Index

Acacia tree, 239
Acidogenesis, 57
Activity areas. See Site spatial organization
aDNA. See Ancient DNA
Aerobic degradation, 53
Aerobic environment, 57
Age at death, 132
Agricultural fields, 145
Agricultural practices, 140
Agropastoral societies, 148, 229, 238, 239
use of dung, 238, 240
Aguateca, Guatemala, 244
Airborne dust. See Loess
Alabaster. See Gypsum
Aliabad, 232–236
absence of macroscopic bones, 232, 238
alleys between houses, 233
animal dung, 232
ash as a fertilizer, 233
ash pits, 233
beehives, 236
cemetery, 233
courtyards, 236
dogs, 232
dung cake manufacturing, 232–233
dung fuel, 232
fire locations, 235
gardens, 233
latrine, 236
plants and animals used, 232
stables, 236
storage bins, 236
typical household plan, 234
wells, 236
Aliabad village, Zagros Mountains, Iran,
232–236. See Aliabad
Alkaline felspars, 196
Allophane, 301
Alveolar bone, 124, 129
Alyawaran household, Australia, 228
Amazon basin
soil charcoal, 183
Amber, 36, 211, 226, 314
infrared spectrum, 37, 315
provenience, 37
Amboseli, Kenya, 116, 288
Amelogenin, 125
Amino acid racemization, 214
Amino acid racemization dating, 19,
24–25, 214, 246, 247
eggshells, 153
land snail shells, 163
Amino acid sequence, 210
Amino acids
analysis, 211
racemers, 24
Ammonium carbonate, 57
Amorphous calcium carbonate, 77, 169,
282, 283, 285
earthworms, 283
mollusk shells, 161
plants, 135
Amorphous calcium phosphate, 99
first-formed mineral in bone, 104
Amorphous carbon, 180
Amorphous mineral structure, 89
silica, 136
Anaerobic degradation, 50, 57, 58, 59, 114
reconstructing site use, 58
Anaerobic organisms, 57
Anatomically modern humans (AMH)
DNA, 33
Ancient DNA, 33–35, 208, 209
bone, 121
crystal aggregates in bone, 218
damage, 34, 121, 209
Neanderthal DNA sequence, 35, 208
preservation in crystal aggregates, 112
INDEX

374

Ancient DNA (cont.)
replicating enzymes, 209
Tyrolean ice man, 48

Anhydrite, 169, 188
Animal enclosures, 54, 58, 86, 148, 223, 224, 239–240
dung, 239
dung fence, 239
phytolith accumulations, 238
Sarakini, devoid of phytoliths, 242
Animal husbandry, 45, 141
Anthropogenic materials
list, 321
Anthropogenic minerals
definition, 69
Apatite mineral family, 286–289. See also Carbonate hydroxylapatite and Authigenic phosphate minerals, 83
biogenic vs geogenic, 87
embedded information, 86–88
list of minerals, 286
mineral nomenclature, 84
Aragonite, 77, 282
assessing mineral preservation, 78, 81, 271
atomic structure, 77
cement, 80
diagenesis, 80–81
diagenetic indicator, 63
embedded information, 81–83
formation at elevated temperatures, 283
formation from boiling water, 78, 80, 283
formation from sea water, 78, 80, 283
heated, 81, 162
mollusk shells, 63, 283
otoliths, 42, 155
refractory material, 193
sources in archaeological sites, 63, 80, 283
transformation at elevated temperatures, 204
Archaeobotanical record, 16–18, 149, 238
charred materials, 178, 184
season of occupation, 41
Archaeobotany
paleoenvironmental reconstruction, 31
season of occupation, 41
Archaeological record
how bad?, 47
missing part, 51, 62–63
primary vs secondary deposits, 232, 236
pristine, 47, 48–50
Archaeological science, 5–6
Archeomagnetism, 19, 25, 246
Archeomalacology, 162
Archeozoological record, 101, 108, 118, 231, 238
bones, 101–102
Artifacts
for relative dating, 18
provenience, 36
sorting by size, 228
Ash, 168–178, 284. See also Wood ash, 82
acid insoluble fraction, 171, 174
affect on TL and ESR dating, 177
burned bone, 177
composition, 169–170
criteria for preservation, 175
definition, 168, 169
diagenesis above pH-8, 172–173
diagenesis below pH-8, 173–174
embedded information, 175–178
formation from wood, 79
from wood and bark, calcite formation, 170
how much is produced?, 166
identifying ash, 174–175
low and high temperature forms, 170
phytoliths, 169, 171
pits in Aliabad village, Iran, 233
radiocarbon dating, 177
reaction with phosphate, 173
recrystallization, 83
red brick colored soil particles, 170
sediment color and texture, 174
siliceous aggregates, 169, 171, 173
soluble salts, 169
wood, crystal morphology, 82
ν2:ν4 ratios of calcite, 171, 174
Aspartic acid-rich proteins, 100, 162
Asphalt, 312, 313
Atacama desert, Chile, 49, 114
Authigenic minerals
calcite, 78
carbonate hydroxylapatite, 84, 86, 161
ceramic, 204–205
definition, 68, 69
hydraulic plaster, 189
list, 321
organic matter concentrations, 225
silica. See Silica, authigenic
Authigenic phosphate minerals, 295–297.
See also Phosphate concentrations, 65, 81, 88, 236
bone dissolution, 64, 87
formed at low pH, 64, 175
guano degradation, 225
index identification using infrared spectroscopy, 296
nodules, 64
organic-rich sediments, 86, 223
Avian eggshells. See Eggshells
Avian gizzard stones, 154

Bananas
phytoliths, 147
Barite
grass phytolith contamination, 172
phytoliths, 178
Barley
phytoliths, 147
Beach rock, 80
Beach sand, 91
Beads, 36, 151
mineral list, 321
mollusk shells, 158
Bedouin camp, Jordan, 228
Beehives, 236
Beeswax, 211, 236, 312
Benzenecarboxylic acids, 184
Bercey, France, 114
Binders. See Plaster binders
Binocular microscope, 264
Biogenic minerals, 99. See Appendix B, See also Biomineralization
assessing mineral preservation, 81
calcite, 79, 286
carbonate hydroxylapatite, 84
definition, 69
intracrystalline macromolecules, 212
list, 321
oxygen isotopic composition, 33
solubility, 100
Biogenic molecules
DNA, 209–210
lipids, 211
list of macromolecules, 321
major types for archaeology, 208–211
preservation and information content, 207, 209
proteins. See also Proteins, 210
Biomaterials
list, 321
Biomineralization, 99–101
acidic proteins, 100
amorphous precursor phases, 61, 100, 161, 283
eggshells, 152
library of infrared spectra, 282
plants, 135
role of cells and macromolecules, 100
silica formation, 89
Biomolecular archaeology, 48, 208
historical perspective, 211–212
molecule types, 208–211
Biotite, 93
Bioturbation, 54, 57, 62
Bird eggshells. See Eggshells
Bitumen. See also Asphalt, 203
Bivalves, 159. See also Clams
Bog bodies, 50, 114
Boiling water, 78, 80, 121, 283
Bone
ash, 177
basic constituents, 102–106
burned. See Burned bone
cooked, 121
embedded information, 123
fragments, 229, 233, 237
life history reconstruction, 123
mineral. See Bone mineral
multipurpose material, 102
noncollagenous proteins (NCPs), 105, 112
organic matrix, 104–106
osteocalcin, 105
paleodiet reconstruction, 119–120, 121
paleoenvironmental reconstruction (REEs), 31
paleogenetics, 121–122
paleomigration, 118–119
porosity, 110
radiocarbon dating, 122–123
remodeling, 26, 102, 108, 255
structure. See Bone structure
turnover rate, 26
Bone diagenesis
authigenic minerals, 116
buried bones, 114, 117
compact vs spongy bone, 114
crystallinity, 290
crystals, 116
fluoride content, 288
microbial and fungal action, 114
mineral, 110–112
mineral solubility, 110
on soil surface, 115–116
organic matrix, 110, 112–113
porosity, 110
psuedomorphs, 115
recrystallization window, 111
timescale, 115
tunnels, 113
wickng of groundwater, 116
Bone family of materials, 215
Bone Gla protein. See Osteocalcin

Bone mineral, 102–104
atomic disorder, 61, 64, 104
carbonates, 104
content, 102
crystal aggregates, 106, 112, 308
crystal c axis alignment, 106
crystal nucleation and growth, 106
crystal size and shape, 104, 290
crystal sizes, 117
crystallinity, 104, 289–292
crystals, 215
dissolution, 60, 87, 111
nomenclature, 84
oxygen isotopic composition, 33
phosphate oxygen isotopic composition, 87
phosphorus concentration, 224
recrystallization window, 112
sintering, 104
solubility, 104
Sr/Ca ratios weaning, 45
surface area, 104, 290
Bone powder, 203
Bone preservation, 160
calcitic cemented sediments, 111
clay-rich sediments, 55, 96, 111
crystal aggregates, 112
Bone structure
age dependence, 230
canaliculi, 109
circumferential lamellar bone, 107
compact bone, 108
fibril array, 107
graded material, 102
hierarchical structure, 102–109
lamellar bone, 107
mineralized collagen fibril, 106
osteonal, 26, 108, 230
packing motifs of fibril arrays, 107
parallel fibered bone, 107
plexiform or fibrolamellar bone, 107, 230
proportions of basic constituents, 102
spongy bone, 108
woven bone, 107
Bone tools, 101
Bones, 101–102, 108–109
absence in ethnographic settings, 229
black, 117
burned. See Burned bone

cemented sediment, 83
dissolved, 88
distribution in a site, 271
for combustion, 168, 237

Small mammals, 234
Bones vs bone, terminology, 102
Brachiopod shells
calcite disorder, 286
intracrystalline macromolecules, 212, 213
Brachydonty, 129
Breccia, 83. See Cemented sediments
Bricks, 92, 189
Brushite, 130
Buffer, 77
Burned bone, 76, 117–118, 121, 176, 292–295
calcined, 117, 118, 177, 255, 293
cause of black color, 117, 294
changes, color and splitting factor, 118
circumstances of burning, 292
color change, 117, 293
cremation, 117
identification by infrared spectroscopy, 292, 294
Burrows, 251
Calcined bone. See Burned bone, calcined
Calcite, 76–83, 282
ash, 82, 169
ash 2/4 ratios, 171
ash, low and high temperature forms, 170
avian eggshells, 152
calcination temperature, 186
ceramics, 198, 200, 205
crystal morphology variations, 82
diagenesis, 63, 80–81
diagenesis, 63, 82, 284–286
distinguishing formation modes, 81–82, 284–286
distinctive formation modes, 82
embedded information, 81–83
high Mg cement, 80
influence on bone preservation, 111
memory effect, 285
plants, 135
plaster binder, 186–188
preservation of bones, ash and plaster, 77
rhomb-shape crystals, 78
sources in archaeological sites, 78–80, 283
structure, 77
transformation at elevated temperatures, 204
2/4 ratios, 285
Calcitic spherulites. See Spherulites
Calcium aluminum hydrates. See also
Hydraulic plaster, 189
Calcium carbonate
  pH buffering capacity, 77, 160, 172
  polymorphs, 282–283
Calcium carbonate mineral family, 76–83
calcite and aragonite structures, 78
differentiating origins of calcite, 81–82
  embedded information, 81–83
members, 77
Calcium hydroxide, 186. See also Lime, 79,
  185
Calcium oxalate, 306–307. See Whewellite
  and weddellite
bacteria, 306
biogenic crystal shapes, 82, 306
  combustion in wood, 170
  crystal shapes in wood, 170
  lichens, 306
  plants, 306
source of ash calcite, 170, 306
Calcium oxide, 63, 79, 82, 284, 177, 186, 193,
  196, 204, 285
Calcium silicate hydrate. See also
  Hydraulic plaster
Calcium silicate hydrates, 189
Calcium sulfate hemihydrate.
  See also plaster of Paris, 188
Calibration curve. See Radiocarbon dating,
calibration
Canaliculi, 109, 113
Cancellous bone. See Spongy bone
Capillary action, 56, 315
Carbon isotopic composition. See also
  Stable isotopic composition
paleodiet, 27
Carbonate bicarbonate buffering, 60
Carbonate fluorapatite, 84, 112, 286,
  288
stability, 84
Carbonate hydroxyapatite, 83–88, 286. See also
  Bone mineral
  A and B carbonate sites, 131, 287
  authigenic, 76, 296
  biogenic crystals, 63
  biogenic vs geogenic, 87
  carbonate content, 84, 287
  carbonate content by infrared
  spectroscopy, 288
crystal size and shape, 87
  crystallinity, 87, 289–292
dental calculus, 130
dentin, 127
diagenesis, 86
disorder, 64
dissolved bones, 88
  embedded information, 86–88
fluoride replacement, 84, 288
  fossil snail shells, 161
  from ash calcite, 173
  heated, 287
  hen’s eggshells, 152
  identification by microchemical
  analysis, 317–319
  nodules, 63
  nomenclature confusion, 84
  paleoclimatic reconstruction
  stability field, 60, 85
  structure, 85
Carbonate rock surfaces, 64
Carbonation, 187
Carbonate and carbonyl groups
  charcoal fossil, 181
Castra. See Pseudomorphs
Catastrophic environmental events, 164
Cathodoluminescence, 190, 192

Caves
  authigenic calcite, 78
  authigenic phosphate minerals, 225
carnivore dwellers, 231
carnivore vs human activities, 230
cemented sediment, 83
dating carbonate deposits, 21
detecting roof collapse, 64
  flint procurement, 91
gizzard stones, 154
guano, 80
heat, 183
vulture bone accumulations, 231
Celadons, 205
Cellulose, 58, 177, 179, 309, 312
Cement
  aragonite, 80
calcite. See Cemented sediment
cemented sediment, 54, 78, 82–83
  ash derived, 284
  bones, 83
Cementum, 124, 129, 215
  season of occupation, 42
  seasonal increments, 129
  structure, 130
Cephalopods, 159
Ceramics, 194–206. See also Pottery
  beehive walls, 236
calcite, 198, 200
  clay sources, 96
color, 203
diagenesis, 194, 198, 199, 200
  early production (south China), 165
  embedded information, 198–206
  extent of vitrification, 203
  firing conditions, 197–198, 202–205
Ceramics (cont.)
- firing temperature, regime, duration, 197, 204
- fluxes, 196
- high temperature polymorphs of silicon dioxide, 90
- minerals formed at elevated temperatures, 204–205
- molecules in pores, 29
- porosity, 205, 219, 221
- production areas, 202
- production processes, 202–205
- protected niche for molecules, 219–222
- provenience and trade, 198–200
- proveniencing, 39, 96, 200
- raw material sources, 199
- raw materials, 92
- refiring, 203
- refractory materials, 206
- technical, 194, 235
- temper, 205
- ultrastructure, 203–204

- See also Charred material, 16, 58
- adsorbed ions and molecules, 66
- associated clays, 95
- distribution, 64
- fluorescence, 258
- in sediments, 183
- microparticles, 174
- production, 179
- radiocarbon dating, 21, 255
- Sarakini village, Greece, 243–244
- structures for taxonomic identification, 178
- weight loss and shrinkage during formation, 179
- Charcoal fossil, 181–182
  - 2 major components, 181
  - bound ions and molecules, 182
  - carboxylate and carbonyl groups, 181
- cf humic substances, 182
- degradation mechanism, 183
- diagenesis, 182–183
- distribution in sites, 182
- onionlike structures, 182
- oxidation, 182
- oxygen distribution, 182
- Charcoal structure, 180
  - amorphous carbon, 180
  - graphite crystal size, 180
  - graphitellite crystallites, 179
  - graphitellite phase, 180
  - molecular structure, 179–180
  - nonordered phase, 180
  - onionlike structures, 180
  - See also
    - Charcoal, 16, 58
    - benzenecarboxylic acids, 184
    - circumstances of charring, 17
    - dating plaster, 191
    - identification in sediments, 184
    - plants, 16
    - preservation, 179, 252
    - radiocarbon dating, 184
    - Raman spectroscopy, 72
    - seed and fruit identification, 184
    - soil stabilization, 183
    - wet sieving, 265
- Charred wood. See Charcoal

Chitin, 100, 312
- mollusk shells, 162
- preservation, 58
- Chlorapatite, 286
- Clams, fresh water, 63, 80
- Clay, 300–303
  - adsorbed ions and molecules, 66
  - adsorbed organic matter, 94, 95
  - amorphous, 94, 95, 198, 301
  - atomic structures, 93
  - formation, 92
  - heated, 97, 198, 235, 303–305
  - hydrological properties, 96
  - melting temperatures, 195
  - mineral classification, 94
  - mineral groups, 93
  - plasticlike properties, 92, 195
  - provenience, 96–97
  - Raman spectroscopy, 97
  - reaction with phosphate, 95, 302
  - structures, 93–94
  - terminology, 73, 301
- Clay family of minerals, 92–97, 300–303
  - diagenesis, 95–96
  - differential thermal analysis (DTA), 94
  - embedded information, 96–97
  - identifying mineral type, 94
  - infrared spectroscopy, 94
  - X-ray diffraction, 94
- Clay-rich sediment, 66
  - affect of fire, 97
  - better preservation, 96
  - bone preservation, 111, 252
<table>
<thead>
<tr>
<th>Index Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>pottery manufacture</td>
<td>195</td>
</tr>
<tr>
<td>springs</td>
<td>96</td>
</tr>
<tr>
<td>Coal</td>
<td>145, 168</td>
</tr>
<tr>
<td>ash</td>
<td>177</td>
</tr>
<tr>
<td>Coke</td>
<td>205</td>
</tr>
<tr>
<td>Collagen</td>
<td>211, 312</td>
</tr>
<tr>
<td>bone</td>
<td>308</td>
</tr>
<tr>
<td>C/N ratio</td>
<td>256</td>
</tr>
<tr>
<td>cementum</td>
<td>129</td>
</tr>
<tr>
<td>degradation in bone</td>
<td>115</td>
</tr>
<tr>
<td>fiber</td>
<td>105</td>
</tr>
<tr>
<td>in bone crystal aggregates</td>
<td>106, 112, 217, 308</td>
</tr>
<tr>
<td>molecular structure</td>
<td>308</td>
</tr>
<tr>
<td>nitrogen isotope ratios</td>
<td>45</td>
</tr>
<tr>
<td>paleodiet reconstruction</td>
<td>28, 119–120</td>
</tr>
<tr>
<td>preservation</td>
<td>123, 252, 307–309</td>
</tr>
<tr>
<td>preservation in crystal aggregates</td>
<td>112</td>
</tr>
<tr>
<td>preservation in parchment</td>
<td>50</td>
</tr>
<tr>
<td>purity</td>
<td>307</td>
</tr>
<tr>
<td>radiocarbon dating</td>
<td>122–123</td>
</tr>
<tr>
<td>triple helical molecules</td>
<td>105</td>
</tr>
<tr>
<td>type I</td>
<td>100, 105, 127</td>
</tr>
<tr>
<td>unfolding (gelatinization)</td>
<td>50, 113</td>
</tr>
<tr>
<td>Combe-Grenal, France</td>
<td>131</td>
</tr>
<tr>
<td>Combustion materials</td>
<td>90</td>
</tr>
<tr>
<td>Compact bone</td>
<td>108</td>
</tr>
<tr>
<td>Compasting</td>
<td>308</td>
</tr>
<tr>
<td>Compaction. See Organic matter</td>
<td>53</td>
</tr>
<tr>
<td>degradation and Aerobic</td>
<td>53</td>
</tr>
<tr>
<td>decomposition</td>
<td>53</td>
</tr>
<tr>
<td>Completeness of the archaeological record</td>
<td>46–47, 81, 296</td>
</tr>
<tr>
<td>aragonite preservation</td>
<td>160</td>
</tr>
<tr>
<td>assessing completeness</td>
<td>62, 98</td>
</tr>
<tr>
<td>Conservation</td>
<td>273</td>
</tr>
<tr>
<td>Context</td>
<td>248</td>
</tr>
<tr>
<td>samples for radiocarbon dating</td>
<td>250–254</td>
</tr>
<tr>
<td>trapped charge dating</td>
<td>252–254</td>
</tr>
<tr>
<td>Controls</td>
<td>230–231, 270</td>
</tr>
<tr>
<td>Cooked bones</td>
<td>118</td>
</tr>
<tr>
<td>Cooking</td>
<td>165</td>
</tr>
<tr>
<td>Cooking pot residues</td>
<td>147</td>
</tr>
<tr>
<td>phytoliths</td>
<td>147</td>
</tr>
<tr>
<td>Copal</td>
<td>312. See also Resins, 211</td>
</tr>
<tr>
<td>Coprolites</td>
<td>27, 76</td>
</tr>
<tr>
<td>Cosmetic eye paints (Kohl)</td>
<td>321</td>
</tr>
<tr>
<td>mineral list</td>
<td>321</td>
</tr>
<tr>
<td>Cosmogenic isotopes. See also</td>
<td>379</td>
</tr>
<tr>
<td>Radiocarbon dating</td>
<td>195</td>
</tr>
<tr>
<td>beryllium</td>
<td>10, 91</td>
</tr>
<tr>
<td>flint</td>
<td>40</td>
</tr>
<tr>
<td>flint mining</td>
<td>40</td>
</tr>
<tr>
<td>Courtyards</td>
<td>235, 236</td>
</tr>
<tr>
<td>Cowrie shells</td>
<td>158</td>
</tr>
<tr>
<td>Crandallite</td>
<td>86, 247</td>
</tr>
<tr>
<td>stability field</td>
<td>60</td>
</tr>
<tr>
<td>Cremated bone</td>
<td>122, 255</td>
</tr>
<tr>
<td>radiocarbon dating</td>
<td>117, 118</td>
</tr>
<tr>
<td>Cristobolite</td>
<td>88, 90, 298</td>
</tr>
<tr>
<td>formation temperature</td>
<td>204</td>
</tr>
<tr>
<td>Crucibles</td>
<td>205</td>
</tr>
<tr>
<td>Cryptocrystalline quartz. See also Flint</td>
<td>298</td>
</tr>
<tr>
<td>Crystal aggregates</td>
<td>106, 215–219, 308</td>
</tr>
<tr>
<td>ancient DNA and collagen</td>
<td>122, 216</td>
</tr>
<tr>
<td>bone</td>
<td>215</td>
</tr>
<tr>
<td>embedded information</td>
<td>217–219</td>
</tr>
<tr>
<td>paleodiet reconstruction</td>
<td>218</td>
</tr>
<tr>
<td>Crystal sand (calcium oxalate)</td>
<td>170</td>
</tr>
<tr>
<td>Crystallinity</td>
<td>289–292. See also Splitting factor, 104</td>
</tr>
<tr>
<td>eggshells</td>
<td>153</td>
</tr>
<tr>
<td>enamel (ESR)</td>
<td>132</td>
</tr>
<tr>
<td>enamel, uranium series</td>
<td>132</td>
</tr>
<tr>
<td>mollusk shells</td>
<td>163</td>
</tr>
<tr>
<td>number of samples to analyze</td>
<td>255–256</td>
</tr>
<tr>
<td>plaster</td>
<td>191</td>
</tr>
<tr>
<td>relative</td>
<td>18, 245</td>
</tr>
<tr>
<td>Dating methods</td>
<td>18–25. See also Radiocarbon dating</td>
</tr>
<tr>
<td>amino acid racemization</td>
<td>24–25</td>
</tr>
<tr>
<td>archaeomagnetism</td>
<td>25</td>
</tr>
<tr>
<td>dendrochronology</td>
<td>21–22</td>
</tr>
<tr>
<td>fluoride uptake</td>
<td>23, 288</td>
</tr>
<tr>
<td>list of methods</td>
<td>245</td>
</tr>
<tr>
<td>obsidian hydration</td>
<td>23–24</td>
</tr>
<tr>
<td>perspective. 19</td>
<td>19</td>
</tr>
<tr>
<td>radiocarbon. See also Radiocarbon dating</td>
<td>19–21</td>
</tr>
<tr>
<td>trapped charge (TL, ESR and OSL)</td>
<td>22–23</td>
</tr>
<tr>
<td>uranium series</td>
<td>21</td>
</tr>
<tr>
<td>Dead lime. See also Plaster binder</td>
<td>187</td>
</tr>
<tr>
<td>Dahlilite</td>
<td>84. See Carbonate hydroxylapatite</td>
</tr>
<tr>
<td>Darcy’s law</td>
<td>55</td>
</tr>
<tr>
<td>Darwin, C. R.</td>
<td>46</td>
</tr>
<tr>
<td>Dating</td>
<td>18–25. See also Radiocarbon dating</td>
</tr>
<tr>
<td>bone</td>
<td>122–123</td>
</tr>
<tr>
<td>communication gap</td>
<td>247–249</td>
</tr>
<tr>
<td>determining uncertainties</td>
<td>249</td>
</tr>
<tr>
<td>eggshells</td>
<td>153</td>
</tr>
<tr>
<td>enamel (ESR)</td>
<td>132</td>
</tr>
<tr>
<td>enamel, uranium series</td>
<td>132</td>
</tr>
<tr>
<td>four stages</td>
<td>248</td>
</tr>
<tr>
<td>mollusk shells</td>
<td>163</td>
</tr>
<tr>
<td>number of samples to analyze</td>
<td>255–256</td>
</tr>
<tr>
<td>plaster</td>
<td>191</td>
</tr>
<tr>
<td>relative</td>
<td>18, 245</td>
</tr>
<tr>
<td>Dating methods</td>
<td>18–25. See also Radiocarbon dating</td>
</tr>
<tr>
<td>amino acid racemization</td>
<td>24–25</td>
</tr>
<tr>
<td>archaeomagnetism</td>
<td>25</td>
</tr>
<tr>
<td>dendrochronology</td>
<td>21–22</td>
</tr>
<tr>
<td>fluoride uptake</td>
<td>23, 288</td>
</tr>
<tr>
<td>list of methods</td>
<td>245</td>
</tr>
<tr>
<td>obsidian hydration</td>
<td>23–24</td>
</tr>
<tr>
<td>perspective. 19</td>
<td>19</td>
</tr>
<tr>
<td>radiocarbon. See also Radiocarbon dating</td>
<td>19–21</td>
</tr>
<tr>
<td>trapped charge (TL, ESR and OSL)</td>
<td>22–23</td>
</tr>
<tr>
<td>uranium series</td>
<td>21</td>
</tr>
<tr>
<td>Dead lime. See also Plaster binder</td>
<td>187</td>
</tr>
</tbody>
</table>
Dead Sea Scrolls, 50
parchment preservation, 113
Definition of science, 2
Degradation. See Diagenesis
Dendritic. See Phytoliths, dendritic
Dendrochronology, 19, 21–22, 246
Dental calculus, 130, 131
minerals, 130
paleodiet, 132–134
phytoliths, 147
Dentalium, 158, 159
Dentin, 215
abrasion by phytoliths, 137
basic constituents, 127
crystallinity, 289–292
crystals, 127, 290
embedded information, 133
fibril arrays, 128
growth lines, 26
hierarchical structure, 126–129
mineralized collagen fibril, 127
noncollagenous proteins, 127
peritubular dentin, 128
root vs crown dentin, 128
secondary, 26
structure, 107
tubules, 124, 127, 128, 217
type I collagen, 127
types, 124, 127
Dentin diagenesis, 131
Dentine. See Dentin
Dentin-enamel-junction (DEJ), 124, 129
Diagenesis. See Organic matter
degradation, 46
agents of degradation, 62
anthropogenic effects, 54
ash above pH8, 172–173
ash below pH8, 173–174
bone. See Bone diagenesis
calcite, 63
calcite and aragonite, 80–81
carbonate hydroxylapatite, 86
ceramic, 198
charcoal fossil, 182–183
charred materials, 58
chemical reactions, 54–56
conceptual framework, 62–63
conceptual framework applications, 63–66
dentin, 131
diatoms, 150
driving forces, 54–56
eggshells, 152
extent of degradation, 62
freeze-thaw affects, 54
gelatin formation, 113
gelogenic processes, 54
hydrological regime, 54–56
macropscopic versus microscopic
records, 52
mechanical processes, 54
minerals, 59–61
mollusk shell, 161
organic matter, 57–59
organisms in soils, 57
otoliths, 156
pH decrease, 60
phytoliths, 143–144
plaster, 190–191
silica solubility, 150
silica, 88
Diyun, Guilin, China, 159
DNA. See also Ancient DNA, 209–210
polymerase chain reaction, 34
sequences, 33
Dogs
bone scavenging and gnawing, 101, 229,
232, 238
domestication, 238
Dolomite, 188
plaster binder, 188
transformation at elevated
temperatures, 204
Domestication
cereals, 147
plants, 147
Dosimeters, 252
Drinking water, 33, 132, 153
oxygen isotope composition, 35
Druses (calcium oxalate), 170
Dung, 237–238
ash, 177
common components, 233
fertilizer, 242
for combustion, 168, 232–233
fossil dung identification, 240
monohydrocalcite, 283
phytolith difference index (PDI), 242
spherulites, 232, 234, 236, 240, 283. See also Spherulites, 44
stable isotopic composition, 240
Dye, 158
from mollusks, 157
purple. See also Indigo
Earthworms, 283, 284
Echinoderm skeletons
calcite disorder, 286
intracrystalline macromolecules, 212
EDS. See Energy dispersive spectrometry
Eggshells, 79, 151–154
dating, 24
dating, amino acid racemization, 153
diagenesis, 152
embedded information, 152–154
formation, 152
intracrystalline macromolecules, 213
mineralogy, 152
morphology, 152
organic matrix, 152
ostiches, 151
oxygen isotopic composition, 33
paleoenvironmental reconstruction, 153
radiocarbon dating, 154
ratites, 151
El Amarna tablets, Egypt, 200
Electron spin resonance dating, 18, 23, 131, 245, 246, 358, 371
context, 253–254
uranium uptake history, 246
Elemental analysis. See Chemical elemental analysis
Emmer wheat, 145
Enamel, 124
3-dimensional structure, 126
amelogenin, 125
basic constituents, 124–125
crystal size and shape, 124, 290
crystallinity, 291
dating, 23, 132, 253
diagenesis, 130–131
electron spin resonance, 23
embedded information, 133
fluoride uptake, 131
graded structure, 126
growth lines, 26
hierarchical structure, 124–126
intergrown crystal composite, 217
life history reconstruction, 132
organic matrix, 125
preservation, 253
prisms (crystal arrays), 126
Sr/Ca ratios, 121
Sr/Ca ratios weaning, 45
strontium isotope ratios, 35
structure, 125, 218
surface striations, 136
Enameloid, 124, 288
Energy dispersive spectrometry, 72, 74
Eskimo winter house, 236–237
dump of bone splinters, 237
human waste disposal, 237
phosphate concentrations, 237
wood pile and hearth, 237
ESR. See also Electron spin resonance
dating
Ethnoarchaeology, 48
abandoned structures and spaces, 228
activity areas using phosphate concentrations, 244
Aliabad village, Zagros Mountains, Iran. See also Aliabad, 232–236
charcoal, 243–244
controls, 230–231
definition, 227
dung degradation, 54
Eskimo winter house, 236–237
Maasai animal enclosures, 54
merging archaeobotanical and
archaeozoological records, 237–238
microartifacts, 228–230
pottery production, 197
primary vs secondary deposits, 232, 236
Sarakini village, Greece, 240–244
Ethnography, 227
INDEX

382

Fatty acids, 58, 237. See also Lipids and Residue Analysis

Fertilizer, 140, 242

Feynman, R., 2, 6

Fish teeth

Fish teeth enameloid, 124, 288

Fish locations, 157

Flint, 88–89, 298

Fluxes, 195–196, 305

Fluorapatite, 286, 288. See Carbonate fluorapatite

Fluoride

bone mineral, 112, 288
carbonic acid hydroxylapatite, 84, 85
infrared spectrum change, 289
uptake into enamel, 131

Fluoride uptake dating, 5, 19, 23, 288

Fluorine, 85

Floors, 194, 250

Aliabad village house, 235
different types, 235
differentiating upper and lower, 234
microlaminated texture, 236
plaster, 44, 185, 190
Sarakini village, Greece, 242

Fluorine, 85

Foraging strategies, 164

Fossil charcoal. See Charcoal fossil

Fossil proteins

amino acid sequences, 34, 122, 210

Fossil record

completeness, 46
imperfection, 46

Fourier transform infrared spectroscopy.

Franklin Rosalind, 179

Freeze-thaw effects, 54, 251

Fuel, 166

bones, 121, 237
brick-red burned soil particles, 272
common materials, 168
dung, 145, 238, 272
identification, 176–177, 271–272
identification using phytoliths, 17, 145
peat, 272
wood, 145, 272

Fullerenes, 180

Fulvic acid. See also Humic substances, 314

Fungal degradation. See also Microbial degradation

bone, 114

Garbage pits and dumps, 86, 223, 295

Geogenic minerals calcite, 78
definition, 69
list, 321
silica (opal), 136

Gesher Benot Yaakov, Israel preserved wood, 310

Gibbsite tropical soils, 95

Gizzard stones, 154

Glass, 168

crystallization over time, 167
product of supercooling, 167

Glass production, 91

ash soluble salts, 169
mineral list, 321
secondary use of ash, 166

Gesher Benot Yaakov, Israel preserved wood, 310

Glycogen

infrared spectrum change, 131

Gibbsite tropical soils, 95

Gizzard stones, 154

Glass, 168

crystallization over time, 167
product of supercooling, 167

Glass production, 91

ash soluble salts, 169
mineral list, 321
secondary use of ash, 166

Gamma radiation, 177, 252

Garbage pits and dumps, 86, 223, 295

Gardens, 233

Gastropod shells. See Snail shells

Gastropods, 159

Gehlinite, 204

Gelatin, 113, 308. See also Collagen degradation, 113, 308

Genetic information, 34

Geoarchaeology, 69

Geogenic minerals calcite, 78
definition, 69
list, 321
silica (opal), 136

Gesher Benot Yaakov, Israel preserved wood, 310

Gibbsite tropical soils, 95

Gizzard stones, 154

Glass, 168

crystallization over time, 167
product of supercooling, 167

Glass production, 91

ash soluble salts, 169
mineral list, 321
secondary use of ash, 166

Geoarchaeology, 69

Geogenic minerals calcite, 78
definition, 69
list, 321
silica (opal), 136

Gesher Benot Yaakov, Israel preserved wood, 310

Gibbsite tropical soils, 95

Gizzard stones, 154

Glass, 168

crystallization over time, 167
product of supercooling, 167

Glass production, 91

ash soluble salts, 169
mineral list, 321
secondary use of ash, 166

Gibbsite tropical soils, 95

Gizzard stones, 154

Glass, 168

crystallization over time, 167
product of supercooling, 167

Glass production, 91

ash soluble salts, 169
mineral list, 321
secondary use of ash, 166
Glauconite
transformation at elevated temperatures, 204
Gleaning, 52
Global Positioning Systems, 267
Glue, gelatin, 308
Goethite

tropical soils, 95
Gourds

phytoliths, 147
Graphite, 179, 205
oxidation catalysts, 183
Graphitelike crystallites, 179
Graves

land snails, 158
Gravity sensing, 154
Great temple, Petra, Jordan, 267
Grog, 189, 195, 205
Growth lines. See Rhythmic growth
Guano,

authigenic phosphate mineral formation, 80
degradation, 64, 183
pH of freshly degrading, 66
phosphate concentrations, 224
rich in phosphate, 295
Gum, 211, 312
Gypsum, 59
heated, 188
plaster binder, 188
Halite, 50
Hasanabad village, Zagros Mountains, Iran, 231
Haversian bone. See Osteonal bone
Hayonim Cave, Israel, 96, 160
clay degradation, 303
on-site laboratory, 267
phytolith dissolution, 173
TL and ESR dating, 177, 252
Hearths, 9, 96, 165, 235, 251, 253
charcoal distribution, 183
definition, 174
deliberate control of fire, 175
Eskimo winter house, 237
Natufian, Hayonim Cave, 175
oldest known, 176
preservation process, 175
Heating and cooling materials, 166–167
Heavy liquids, 142
Hematite, 204

tropical soils, 95
Hemicellulose, 179, 309
Hexahydrate, 282
Homo erectus, 74
Hooves, 211
Horn, 211
Hornblende, 204
House, two storied, 234
Humic acid, 314
Humic substances, 58, 72, 182, 312, 313
Raman spectroscopy, 266, 313
resemblance to lignin, 313
Huxley, T. H., 46
Hydraulic conductivity, 55
Hydraulic mortar, 186
Hydraulic plaster, 186, 188–189, 190
authigenic silica, 90
authigenic silicates, 189
definition, 189
grog, 189
infrared spectrum, 189
Pozzolana, 189
Hydrogen peroxide, 142
Hydrological regime, 55, 62, 225, 271
bone preservation, 111
diagenesis, 54–56
Hydrolysis, 112
Hydroxylapatite, 286, 287. See also Carbonate hydroxylapatite, 84
atomic structure, 84, 85
Hydroxyproline, 258
Hyena, 231
prehistoric den, 231
Hypsodonty, 129
ICP-OES. See Inductively Coupled Plasma-Optical Emission Spectrometry
Ilkaitse, 77
Illite

iron-rich, 76
soils in temperate zones, 95
Illite group of clays, 93, 301
Illuviation, 95
Imogolite, 301
India ink. See Ink
Indigo, 158
Inductively coupled plasma-optical emission spectrometry
proveniencing ceramics, 39
Infrared microscopy, 71, 281
Infrared spectroscopy, 71, 275
atomic disorder, 61
basis, 276
bone mineral crystallinity, 112
clay structures, 97
library of standard spectra, 282
on-site, 265, 276
<table>
<thead>
<tr>
<th>Page</th>
<th>Infrared spectroscopy interpretation of spectra, 276–281</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>major classes of compounds, 279</td>
</tr>
<tr>
<td></td>
<td>mixtures of compounds, 280</td>
</tr>
<tr>
<td></td>
<td>peak at 1384 wavenumbers, 281</td>
</tr>
<tr>
<td></td>
<td>shifting of peak maximum, 279–280</td>
</tr>
<tr>
<td></td>
<td>variations in peak width, 281</td>
</tr>
<tr>
<td></td>
<td>Infrared spectroscopy methods</td>
</tr>
<tr>
<td></td>
<td>background, 278</td>
</tr>
<tr>
<td></td>
<td>grinding, 277</td>
</tr>
<tr>
<td></td>
<td>potassium bromide pellets, 276, 278</td>
</tr>
<tr>
<td></td>
<td>quantification, 278</td>
</tr>
<tr>
<td></td>
<td>reproducibility, 277</td>
</tr>
<tr>
<td></td>
<td>sample preparation, 276–277</td>
</tr>
<tr>
<td></td>
<td>sampling, 277</td>
</tr>
<tr>
<td></td>
<td>Infrared spectrum of amber from different locations, 315</td>
</tr>
<tr>
<td></td>
<td>amorphous calcium carbonate, 284</td>
</tr>
<tr>
<td></td>
<td>aragonite, 284</td>
</tr>
<tr>
<td></td>
<td>asphalt, 313</td>
</tr>
<tr>
<td></td>
<td>bone (fossil), 293</td>
</tr>
<tr>
<td></td>
<td>bone (fresh), 293</td>
</tr>
<tr>
<td></td>
<td>bone burned, 295</td>
</tr>
<tr>
<td></td>
<td>calcite, 280, 284, 287</td>
</tr>
<tr>
<td></td>
<td>calcite geogenic crystal, 285</td>
</tr>
<tr>
<td></td>
<td>calcite, test (shell) of sea urchin, 285</td>
</tr>
<tr>
<td></td>
<td>calcite, shell of, brachiopod, 285</td>
</tr>
<tr>
<td></td>
<td>carbonate hydroxyapatite, 289, 296</td>
</tr>
<tr>
<td></td>
<td>cellulose, 311</td>
</tr>
<tr>
<td></td>
<td>charcoal, wood fossil, 310</td>
</tr>
<tr>
<td></td>
<td>charcoal, wood modern, 310</td>
</tr>
<tr>
<td></td>
<td>clay (mainly montmorillonite), 304</td>
</tr>
<tr>
<td></td>
<td>clay transforming, 304</td>
</tr>
<tr>
<td></td>
<td>collagen, fossil major contamination, 309</td>
</tr>
<tr>
<td></td>
<td>collagen, fresh, 309</td>
</tr>
<tr>
<td></td>
<td>collagen, minor contamination, 309</td>
</tr>
<tr>
<td></td>
<td>copal, 315</td>
</tr>
<tr>
<td></td>
<td>crandallite, 296</td>
</tr>
<tr>
<td></td>
<td>cristobolite, 301</td>
</tr>
<tr>
<td></td>
<td>dentin, 291</td>
</tr>
<tr>
<td></td>
<td>enamel, 291</td>
</tr>
<tr>
<td></td>
<td>flint (chert), 299</td>
</tr>
<tr>
<td></td>
<td>fluorapatite, 289</td>
</tr>
<tr>
<td></td>
<td>fulvic acid, 314</td>
</tr>
<tr>
<td></td>
<td>gum, 313</td>
</tr>
<tr>
<td></td>
<td>humic acid, 314</td>
</tr>
<tr>
<td></td>
<td>hydroxyapatite, 289</td>
</tr>
<tr>
<td></td>
<td>illite, 280, 302</td>
</tr>
<tr>
<td></td>
<td>kaolinite, 302</td>
</tr>
<tr>
<td></td>
<td>leucophosphate, 296</td>
</tr>
<tr>
<td></td>
<td>loess, 280, 287</td>
</tr>
<tr>
<td></td>
<td>monohydrocalcite, 284</td>
</tr>
<tr>
<td></td>
<td>montgomeryite (crystalline), 297</td>
</tr>
<tr>
<td></td>
<td>montgomeryite (disordered), 296, 297</td>
</tr>
<tr>
<td></td>
<td>montmorillonite, 302</td>
</tr>
<tr>
<td></td>
<td>montmorillonite heated to different temperatures, 306</td>
</tr>
<tr>
<td></td>
<td>montmorillonite with different associated ions, 303</td>
</tr>
<tr>
<td></td>
<td>nitrate, potassium, 316</td>
</tr>
<tr>
<td></td>
<td>nitrate, sodium, 316</td>
</tr>
<tr>
<td></td>
<td>quartz, 280, 299, 301</td>
</tr>
<tr>
<td></td>
<td>resin, 313, 315</td>
</tr>
<tr>
<td></td>
<td>silica (opal), 299</td>
</tr>
<tr>
<td></td>
<td>silica (opal) crystallizing, 304</td>
</tr>
<tr>
<td></td>
<td>silica (opal) geogenic, 300</td>
</tr>
<tr>
<td></td>
<td>silica (opal) biogenic, 300</td>
</tr>
<tr>
<td></td>
<td>siliceous aggregates, 299</td>
</tr>
<tr>
<td></td>
<td>taranakite, 296</td>
</tr>
<tr>
<td></td>
<td>tridymite, 301</td>
</tr>
<tr>
<td></td>
<td>variscite (crystalline), 297</td>
</tr>
<tr>
<td></td>
<td>variscite (disordered), 297</td>
</tr>
<tr>
<td></td>
<td>vaterite, 284</td>
</tr>
<tr>
<td></td>
<td>weddellite, 307</td>
</tr>
<tr>
<td></td>
<td>whewellite, 307</td>
</tr>
<tr>
<td></td>
<td>wood fossil (poorly preserved), 311</td>
</tr>
<tr>
<td></td>
<td>wood, fossil (well preserved), 311</td>
</tr>
<tr>
<td></td>
<td>wool, 313</td>
</tr>
<tr>
<td></td>
<td>Ink, 184</td>
</tr>
<tr>
<td></td>
<td>Installations for pyrotechnology, 165, 166, 205</td>
</tr>
<tr>
<td></td>
<td>Intergrown crystals. See Crystal aggregates</td>
</tr>
<tr>
<td></td>
<td>Intertubular dentin, 124</td>
</tr>
<tr>
<td></td>
<td>Intracrystalline macromolecules, 100, 112, 156, 162, 212–215</td>
</tr>
<tr>
<td></td>
<td>amino acid racemization dating, 214</td>
</tr>
<tr>
<td></td>
<td>amounts and composition, 213</td>
</tr>
<tr>
<td></td>
<td>embedded information, 214–215</td>
</tr>
<tr>
<td></td>
<td>mollusk shell, 213</td>
</tr>
<tr>
<td></td>
<td>paleoenvironmental reconstruction, 214–215</td>
</tr>
<tr>
<td></td>
<td>radiocarbon dating, 215</td>
</tr>
<tr>
<td></td>
<td>Irrigation, 145–146</td>
</tr>
<tr>
<td></td>
<td>diatoms, 150</td>
</tr>
<tr>
<td></td>
<td>Isotherms. See also Stability fields of minerals, 110</td>
</tr>
<tr>
<td></td>
<td>Isotope. See also Stable isotopic composition definition, 68</td>
</tr>
<tr>
<td></td>
<td>Isotope fractionation paleodiet reconstruction, 28</td>
</tr>
<tr>
<td></td>
<td>Kaolinite, 94, 203</td>
</tr>
<tr>
<td></td>
<td>atomic structure, 93</td>
</tr>
<tr>
<td></td>
<td>degradation product, 95</td>
</tr>
<tr>
<td></td>
<td>soil in tropics, 95</td>
</tr>
<tr>
<td></td>
<td>Kaolinite group of clays, 93, 301</td>
</tr>
</tbody>
</table>
Karstic environments, 78
Kebara Cave, Israel, 65, 88
charcoal distribution, 64, 182
diatoms, 151
phytolith dissolution, 173
Kenyon, K. M., 8, 47
Keratin, 211, 312
Kiln, 193, 200, 304
dating, 25
lime plaster, 187
Kimmel Center for Archaeological Science, Weizmann Institute of Science, 268, 282
Klisoura Cave, southern Greece, 96
Kohl mineral list, 321
La Quemada, Mexico, 150
Lake Turkana, Kenya, 229
Lamellar bone, 107
circumferential, 107
Land snails. See Snail shells
Latrines, 58, 86, 223
characteristic features in sediments, 236
slaked lime, 194
Lead isotope ratios
provenience, 38
Leather, 211, 307
Leopards, 231
Leucophosphite, 86
Levigation, 195
Libby, W. F., 5, 18
Lichens, 306
Life history reconstruction, 27
bone, 123
enamel, 132
Lightning, 183
Lignin, 18, 179, 321, 371
content in wood using infrared spectroscopy, 311
microbial degradation, 58
preservation in fossil wood, 311
resemblance to humic substances, 313
structure, 58, 309
Lime, 185
Lime aggregate, 185
Lime plaster, 185, 186, 193. See also Plaster ageing, 187
calcite crystal morphology, 82
calcite $\nu_2/\nu_4$ ratios, 171, 190
formation, 79
mollusk shells, 157
Lipids, 36, 211. See also Fatty acids
definition, 211
Lithic tools. See Tools, lithic
Livestock enclosures. See Animal enclosures
Loess, 73, 279, 284
Maasai villages, Kenya, 54
animal enclosures, 239
monohydrocalcite, 77, 283
phytoliths, 148
Magnesium oxide, 188, 193
Maize
paleodiet reconstruction, 28
phytoliths, 147
Mandible
alveolar bone, 124
Mantle (mollusks), 162
Manure, 224
Marble, 36
provenience, 38
Material culture, 227
Melilite, 204
Mercenaria, 164
Metals, 36, 168, 205, 266
provenience, 39
site pollution, 272
Mica
transformation at elevated temperatures, 204
Micrite, 75
Microarchaeological record. See Microscopic record
Microarchaeology, 1, 5
integrating with macroarchaeology, 8–9
Microartifacts, 30, 228–230
site spatial organization, 44
size cutoff, 229
trampling, 229
Microbial degradation
absence of water or oxygen, 18
affect of climate, 114
bone, 110, 114, 115
composting, 57
deserts, 49
gelatin, 113
lignin, 58
plant material, 16
Microcharcoal, 233
Microchemical analysis. See Chemical elemental analysis
Microcrystalline quartz. See also Flint, 252
Microlaminated texture, 233
animal enclosures, 240
floors, 236
living room floors, Sarakini, 242
Micromorphology, 30, 69, 73–76
ash types, 177
fuel types used, 271
infrared microscopy, 281
plaster identification, 190
Microscopic artifacts. See Microartifacts
Microscopic record, 1, 6–8, 68
Aliabad village, Zagros Mountains, Iran, 232–236
definition, 13
Eskimo winter house, 236–237
ethnoarchaeological contribution, 228
information categories embedded in the microscopic record, 16
merging archaeobotanical and archaeozoological records, 237–238
on-site laboratory, 10
plant remains, 16
rich in microartifacts, 229
Sarakini village, Greece, 240–244
fish, 157
Middens, 9, 41, 157, 158
Migration, 27, 35, 118–119
fish, 157
Mineral assemblages
diagenesis, 252
in situ (micromorphology), 73–76
site formation processes, 68, 97–98
Mineral formation in biology. See Biominerallization
Mineral identification, 70–72
chemical elemental analysis, 72
infrared spectroscopy, 71
microchemical analysis
optical mineralogy, 70
petrographic microscope, 264
Raman spectroscopy, 72
X-ray diffraction, 33
Mineral particles
size and shape, 72–73
size terminology, 73
Mineralized collagen family of materials, 215
Mineralized collagen fibril, 106
dentin, 127
tendon, 215
Minerals
authigenic. See Authigenic minerals
categories, 69
classification and nomenclature, 70
diagenesis, 59–61
disorder, 61, 167–168. See also Disorder in minerals
dissolution-reprecipitation, 60
stability and solubility, 59
stability fields, 59, 60, 80, 85, 111
Mining, 164
flint raw materials, 91
procurement strategies, 40
tin, 39
Mollusk shell, 157–164
crossed lamellar structure, 159
dating, 163
heated, 162
mantle, 162
myostracum, 160
paleoenvironmental reconstruction, 164
paleotemperature analysis, 33
pearly nacreous luster, 159
periostracion, 159
pseudomorphs, 115
rhythmic growth, 41
season of site occupation, 164
site preservation, 164
structure, 6, 159–160
ultrastructural types, 159
Mollusk shell mineral, 160–162
aragonite, 63, 160
assessing preservation, 81
assessing preservation of calcite, 160
atomic disorder, 161
calcite, 80
stability, 63
Mollusk shell organic matrix, 162
aspartic acid-rich proteins, 162
intracrystalline macromolecules, 212
silk fibroin, 162
β-chitin, 162
Mollusks
taxonomy, 159
uses in antiquity, 157
Monohydrocalcite, 77, 282
dung deposit, 283
Montgomeryite, 86, 297
bones dissolved, 88
stability field, 59
Montmorillonite, 301
atomic structure, 93
Mortar. See Plaster
definition, 185
Mud bricks, 52, 53, 92, 233, 301
Mud plaster, 190
Mullite, 204
Munsell color chart, 203
Muricidae, 158
Muscovite, 93
Mutations, 208, 209
Myostracum, 160
NAA. See Neutron activation analysis
Nacre, 213
Nanotubes, 180
Natufian period, 158
Natural organic materials. See also Humic substances and resins, 312–315
list, 321
list of common materials, 312
Neanderthals
dental calculus, 130
DNA, 33, 35, 208
phytoliths, 140
Neutron activation analysis
proveniencing ceramics, 39, 200
Nilsson, S., 4
Nitrates, 56
deposited on sediment surfaces, 316
Nitrogen isotopic composition. See Stable isotopic composition
paleodiet, 27
NMR
clay structures, 97
Noncollagenous proteins
preservation in bone, 112, 308
radiocarbon dating, 122
Nunamiut, 228
Obsidian
dating, 19, 23
knapping, production of microfragments, 229
provenience, 37
Obsidian hydration dating, 23–24, 246, 247
Occluded macromolecules. See Intracrystalline macromolecules
Octacalcium phosphate, 130
Odontoblasts, 124
Old wood effect, 191, 255
Olduvai Gorge, Tanzania
phytoliths, 147
Olive pit, 17, 251
ancient DNA, 310
preservation, 309–311
Oloresaille, Kenya, 32
Onionlike structures, 180, 182. See also Charcoal structure
On-site laboratory, 10, 11, 63, 267, 269
analysis times, 263
benefits, 261–262
choice of instruments, 263–268
conservation, 273
tilting strata, 65
Ornamentation. See Beads
Dentalium, 158
OSL. See Optically Stimulated Luminescence dating
mode of operation, 261
of Kimmel Center for Archaeological Science, Weizmann Institute of Science, 268
operation, 268–269
useful work program, 269–271
Optical mineralogy, 70, 199
Optical stimulated luminescence dating, 18, 245, 246
context, 254
materials, 254
Oral bacteria, 147
Order in minerals. See Disorder in minerals
Organic matrix
bone, 102, 105
diagenesis in bone, 110, 112
eggshells, 152
enamel, 125
inter- and intracrystalline, 100
mollusk shells, 162
otoliths, 156
phytoliths, 136
two major groups, 100
Organic matter
dissociated, 50
phosphate, 59
phosphorus concentrations, 224
removal by oxidation, 142
sulfur, 59
tanning, 50
Organic matter concentrations, 59, 64, 223–225
Aliabad village house, 234
alleys between houses, 233
phytolith concentrations, 225
Organic matter degradation, 57–59, 225
aerobic and anaerobic processes, 53
driving force for diagenesis, 56, 57
microbial action, 58
pH lowering, 50, 57
processes, 57
rapid phase, 53
Olive pit, 17, 251
Ornamentation. See Beads
Dentalium, 158
OSL. See Optically Stimulated Luminescence dating
mode of operation, 261
of Kimmel Center for Archaeological Science, Weizmann Institute of Science, 268
operation, 268–269
useful work program, 269–271
Opal. See Silica
Opal-A, 88
Opal-CT, 88
Order in minerals. See Disorder in minerals
Organic matrix
bone, 102, 105
diagenesis in bone, 110, 112
eggshells, 152
enamel, 125
inter- and intracrystalline, 100
mollusk shells, 162
otoliths, 156
phytoliths, 136
two major groups, 100
Organic matter
dissociated, 50
phosphate, 59
phosphorus concentrations, 224
removal by oxidation, 142
sulfur, 59
tanning, 50
<table>
<thead>
<tr>
<th>Page</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>388</td>
<td>Index</td>
</tr>
</tbody>
</table>

- **Osteocalcin**, 105, 112, 216, 292, 308
- **Osteon**, size, 26
- **Osteonal bone**, 107–108 life history reconstruction, 123
- **Ostriches**, drinking water, 33 eggshells, 151, 214
- **Ostwald’s Rule of Stages**, 80 bone, 104
- **Otoconia**. See also **Otoliths**, 154

**Otoliths**, 154–157
- 3 chambers, 155 diagenesis, 156 embedded information, 156–157 growth lines, 154 mineralogy, 155 nomenclature, 154 paleoenvironmental reconstruction, 156 season of occupation, 42, 157 structure and organic matrix, 156 trace element variations, 157

- **Overton Down, England**, 114

**Owls**, 231

**Oxidation**
- charcoal, 16, 182 charred organic matter, 58 organic matter, 57, 96, 114 removal of organic matter, 142

**Oxidizing agent**. See **Sodium hypochlorite**

**Oxygen isotopic composition**. See also **Stable Isotopic Composition**
- Stable Isotopic Composition
  - drinking water, 33, 35 migration, 27 phosphate, 87
- **Oxyhornblende**, 204

**Oysters**, 80 shell mineralogy, 160

**Paleochemical environment**, 68, 296

**Paleoclimate reconstruction**. See also **Paleoenvironment reconstruction**
- carbonate hydroxyapatite, 87 charcoal in sediments, 183 phytoliths, 142, 147

**Paleodiet reconstruction**, 30
- basis for, 120 bone, 119–121 collagen in bone, 28 cooked and burned bone, 121 crystal aggregates, 218 individual amino acids, 29 isotope fraction, 28 maize, 28 marine derived food, 28


**Paleoenvironment reconstruction**, 30–31
- archaeobotany, 31 diatoms, 150, 151 eggshells, 153 intracrystalline macromolecules, 214–215 iron minerals, 66 micromorphology, 30 mollusk shells, 100, 163–164 otoliths, 156 phytoliths, 31 pollen, 32 rare earth elements (REE), 31–32 rare earth elements in bone, 122 stable isotope variations, 32–33

**Paleoenvironmental reconstruction**
- charcoal, 243

**Paleogenetics**, 33–35, 121–122 ancient DNA, 34 ancient DNA in crystal aggregates, 218 fossil protein sequences, 34 Neanderthal DNA sequence, 35 protein, 122

**Paleomagnetic features in sediments**, 176

**Paleomigration**, 35, 118–119. See also **Migration**
- **Paleo-PH**, 296
- **Paleotemperature**, 33 stable oxygen isotopic composition, 163 trace elements, 163

**Paleovegetation ecology**
- phytoliths, 147 Palygorskite group of clays, 93 Parallel fibered bone, 107

**Parchment**, 211, 307 collagen-gelatin proportions, 113 Dead Sea Scrolls, 50 preservation, 50

**Parenchyma**, 16

**Pastoral societies**, 238, 239

**PCR**. See **Polymerase chain reaction**

**PDI**. See **Phytolith Difference Index**

**Pearly luster**, 159

**Peat**, 272
- ash, 177 combustion material, 168

**Peking Man Site**. See **Zhoukoudian, China**
Peptides, 211
Periclase, 204. See also Magnesium oxide, 193
Periodontal ligament, 124, 129
Periostracum, 159
Peritubular dentin, 124, 128, 217
crystal aggregates, 216
matrix proteins, 216
Petrographic microscope, 73, 264
micromorphology, 69
mineral identification, 70, 199, 264
phytolith identification, 264
Petroleum residues, 312
pH, 59
ash diagenesis, 172–174
carbonate buffer, 77, 160
drop in sediments, 58, 63, 225
microbial activity, 60, 98
organic matter degradation, 50, 57, 64, 66
phytolith stability, 143
silica dissolution rates, 90
slaked lime, 188
Phase transformations
heating and cooling, 167
Phosphophoryn, 127
Phosphorus, 223
Phosphate, 59, 223
Phosphate concentrations. See also
Authigenic phosphate minerals, 44,
60, 223–225, 296
alleys between houses, 233
animal enclosures, 240
cave sediments, 88
colorometric assay, 86
ethnoarchaeology, 244
fish processing site, 244
guard house, 244
organic matter, 224
sediments, 59, 86
site spatial organization, 44
UV-visible spectrophotometers, 266
Phosphophoryn, 127
Phosphorus, 223
content in organic matter, 224
Photography, 268
Photosynthetic systems, 214
C3, and C4, 28, 153
Phreatic zone. See Saturated zone
Phytolith assemblages, 139–141
identifying plant taxa, 146–147
information on plant parts, 140, 141
nonarchaeological sediments, 144
plant quantities brought to site, 148
rural-urban continuum, 273
Sarakini village, Greece, 240–243
taxonomic information, 140
Phytolith Difference Index (PDI), 241, 243
Phytolith record, 17, 238
Phytoliths, 135–149. See also
Archaeobotanical record
absence of occluded DNA, 146, 214
bananas, 147
bark, 272
barley, 147
burned, 17, 136, 174, 233, 237, 272
cereal storage vs fodder storage, 140
cereals, 140, 147
concentrations, 141, 148, 234, 238
consistent and variable morphologies,
139
cooking pot residues, 147
dendritic, 140
dental calculus, 147
diagenesis, 143–144
dissolution, 144, 173
embedded information, 145–149
etched surfaces (weathered), 144, 271
floor types, 235, 242
formation and morphology, 137–139
fuel use, 145
functions, 137
genetic information, 146
genetic vs environmental control, 138
gourds, 147
grasses, 140, 146, 148
hardness, 136
irrigation, 145–146
location in cell, 137
material, 137
mechanical function, 137
mineral solubility, 143
morphotype classification, 139
morphotypes (morphologies), 138
multi-celled (silica skeletons), 145
nomenclature, 135
occluded macromolecules, 146, 213
organic matrix, 136, 214
palaeodiet reconstruction, 147
paleovegetation ecology, 147
radiocarbon dating, 148, 260
reference collection, 141–142, 148
rice, 147
sampling and analysis, 142–143
site spatial organization, 148–149
squash, 147
stable oxygen isotopic composition, 145
strategy for studying phytoliths,
141–143
tooth abrasion, 137
two storied house, 242
wheat, 147
Phytoliths (cont.)
- wood, 140, 148, 172
- wood and bark, 139

Pigments
- analysis, 72
- list, 321

Piltdown forgery, 5, 23, 288

Pine tar, 312

Plants. See also Archaeobotany
- archaeological sites, 16
- minerals produced, 135
- nitrogen incorporation, 28
- phytolith concentrations, 141
- phytolith producers, 138
- silica formation, 89
- soil formation, 94
- use of, 148

Plaque. See Dental calculus

Plaster. See also Lime plaster and
- Hydraulic plaster, 185–194
dating problems, 192
definition, 185
diagenesis, 190–191
early production (Natufian), 165
embedded information, 191–194
diagenesis, 190–191
early production (Natufian), 165
embedded information, 191–194
frescoes, 193
gypsum, 185, 188
identification, 190
radiocarbon dating, 255, 260
reconstructing production processes, 193
refractory materials, 193–194
residue analysis, 194

Plaster aggregates, 185, 189–190
binder to aggregate proportions, 189

Plaster binder, 185–189
ageing, 187
calcite, 186–188
calcite production process, 186, 187
gypsum, 188

Plaster floors
- fatty acid concentrations, 44

Plaster of Paris, 188

Plexiform bone. See Fibrolamellar bone

Pollen, 18, 32, 70, 211, 234, 338, 348, 351, 365, 367
- outer exine layer, 18
- paleoenvironmental reconstruction, 32
- preservation, 31

Tyrolean ice man, 48

Pollen grains, 16

Polymerase chain reaction, 34

Polymorphs, 77

Polymorphs of calcium carbonate, 282–283

Fulysaccharides, 162, 211, 312

Pomaks, 240
Porcupines, 231
Porosity
- bone, 109, 110
- ceramics, 205
Portlandite, 204. See also Plaster binder, 186
Postholes, 239

Potassium isotope \(^{40}\text{K}\)
siliceous aggregates, 177

Pot-lid fracture of flints, 176

Pottery. See also Ceramics, 194–206
celadons, 205
contents, 35–36, 219
embedded information, 198–206
furnace lining, 193, 205
production areas, 202
surface sealants, 219
tuyiennes, 205

Pottery manufacture, 195–198
bone powder decoration, 203
cracking, 195, 197
crucible production, 205
drying, 197
ethnographic observations, 197
firing conditions, 197–198, 202–205
fluxes, 195–196
kinetic vs thermodynamic control, 202
paddle and anvil technique, 196
processes, 202–205
raw materials, 195
shaping and decorating, 196
slip, 196
soaking time, 198
temper, 195
wasters, 202
wheel production, 196

Pottery provenience, 39, 151, 198–200
- El Amarna tablets, 200
- mineralogical (petrographic) approach, 199–200
total element approach, 200
- two approaches, 199
- XRF, 266

Pozzolana, Italy, 186

Preservation
ash, 175
- assessing mineral preservation, 81, 160
atomic disorder, 162
bones, 160
charcoal distribution, 64
charred material, 179
clay-rich sediments, 66, 96
context of uncharred organic materials, 225
deserts, 49

© in this web service Cambridge University Press
<table>
<thead>
<tr>
<th>Page</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>dessicated,</td>
</tr>
<tr>
<td>48</td>
<td>frozen,</td>
</tr>
<tr>
<td>40–41</td>
<td>Procurement strategies,</td>
</tr>
<tr>
<td>40</td>
<td>cosmonogenic isotopes,</td>
</tr>
<tr>
<td>91–92</td>
<td>flint,</td>
</tr>
<tr>
<td>40</td>
<td>mining,</td>
</tr>
<tr>
<td>207, 208</td>
<td>Protected niches,</td>
</tr>
<tr>
<td>226</td>
<td>authigenic minerals,</td>
</tr>
<tr>
<td>219–222</td>
<td>ceramics,</td>
</tr>
<tr>
<td>226</td>
<td>charcoal,</td>
</tr>
<tr>
<td>106, 215–219</td>
<td>crystal aggregates,</td>
</tr>
<tr>
<td>100, 152, 212–215</td>
<td>intracrystalline,</td>
</tr>
<tr>
<td>222</td>
<td>peritubular dentin,</td>
</tr>
<tr>
<td>213</td>
<td>enamel,</td>
</tr>
<tr>
<td>125, 217</td>
<td>intracrystalline,</td>
</tr>
<tr>
<td>217</td>
<td>peritubular dentin,</td>
</tr>
<tr>
<td>213</td>
<td>preservation,</td>
</tr>
<tr>
<td>36, 195</td>
<td>Provenience.</td>
</tr>
<tr>
<td>36</td>
<td>amber,</td>
</tr>
<tr>
<td>96–97</td>
<td>definition,</td>
</tr>
<tr>
<td>151</td>
<td>diatoms,</td>
</tr>
<tr>
<td>40, 91–92</td>
<td>lead isotope ratios,</td>
</tr>
<tr>
<td>38</td>
<td>marble,</td>
</tr>
<tr>
<td>37</td>
<td>obsidian,</td>
</tr>
<tr>
<td>39–200</td>
<td>pottery,</td>
</tr>
<tr>
<td>91</td>
<td>quartz grain morphologies,</td>
</tr>
<tr>
<td>38</td>
<td>soapstone,</td>
</tr>
<tr>
<td>39–40</td>
<td>sources of raw materials, abundant,</td>
</tr>
<tr>
<td>37–39</td>
<td>sources of raw materials, limited,</td>
</tr>
<tr>
<td>38</td>
<td>steatite,</td>
</tr>
<tr>
<td>39</td>
<td>tin,</td>
</tr>
<tr>
<td>39–41</td>
<td>Provenience and procurement strategies,</td>
</tr>
<tr>
<td>83</td>
<td>Pseudomorphs,</td>
</tr>
<tr>
<td>115</td>
<td>bone,</td>
</tr>
<tr>
<td>101, 115</td>
<td>bones vs shells,</td>
</tr>
<tr>
<td>174</td>
<td>in ash,</td>
</tr>
<tr>
<td>82, 171, 173, 176, 272</td>
<td>wood ash,</td>
</tr>
<tr>
<td>124</td>
<td>Pulp cavity,</td>
</tr>
<tr>
<td>59</td>
<td>Pyrite,</td>
</tr>
<tr>
<td>81</td>
<td>Pyrogenic minerals</td>
</tr>
<tr>
<td>60, 82</td>
<td>aragonite,</td>
</tr>
<tr>
<td>77, 79, 82, 186, 188, 192</td>
<td>calcite,</td>
</tr>
<tr>
<td>69</td>
<td>definition,</td>
</tr>
<tr>
<td>321</td>
<td>list,</td>
</tr>
<tr>
<td>179</td>
<td>Pyrolysis,</td>
</tr>
<tr>
<td>165</td>
<td>cooking,</td>
</tr>
<tr>
<td>165</td>
<td>definition,</td>
</tr>
<tr>
<td>166</td>
<td>plaster binders,</td>
</tr>
<tr>
<td>166</td>
<td>waste products,</td>
</tr>
<tr>
<td>83</td>
<td>Qesem Cave, Israel,</td>
</tr>
<tr>
<td>56, 88–89, 298</td>
<td>Quartz,</td>
</tr>
<tr>
<td>201</td>
<td>along coast of Israel,</td>
</tr>
<tr>
<td>90</td>
<td>beta quartz,</td>
</tr>
<tr>
<td>91</td>
<td>bone collagen prescreening,</td>
</tr>
<tr>
<td>257, 258</td>
<td>bone collagen prescreening,</td>
</tr>
<tr>
<td>20, 245, 247, 249–250</td>
<td>calibration,</td>
</tr>
<tr>
<td>184, 254</td>
<td>charred material,</td>
</tr>
<tr>
<td>258</td>
<td>charred material prescreening,</td>
</tr>
<tr>
<td>258–259</td>
<td>charred material purification,</td>
</tr>
<tr>
<td>95, 259</td>
<td>clays associated with charcoal,</td>
</tr>
<tr>
<td>256</td>
<td>collagen C/N ratio,</td>
</tr>
<tr>
<td>219</td>
<td>collagen in crystal aggregates,</td>
</tr>
<tr>
<td>259</td>
<td>collagen purification,</td>
</tr>
<tr>
<td>18</td>
<td>effective range,</td>
</tr>
<tr>
<td>154</td>
<td>eggshells,</td>
</tr>
<tr>
<td>259</td>
<td>estimating uncertainties,</td>
</tr>
<tr>
<td>19</td>
<td>half-life,</td>
</tr>
<tr>
<td>258</td>
<td>hydroxyproline,</td>
</tr>
<tr>
<td>259</td>
<td>interlaboratory comparisons,</td>
</tr>
<tr>
<td>215</td>
<td>intracrystalline macromolecules,</td>
</tr>
</tbody>
</table>
Radiocarbon dating (cont.)
macrocontext, 250–251
materials, 19, 251, 254–255
microcontext, 251–252
mollusk shells, 163, 255
number of samples to analyze, 255–256
old wood effect, 21, 255
organic matter in sediments, 19, 251, 254–255
plaster, 191, 255
prescreening samples, 256–258
reservoir effect, 163
sample collection in the field, 258
sample purification methods, 258–259
Radiolaria, 89, 298
Rainfall, 153
multi-celled phytoliths, 145
Raman spectroscopy, 72, 266
clay structures, 97
pigment analysis, 72
Raphides, 170
Rare earth elements
bone, 122
paleoenvironmental reconstruction, 31–32
Ratites
eggshells, 151
Reaction cascade, 60, 61, 173
Reaction rim, 64, 65
Recrystallization window, 111
changes in bone mineral, 112
Red brick colored nodules, 174
Red soils. See also Soils, tropics
REE. See Rare earth elements
Refractive index, phytoliths, 17, 136, 144, 237, 264, 272
Refractory material, 193–194
aragonite, 193
ceramic 17, 206
magnesium oxide (periclase), 193
Reservoir effect, 163
Residue analysis, 27, 29, 36, 211
beeswax, 236
ceramics, 219–222
plaster, 194
Resins, 211, 226, 312, 314
fossil (amber), 314
Rhomb-shaped crystals
calcite, 78, 82
Rhythmic growth, 41–42
cementum, 129
enamel and dentin, 132
mollusk shells, 163, 164
otoliths, 154, 157
Rice
phytoliths, 147
Rock paintings
radiocarbon dating, 184
Rural-urban continuum, 273
Salinity variations
otoliths, 156
Salt deposition on sediment surfaces, 56, 251, 315–316
Sand dunes, 91
Sanidine, 204
Sarakini village, Greece, 234, 240–244
animal enclosures, 242
rye use, 242
threshing floors, 242
Saturated zone, 55
Scaphopods, 159
Schoningen, Germany
wood preservation, 310
Sea urchin test (shell). See Echinoderm skeletons
Sea water
aragonite precipitation, 78
paleotemperatures, 33, 156, 163
Season of occupation, 41–42
archaeobotanical remains, 41
cementum, 42
mollusk shells, 164
otoliths, 42, 157
rhythmic growth, 42
Seasonal increments. See Rhythmic growth
Sediments
abundance of calcite, 77
exposure to elevated temperatures, 97
mineral assemblages and site preservation, 97–98
water flow, 55
Seed clusters, 251
Sewers, 58, 86, 295
Sharpey’s fibers, 129
Sherd. See also Ceramics, 196
color, 203
firing conditions, 202
trace element analysis, 198
Sibudu Cave, South Africa, 254
Silica, 89–90, 298
atomic structure, 88, 137
authigenic, 90, 96, 298, 303
biological production, 89
bound water and hydroxyls, 136
dehydration, 66
silica aggregates. See Siliceous aggregates
silicates layered, 93
Silicates sheet, 93
Siliceous aggregates, 139, 145, 169, 237, 253, 272, 298
40K isotope, 177
confusion with clay particles, 174
Hayonim Cave, Israel, 173
solubility, 173
structure and formation, 171
Siliceous phytoliths. See Phytoliths
Silicon dioxide polymorphs, 88–92, 297–300
diagenesis, 90
embedded information, 91–92
Silicon tetrahedra, 168
Silk, 162, 312
Sink hole, 65
Sintering, 290
Site formation processes, 42
micromorphology, 69
mineral assemblages, 68, 98
size and shape of mineral particles, 72
transformation processes, 43
Site framework. See Site spatial organization
Site spatial organization, 43–44, 230
fatty acids, 44
fire locations, 235
floor types, 235
microartifacts, 44
phosphate concentrations, 44, 223–225, 296
phytolith difference index (PDI), 242
phytoliths, 141, 148–149
size sorting of artifacts, 228
two storied houses, 234
Site use
secondary, 52
Skin, 105, 113, 184, 211, 307
Slaked lime. See also Plaster binder, 186
sewage treatment, 194
tanning, 194
Slip, 196
Snails. See also Sediments
arid and desert zones, 95
burned organic matter, 95
charcoal fragments, 183
definition, 73
high latitudes, 95
hydroxides and oxides, 95
temperate latitudes, 95
tropics, 95
Solubility of minerals, 59
Soot, 183
fullerenes, 180
Speleothems
uranium series dating, 21
Spherulites, 44
dung, 44, 233, 234, 236, 240
otoliths, 156
Splitting factor, 116, 291. See also Bone mineral, crystallinity
bone collagen content, 292
bone mineral, 291
enamel, 291
measurement using infrared spectrum, 291
Sponges, 89, 150
Spongy bone, 108
Springs, 96
Squash
phytoliths, 147
Squid otoliths, 154
Sr/Ca ratios
bone, 120–121
otoliths, 157
weaning, 45
Stability fields of minerals, 59, 60, 80, 295
carbonate hydroxylapatite, 85
Stable isotopic composition
  collagen in crystal aggregates, 217
dung, 240
eggs, 153
fractionation, 32
individual amino acids, 28
intracrystalline macromolecules, 214
marble provenience, 38
nitrogen, 27, 28, 45
otoliths, 156
oxygen, 145
paleodiet, 119–120
paleoenvironment reconstruction,
32–33
  paleotemperatures (mollusk shells), 163
water in sediments, 146
Stables, 236
Starch, 18, 211, 312
  grains, 134, 222, 223
Steatite, 36
provenience, 38
Sterkfontein Cave, South Africa, 230
  wood preserved, 310
Storage bins, 236
Storage sites, 58, 223
Strontium isotope ratios, 119
  bone mineral, 29
  migration, 26, 119
  paleodiet reconstruction, 29
  paleomigration, 35
Structural features. See Installations for pyrotechnology
Stucco, 194. See also Plaster, 185
Sugars. See Polysaccharides
Supercooled state, 167
Swartkraans Cave, South Africa, 230, 292

Tanning, 50
  slaked lime, 194
Taphonomy. See also Diagenesis, 53
  bones, 115, 116
Taranakite, 64, 86, 183, 297
Teeth. See also Tooth, 123–129
  abrasion by phytoliths, 136
  basic structure, 123
  brachydonty, 129
  dental calculus, 130
  design strategies, 129
  embedded information, 132–134
  fish, 288
  hypsodonty, 129
  strontium isotopes, 119
Tel Dor, Israel, 65, 224
  ancient animal enclosures, 240
  aragonite refractory material, 194
  phytoliths, 140
  sediments exposed to elevated temperatures, 97
Tell es Safi, Israel, 158
Temper, 195
types, 195
  Tendon mineralized, 107
Terrestrial gastropods. See Snail shells
Thames River, 151
Theca, 149
Thermoluminescence, 176
Thermoluminescence dating, 92, 245, 246, 350. See also TL, 18
  flint tools, 92
Thomsen, C. J., 4
Three-dimensional site reconstructions,
267
Threshing floors, 233, 241, 242
Tilted strata, 65
  caves, 65
  organic matter degradation, 65
  Tin provenience, 39
  TL. See also Thermoluminescence dating
  Tools, lithic
    dating by TL, 22
    flint, 91
    obsidian proveniencing, 37
    procurement strategies, 41
    provenience, 36
    quartzite, 74, 76
Tooth. See also Teeth, Enamel, Dentin, and Cementum development, 26
  Trabecular bone. See Spongy bone
Trace elements, 68
  analysis, 37
  ceramic, 39
  flint, 40
  marble, 38
  otoliths, 157
  soapstone, 38
Trade
  pottery, 198–200
  Trampling, 234. See also Microlaminated texture, 229, 230, 233
  Trapped charge dating, 22–23, 245. See also
    Thermoluminescence, Optical stimulated luminescence, Electron spin resonance, 18, 19
    affect of siliceous aggregates, 177
  context, 252–254
adsimeters, 252  
gamma radiation, 252  
Travertine, 21, 80, 284  
uranium series dating, 21  
Tree rings  
 radiocarbon concentrations, 250  
Tricalcium phosphate, 118  
Tridymite, 88, 90, 298  
Triple helical molecule. See Collagen  
Trona, 116  
Tubules. See Dentin, tubules  
Turkana homestead, Kenya, 47  
Tusk shells. See also Dentalium, 159  
Tuyierrres, 205  
Tyrolean ice man, 48  
Unsaturated zone, 55  
Uranium series dating, 14, 19, 21, 246  
 enamel, 132  
mollusk shells, 163  
 range, 21  
Uranium uptake into enamel, 131, 253  
UV-Visible spectrophotometers, 267  
Vadose zone. See Unsaturated zone  
Variscite, 64, 297  
Vaterite, 77, 282  
 otoliths, 42, 155  
 plants, 135  
Vermiculite  
 high latitude soils, 95  
Vermiculite group of clays, 93  
Vessel contents. See Pottery contents  
Vitrivius, 187  
Volcanic ash. See also Pozzolana, Italy, 186  
degradation into clay, 95  
Wash coat. See also Lime plaster, 185  
Waste products. See also Pyrotechnology  
 pyrotechnology, 166  
 Wasters, 202  
Water. See also Hydrological regime  
 absence restricts microbial activity, 18, 114  
 agent of diagenesis, 96  
aerobic conditions, 32, 50  
clay-rich sediments, 93, 98  
 drinking, 33, 132  
 driving force of degradation, 52  
 fluoride, 23  
 hydrolysis reactions, 112  
 irrigation, 150  
 liquid vs vapor for preservation, 49  
saturated and unsaturated zones, 55  
 standing vs flowing, 151  
 Waterlogged environments, 50  
Wax, 211, 312  
Weaning, 44–45  
 age of, 121  
domestic animals, 45  
nitrogen isotopic composition, 45  
Sr/Ca ratios, 45  
Weddelite, 306  
 Wells, 151, 236  
 Wet sieving, 265  
 Wheat phytoliths, 147  
Whewellite, 82, 306. See Calcium oxalate  
morphologies of crystals in wood and bark, 170  
 wood, 79  
Wilson, E. O., 3  
Wood  
calcium oxalate crystals, 170  
 charred vs uncharred, 309  
 fire hardened sticks, 178, 310  
 fossil, 58  
 fuel, 145, 238  
fungal degradation, 309  
lignin and cellulose preservation, 311  
 major components, 179  
 phytoliths, 139, 140  
 preservation, 309–311  
 preserved in old sites, 310  
 pyrolysis process, 179  
taxonomic identification, 184  
 Wood ash, 83  
calcite crystal morphology, 82  
calcite degradation, 79  
calcium oxalate pyrolysis, 79  
cemented sediment, 83  
 phytoliths, 178  
pseudomorphs, 82  
siliceous aggregates, 145  
Worsaae, J. A., 4  
Woven bone, 107  
X-ray diffraction, 70–71, 104, 168  
 bone mineral, 116  
ceramics, 203  
 charcoal, 179  
 clay minerals, 94, 97, 301  
collagen to gelatin transformation, 113  
crystallinity, 290  
disorder in bone mineral, 64  
disorder in carbonate minerals, 82, 161
X-ray diffraction (cont.)
identifying authigenic phosphate minerals, 297
quantification of mineral assemblages, 278
X-ray fluorescence spectroscopy (XRF), 265–266

Yuchanyan Cave, China, 265

Zhoukoudian, China, 5, 31, 75, 174.

292
evidence for deliberate control of fire, 176
fossil ashes?, 74
Layer 10, Locality 1, 74–76
use of fire, 75

$\nu_2:\nu_4$ ratio. See Calcite, $\nu_2:\nu_4$ ratio