MICROARCHAEOLOGY

The archaeological record is a combination of what is seen by the eye and the microscopic record revealed with the help of instrumentation. The information embedded in the microscopic record can significantly add to our understanding of past human behavior, provided that this information has not been altered by the passage of time. Microarchaeology seeks to understand the microscopic record in terms of the types of information embedded in this record, the materials in which this information resides, and the conditions under which a reliable signal can be extracted. This book highlights the concepts needed to extract information from the microscopic record. Intended for all archaeologists and archaeological scientists, it will be of particular interest to students who have some background in the natural sciences and archaeology. This book

- emphasizes the nature of the materials in which information is embedded and the problems associated with extracting a real signal,
- provides a comprehensive list of the types of information embedded in the microscopic archaeological record, and
- offers an in-depth overview of the use of infrared spectroscopy for analyzing the microscopic record, the only one of its kind available.

Stephen Weiner is director of the Kimmel Center for Archaeological Science at the Weizmann Institute of Science in Israel. He is the author, with Heinz A. Lowenstam, of On Biomineralization and has published more than 250 scientific journal articles.
Microarchaeology

BEYOND THE VISIBLE

ARCHAEOLOGICAL RECORD

Stephen Weiner

Weizmann Institute of Science
Contents

Preface

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Archaeology, Archaeological Science, and Microarchaeology</td>
<td>1</td>
</tr>
<tr>
<td>Archaeology Is a Difficult Science</td>
<td>3</td>
</tr>
<tr>
<td>Historical Perspective</td>
<td>4</td>
</tr>
<tr>
<td>Archaeological Science</td>
<td>5</td>
</tr>
<tr>
<td>The Microscopic Record</td>
<td>6</td>
</tr>
<tr>
<td>Tool Kit for Deciphering the Microscopic Archaeological Record</td>
<td>8</td>
</tr>
<tr>
<td>The Importance of Integrating Microarchaeology with Macroarchaeology</td>
<td>8</td>
</tr>
<tr>
<td>The ideal solution to this problem</td>
<td>9</td>
</tr>
<tr>
<td>The reality</td>
<td>10</td>
</tr>
<tr>
<td>On-Site Laboratory</td>
<td>10</td>
</tr>
<tr>
<td>The Concept of This Book</td>
<td>10</td>
</tr>
<tr>
<td>Conclusions</td>
<td>12</td>
</tr>
<tr>
<td>2 Information Embedded in the Microscopic Record</td>
<td>13</td>
</tr>
<tr>
<td>Archaeobotanical Record</td>
<td>16</td>
</tr>
<tr>
<td>Dating</td>
<td>18</td>
</tr>
<tr>
<td>Perspective on techniques used for dating materials from archaeological sites</td>
<td>18</td>
</tr>
<tr>
<td>Radiocarbon dating</td>
<td>19</td>
</tr>
<tr>
<td>Uranium series dating</td>
<td>21</td>
</tr>
<tr>
<td>Dendrochronology</td>
<td>21</td>
</tr>
<tr>
<td>Trapped charge dating: Thermoluminescence (TL), optical stimulated luminescence (OSL), and electron spin resonance (ESR)</td>
<td>22</td>
</tr>
<tr>
<td>Dating by fluoride uptake</td>
<td>23</td>
</tr>
</tbody>
</table>
Obsidian hydration dating 23
Amino acid racemization dating 24
Dating by archaeomagnetism 25
Life History Reconstruction of Individuals 26
Paleodiet Reconstruction 27
Stable isotope paleodiet reconstruction 28
Strontium contents of human bones 29
Molecules trapped in ceramics (residue analysis) 29
Paleoenvironmental Reconstruction 30
Micromorphology 30
Archaeobotany 31
Rare earth elements 31
Pollen 32
Stable isotope compositional variations 32
Paleogenetics 33
Paleomigration 35
Pottery Contents 35
Provenience and Procurement Strategies 36
Provenience studies 36
Limited sources 37
Obsidian 37
Amber 37
Soapstone (Steatite) 37
Marble 38
Metals 38
Abundant sources 39
Pottery 39
Flint (Chert) 40
Procurement strategies 40
Season of Occupation 41
Archaeobotanical remains 41
Rhythmic growth 41
Site Formation Processes 42
Site Spatial Organization 43
Weaning Age 44
3 Completeness of the Archaeological Record 46
How Bad Is the Archaeological Record? 47
The Almost Complete Record 47
The Incomplete Record: Conceptual Framework for Assessing the Missing Record 51
Macroscopic versus microscopic records 51
Time frame 52
CONTENTS

Cemented sediment: Recrystallized wood ash or a geogenic cement? 82
Carbonate Hydroxylapatite 83
Atomic structure 84
Stability field 85
Diagenesis 86
Embedded information 86
Identifying areas in a site that had high organic contents 86
Differentiating between biogenic and geogenic carbonate hydroxylapatites 87
Paleoclimate reconstruction 87
Using authigenic phosphate minerals for identifying strata in which bones have dissolved 88
Polymorphs of Silicon Dioxide 88
Quartz and flint/chert 88
Silica 89
Silicon dioxide polymorphs produced at high temperatures 90
Diagenesis 90
Quartz 90
Silica 90
Microcrystalline quartz in flint and chert 90
Embedded information 91
Provenience of quartz 91
Provenience and procurement strategies of flint and chert 91
Dating of flint tools 92
The Clay Family 92
Clay structures and classification 93
Identifying clay minerals 94
Clay and organic materials 94
Diagenesis 95
Embedded information 96
Better preservation in clay-rich sediments 96
Clay provenience 96
Was the clay exposed to elevated temperatures? 97
General Implications of Mineral Assemblages for Site Preservation 97
Assessing the Completeness of the Archaeological Record 98

5 Biological Materials: Bones and Teeth 99
Biomineralization: Archaeological Perspective 99
Bone and Bones 101
Bone the material: The hierarchical structure

Level 1: The basic constituents

- Level 2: The mineralized collagen fibril
- Level 3: The fibril arrays
- Level 4: The packing motifs of fibril arrays
- Level 5: Osteonal bone
- Level 6: The spongy to compact bone continuum
- Level 7: Whole bone

Porosity

Diagenesis of bone the material

- Mineral diagenesis
- Organic matrix diagenesis
- Microbial and fungal diagenesis

The pseudomorph and cast issue

Timescales for bone diagenesis

- Bones lying on the soil surface
- Buried bones
- Burned bone

Embedded information

- Migration pathways
- Paleodiet reconstruction
- Paleogenetics
- Paleoenvironmental reconstruction using rare earth elements
- Radiocarbon dating
- Reconstructing aspects of an individual’s life history

Teeth

Enamel: The hierarchical structure

- Level 1: The basic constituents
- Level 2: Crystal arrays (prisms)
- Level 3: Reticulate three-dimensional network of prisms
- Level 4: Graded changes in structure
- Level 5: The whole enamel layer

Dentin: The hierarchical structure

- Level 1: The basic constituents
- Level 2: The mineralized collagen fibril
- Level 3: The fibril arrays
- Level 4: The packing motifs of fibril arrays
- Level 5: The tubules and peritubular dentin
- Level 6: The whole dentin component of the tooth

Whole teeth

- Cementum
- Dental calculus
Diagenesis of teeth 130
 Enamel diagenesis 130
 Dentin diagenesis 131
Embedded information 132
 Enamel 132
 Dentin 133
 Cementum 133
 Dental calculus 134

6 Biological Materials: Phytoliths, Diatoms, Eggshells, Otoliths, and Mollusk Shells 135
Phytoliths 135
 Phytolith material 136
 Phytolith formation and morphology 137
 Information categories obtained from phytolith assemblages 139
 Taxonomy 139
 Plant categories 140
 Plant parts 140
Strategy for studying phytoliths in an archaeological context 141
 Reference collection 141
 Sampling and analysis 142
Diagenesis 143
Embedded information 145
 Fuel use at a site 145
 Identifying ancient irrigation practices and/or rainfall 145
 Genetic information 146
 Identifying plant taxa brought to the site 146
 Paleodiet 147
 Paleovegetation ecology 147
 Radiocarbon dating of phytoliths 148
 Reconstructing relative amounts of plant materials used 148
 Use of space 148
Final comment 149
Diatoms 149
 Cell wall composition 150
Diagenesis 150
Embedded information 150
 Ancient irrigation practices 150
 Provenience of pottery 151
 Reconstructing the paleoenvironment 151
Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avian (Bird) Eggshells</td>
<td>151</td>
</tr>
<tr>
<td>Basic morphology and structure</td>
<td>151</td>
</tr>
<tr>
<td>Diagenesis</td>
<td>152</td>
</tr>
<tr>
<td>Embedded information</td>
<td>152</td>
</tr>
<tr>
<td>Dating using amino acid racemization</td>
<td>152</td>
</tr>
<tr>
<td>Reconstructing the paleoenvironment</td>
<td>153</td>
</tr>
<tr>
<td>Radiocarbon dating</td>
<td>153</td>
</tr>
<tr>
<td>Avian Gizzard Stones</td>
<td>154</td>
</tr>
<tr>
<td>Otoliths</td>
<td>154</td>
</tr>
<tr>
<td>Morphology, ultrastructure, and mineralogy</td>
<td>154</td>
</tr>
<tr>
<td>Diagenesis</td>
<td>156</td>
</tr>
<tr>
<td>Embedded information</td>
<td>156</td>
</tr>
<tr>
<td>Reconstructing the paleoenvironment</td>
<td>156</td>
</tr>
<tr>
<td>Season of occupation of a site</td>
<td>157</td>
</tr>
<tr>
<td>Mollusk Shells</td>
<td>157</td>
</tr>
<tr>
<td>Taxonomy</td>
<td>159</td>
</tr>
<tr>
<td>Shell ultrastructure and mineralogy</td>
<td>159</td>
</tr>
<tr>
<td>Mineral phase</td>
<td>160</td>
</tr>
<tr>
<td>Organic matrix</td>
<td>162</td>
</tr>
<tr>
<td>Embedded information</td>
<td>162</td>
</tr>
<tr>
<td>Dating</td>
<td>163</td>
</tr>
<tr>
<td>Reconstructing the paleoenvironment</td>
<td>163</td>
</tr>
<tr>
<td>Season of occupation</td>
<td>164</td>
</tr>
<tr>
<td>Site preservation</td>
<td>164</td>
</tr>
<tr>
<td>7 Reconstructing Pyrotechnological Processes</td>
<td>165</td>
</tr>
<tr>
<td>Basic Concepts of Heating and Cooling</td>
<td>166</td>
</tr>
<tr>
<td>Order and Disorder in Solids</td>
<td>167</td>
</tr>
<tr>
<td>Ash</td>
<td>168</td>
</tr>
<tr>
<td>Composition of ash</td>
<td>169</td>
</tr>
<tr>
<td>Ash from Wood and Bark</td>
<td>170</td>
</tr>
<tr>
<td>Diagenesis</td>
<td>172</td>
</tr>
<tr>
<td>pH above 8</td>
<td>172</td>
</tr>
<tr>
<td>pH below 8</td>
<td>173</td>
</tr>
<tr>
<td>Identifying ash produced by burning wood and bark</td>
<td>174</td>
</tr>
<tr>
<td>Embedded information</td>
<td>175</td>
</tr>
<tr>
<td>Demonstrating control of fire by humans</td>
<td>175</td>
</tr>
<tr>
<td>Fuel types used for fires</td>
<td>176</td>
</tr>
<tr>
<td>Radiocarbon dating</td>
<td>177</td>
</tr>
<tr>
<td>Thermoluminescence and electron spin resonance dating</td>
<td>177</td>
</tr>
<tr>
<td>Type of wood used for fires</td>
<td>177</td>
</tr>
<tr>
<td>Charcoal and Charred Materials</td>
<td>178</td>
</tr>
</tbody>
</table>
Molecular structure of modern wood charcoal produced in natural fires 179
Molecular structure of fossil wood charcoal from archaeological sites 181
Diagenesis 182
Embedded information 183
Impact of fires produced by humans on the local vegetation and soils 183
Ink 183
Identification of charred organic material in sediments 184
Radiocarbon dating 184
Seed and fruit identification 184
Wood identification 184
Plaster and Mortar 185
Binders 185
Calcite binder 186
Gypsum 188
Hydraulic plaster and mortar 188
Aggregates 189
Proportions of aggregates and binders 189
Identifying plaster and mortar 190
Diagenesis 190
Embedded information 191
Radiocarbon dating 191
Reconstructing production procedures and functions 192
Refractory materials produced by heating carbonate rocks 193
Residue analysis 194
Specific features in a site 194
Ceramics and Pottery 194
The essentials of pottery manufacture 195
Raw materials 195
Temper 195
Fluxes 195
Shaping and decorating 196
Drying 196
Firing conditions 197
Diagenesis 198
Embedded information 198
Provenience and trade 198
Production areas 200
Manufacturing processes 202
Refractory ceramics 205
Concluding Comment 206
8 Biological Molecules and Macromolecules:

Protected Niches 207

Brief Overview of Different Biomolecules of Interest in Biomolecular Archaeology 208

DNA 209
Proteins 210
Polysaccharides 210
Lipids 211

Historical Perspective 211

Protected Niche 1: Intracrystalline Macromolecules 212
Embedded information 214
Amino acid racemization dating 214
Paleoenvironmental reconstruction 214
Radiocarbon dating 215

Protected Niche 2: Macromolecules inside Intergrown Biogenic Crystals (Crystal Aggregates) 215
Embedded information 217
Paleodiet reconstruction 217
Paleogenetic information 218
Radiocarbon dating 218

Protected Niche 3: Molecules Preserved in Ceramics 219

Optimize environmental preservation conditions 220
Optimize ceramic porosity 220
Optimize ceramic material type 221
Embedded information 222
Vessel contents 222
Radiocarbon dating 222

The Enigmatic Preservation of Starch Grains 222
Where Were There Once Large Concentrations of Organic Materials? 223
Preserved Organic Molecules: Are They Really in Context and Not Intrusive? 225
Possibility of Finding Other Protected Niches for Organic Molecules 225

9 Ethnoarchaeology of the Microscopic Record: Learning from the Present 227

Microartifacts: The Ethnographic Evidence of Their Usefulness 228
Controls 230
Ethnoarchaeology of the Microscopic Record 231
Inferences on the microscopic record of Aliabad based on macroscopic observations 232
Features outside house complexes 232
Features inside house complexes 234
Inferences on the microscopic record of an Eskimo winter house based on macroscopic observations 236
Wood pile and the hearth 237
Dump of bone splinters 237
Areas of human waste disposal 237
Animal Dung: Merging of the Archaeozoological and Archaeobotanical Microscopic Records 237
Identifying and Characterizing Livestock Enclosures 239
Phytolith and Charcoal Microscopic Records in Sarakini, Northern Greece 240
Phytoliths 240
Charcoal 243
Activity Areas Using Phosphate Concentrations: Ethnoarchaeological Verification 244
Concluding Remarks 244

10 Absolute Dating: Assessing the Quality of a Date 245
Understanding a Date: The Communication Gap Problem 247
Solution to the Communication Gap Problem 248
Designing a Program for Dating a Site 249
Calibration 249
Context 250
The macrocontext 250
The microcontext 251
Context for trapped charge dating 252
Choice of sample type 254
Number of samples to collect and analyze 255
Prescreening for sample preservation and purity 256
Bone collagen 256
Charred organic material for radiocarbon dating 258
Purifying the sample 258
Charcoal purification 258
Collagen purification 259
Analyzing the Results: A Team Effort 259
Radiocarbon Laboratory Measurements: Are There Biases? 259
Future Prospects 260

11 Reading the Microscopic Record On-Site 261
Benefits of an On-Site Interactive Laboratory 261
On-Site Laboratories for the Analysis of the Macroscopic Record 262
Choice of Instruments for On-Site Analysis of the Microscopic Record 263
Basic considerations 263
Choice of instruments 264
Binocular microscope 264
Petrographic microscope 264
Wet-sieving apparatus for charred materials 264
Fourier transform infrared spectroscopy 265
X-ray fluorescence spectrometer 265
Raman spectroscopy 266
UV-visible spectrophotometer 266
Mapping and three-dimensional reconstructions 267
Photography 268
Operation of the Laboratory 268
Useful Work Program for the On-Site Interactive Laboratory 269
First visit to the site 269
Operation of the on-site laboratory during excavation seasons 270
Identifying problems 270
Solving an identified problem 270
Controls 270
Further analyses in the home laboratory, data analysis, and synthesis 271
Examples of Questions to Ask about the Microscopic Record of a Site 271
What components are missing because they were not preserved or because they were not brought to the site? 271
What fuel was commonly used at the site? 271
Are there indications of pyrotechnological activities other than making fires? 272
Where is the site on the rural-urban continuum? 273
On-Site Artifact Conservation 273
Future Trends 273
12 Infrared Spectroscopy in Archaeology 275
Sample Preparation 276
Points to Note 277
Sampling 277
Grinding 277
Reproducibility 277
Quantification 277
Background subtraction 278
Artifacts due to the quality of the KBr pellets 278
Interpretation of the Spectra: Some General Pointers 278
Mineral, macromolecule, or small organic molecules? 278
Mixtures of compounds 279
Shifting of peak maxima 279
Variations in peak widths 280
Sharp peak at 1,384 wavenumber 281
Infrared Microscopy 281
Available literature 281
Library of archaeologically relevant infrared spectra 281
Overviews 282
1. Polymorphs of calcium carbonate 282
2. Calcite disorder: Distinguishing between calcites formed by different processes 284
3. The apatite family: Hydroxylapatite, carbonate hydroxylapatite, and carbonate fluorapatite 286
4. Crystallinity of bone, dentin, and enamel: The splitting factor 289
5. Burned bones 292
6. Authigenic phosphate minerals 295
7. Silicon dioxide polymorphs: Quartz, flint (chert), silica (opal), and other polymorphs 297
8. Clays 300
9. Clay exposed to elevated temperatures 303
10. Calcium oxalates 306
11. Collagen: State of preservation 307
12. Wood and olive pit preservation 309
13. Natural organic materials: Resin, copal, amber, gum, bitumen, and humic and fulvic acids 312
14. Presence of soluble salts in sediment samples 315

Appendix A: Identifying Minerals Using Microchemical Analysis 317
Appendix B: Identifying Minerals and Compounds Using Infrared Spectra: Table of Standard Minerals and Compounds for Which Infrared Spectra Are Available 320
References 327
Index 373

Color plates follow page 174.
Preface

The familiar archaeological record is the record that we see with the naked eye. The record that we do not see with the naked eye is as large and as fascinating as the visual macroscopic record. Instruments are needed, however, to reveal this microscopic record. The aim of this book is to provide archaeologists interested in exploring both the macroscopic and microscopic records with broad-ranging and basic conceptual information on the types of information that may be embedded in the microscopic records of their sites, the conditions under which this information can be extracted, and the means for assessing the reliability of this information. This is not a book about methods, nor a book about materials chemistry (although both are important); rather, it is a book about archaeology beyond the visual record. I have therefore called this book *Microarchaeology*.

For many years now, the trend in archaeology, and especially in prehistory, has been to excavate less but to extract more information from the archaeological record. This not only involves making better use of remote sensing and global positioning systems and better documentation of the macroscopic record, it also involves extracting as much information as possible from the microscopic record. It is hoped that this book will facilitate access to the microscopic record for all interested archaeologists and enable the specialists and archaeological scientists to obtain a broader view of the potential of the microscopic record. The book does not simplify the problems involved, but an attempt is made to explain the issues as well as possible. In fact, while writing the book, I had in mind as a reader an advanced undergraduate or graduate student studying both natural sciences and archaeology. I hope that this book will encourage many more students to choose this field of research. I can promise entry into a wonderfully interesting world.

If this book has a special tone, then it can probably be attributed to the unique training that I received from my former PhD supervisor, who also became a colleague, collaborator, and close friend: the late Professor Heinz A. Lowenstam. He taught me how to enjoy revealing nature’s
secrets and introduced me into the rich world of mineral formation by organisms, or biomineralization. I dedicate this book to the memory of Heinz Lowenstam.

I would like, first and foremost, to acknowledge my wife, Nomi Weiner, who understands and enthusiastically supports all my efforts to explore my two professional worlds: archaeology and biomineralization. I would also like to acknowledge the lifelong support that my late father, Motty Weiner, gave me in pursuing my scientific career as well as the support I have received from my children Danya, Noa, and Allon.

I was introduced into the world of archaeology by Ofer Bar-Yosef, who spent a year with me at the Weizmann Institute of Science in the late 1980s. Together with our colleague Paul Goldberg, we have worked together ever since. I owe much to both of them as well as to all the colleagues with whom I worked in the Kebara and Hayonim Caves in Israel. I am also particularly thankful to Elisabetta Boaretto and Ruth Shahack-Gross, two of my colleagues at the Kimmel Center for Archaeological Science at the Weizmann Institute. Over more than a decade of collaboration, we have established the framework for educating a new generation of archaeologists trained in both the natural sciences and archaeology. These students are also trained to work in the field and in the laboratory. Much of this book reflects the spirit of the Kimmel Center for Archaeological Science. I am also grateful to all the students and postdocs who have and are working at the Center. Finally, I want to acknowledge the support of Helen Kimmel and the late Martin Kimmel for recognizing that archaeology and archaeological science do contribute significantly to our self-concepts and that pursuing these endeavors is important. The Kimmel Center for Archaeological Science is a tribute to their vision.

I would like to thank Haya Avital for preparing all the figures. I would also like to thank the following colleagues for reading various chapters: Lia Addadi, Elisabetta Boaretto, Adi Eliyahu, Panagiotis Karkanas, Dvory Namdar, Lior Regev, Ruth Shahack-Gross, Clive Trueman, and Georgia Tsartsidou.

Stephen Weiner
Weizmann Institute of Science
Rehovot, Israel
May 2009