepler did so much important work there. It is particularly suitable that this book is available in time for the International Year of Astronomy (www.astronomy2009.org), which commemorates the 400th anniversary of the 1609 work of Galileo and Kepler.

We acknowledge the generous support of the International Astronomical Union and its Executive Committee, both in the form of travel grants for some participants and in the form of moral support for the importance of education. Many other participants received support from their institutions or countries, and we are grateful to those who made sure that these individuals could attend and participate.

We dedicate this book to Syuzo Isobe of Japan, past President of Commission 46 (2000 to 2003), who died on 31 December 2006. Accounts of his life and work appeared in the March 2007 edition of the Commission 46 Newsletter, which is accessible through the Commission’s Website at www.astronomyeducation.org.

We thank Javier Moldón of the University of Barcelona for helping to organize the Special Session. We thank Madeline Kennedy for her assistance at Williams College with the preparation of this book and for compiling the index. We are grateful for some financial support from Williams College for work carried out on the educational activities of our International Astronomical Union Commission on Research and Development. The participation of one of us (J.M.P) in the Prague General Assembly was supported in part by a research grant from the Planetary Sciences Division of NASA and by a travel grant from the US National Science Foundation through the American Astronomical Society.

At Cambridge University Press, we thank our acquiring editor, Vince Higgs, for his support of this project. We are pleased with the excellent assistance there of Lindsay C. Barnes, Eleanor Collins, and Bethan Jones. Frances Nex has proven to be a most capable copy editor.

Jay M. Pasachoff
Rosa M. Ros
Naomi Pasachoff
Attendees photographed during the meeting in Prague. (Photo by Robert L. Hurt, Spitzer Science Center, Caltech.)