Metal-rich stars accumulate their metals from previous generations of stars, and so they contain the history of their galaxy. By studying these stars we can gain valuable insights into how metals change the formation and evolution of stars, and why giant exoplanets seem to be found around metal-rich stars, and explain the extraordinary massive-star populations observed in the metal-rich region of our own galaxy.

Until now this topic has received much less attention than very metal-poor stars, which give clues to the early chemical evolution of galaxies. Recent observations of metal-rich regions have shown that stars hosting giant planets are generally metal-rich, which has triggered further observations of metal-rich stars. This has led to the discovery of new exoplanets, and advances in the study of planet formation and the late chemical evolution of galaxies.

This book is the first on this topic, and it covers many aspects, from spectral-line formation to stellar formation and evolution in high-metallicity regimes. It is invaluable to researchers and graduate students in stellar evolution, extragalactic astronomy, and planet formation.

Garik Israelian is Staff Astronomer at the Instituto de Astrofísica de Canarias. His areas of research include stellar physics, stellar spectroscopy, extrasolar planets, massive stars, and metal-poor stars.

Georges Meynet is Professor in the Astronomy Department at the University of Geneva. His research focuses on stellar evolution and stellar nucleosynthesis.
Contents

List of contributors ix
Preface xvii

Part I Abundances in the Galaxy: field stars 1
1 Metal-rich stars and stellar populations: a brief history and new results 3
 R. M. Rich
2 The metal-rich nature of stars with planets 17
 N. C. Santos
3 Solar chemical peculiarities? 30
 C. Allende Prieto
4 Kinematics of metal-rich stars with and without planets 36
 A. Ecuvillon, G. Israelian, F. Pont, N. C. Santos & M. Mayor
5 Elemental abundance trends in the metal-rich thin and thick disks 41
 S. Feltzing
6 Metal-rich massive stars: how metal-rich are they? 53
 D. J. Lennon and C. Trundle
7 Hercules-stream stars and the metal-rich thick disk 62
 T. Bensby, M. S. Oey, S. Feltzing & B. Gustafsson
8 An abundance survey of the Galactic thick disk 69
 B. E. Reddy, D. L. Lambert & C. Allende Prieto

Part II Abundances in the Galaxy: Galactic stars in clusters, bulges and the centre 75
9 Galactic open clusters with supersolar metallicities 77
 S. Randich
10 Old and very-metal-rich open clusters in the BOCCE project 88
 A. Bragaglia, E. Carretta, R. Gratton & M. Tosi
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Massive-star versus nebular abundances in the Orion nebula</td>
<td>S. Simón-Díaz</td>
<td>94</td>
</tr>
<tr>
<td>12</td>
<td>Abundance surveys of metal-rich bulge stars</td>
<td>J. P. Fulbright, R. M. Rich & A. McWilliam</td>
<td>100</td>
</tr>
<tr>
<td>13</td>
<td>Metal abundances in the Galactic Center</td>
<td>F. Najarro</td>
<td>112</td>
</tr>
<tr>
<td>14</td>
<td>Light elements in the Galactic bulge</td>
<td>A. Lecureur, V. Hill, M. Zoccali & B. Barbuy</td>
<td>126</td>
</tr>
<tr>
<td>Part III</td>
<td>Observations – abundances in extragalactic contexts</td>
<td></td>
<td>139</td>
</tr>
<tr>
<td>16</td>
<td>Stellar abundances of early-type galaxies</td>
<td>S. C. Trager</td>
<td>141</td>
</tr>
<tr>
<td>17</td>
<td>Measuring chemical abundances in extragalactic metal-rich H II regions</td>
<td>F. Bresolin</td>
<td>155</td>
</tr>
<tr>
<td>18</td>
<td>On the maximum oxygen abundance in metal-rich spiral galaxies</td>
<td>J. M. Vílchez, L. Pilyugin & T. X. Thuan</td>
<td>168</td>
</tr>
<tr>
<td>19</td>
<td>Starbursts and their contribution to metal enrichment</td>
<td>D. Kunth</td>
<td>173</td>
</tr>
<tr>
<td>20</td>
<td>High metallicities at high redshifts</td>
<td>M. Pettini</td>
<td>186</td>
</tr>
<tr>
<td>21</td>
<td>Evolution of dust and elemental abundances in quasar DLAs and GRB afterglows as a function of cosmic time</td>
<td>B. E. Penprase, W. Sargent & E. Berger</td>
<td>199</td>
</tr>
<tr>
<td>22</td>
<td>Dust, metals and diffuse interstellar bands in damped Lyman-alpha systems</td>
<td>S. Ellison</td>
<td>205</td>
</tr>
<tr>
<td>Part IV</td>
<td>Stellar populations and mass functions</td>
<td></td>
<td>225</td>
</tr>
<tr>
<td>24</td>
<td>The stellar initial mass function of metal-rich populations</td>
<td>P. Kroupa</td>
<td>227</td>
</tr>
<tr>
<td>25</td>
<td>Initial-mass-function effects on the metallicity and colour evolution of disc galaxies</td>
<td>P. Westera, M. Samland, R. Buser & K. Ammon</td>
<td>249</td>
</tr>
<tr>
<td>Chapter</td>
<td>Title</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>The metallicity of circumnuclear star-forming regions</td>
<td>255</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. I. Díaz, E. Terlevich, M. Castellanos & G. Hägele</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>The stellar population of bulges</td>
<td>261</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. Jablonka</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>The metallicity distribution of the stars in elliptical galaxies</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td></td>
<td>A. Pipino & F. Matteucci</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Wolf–Rayet populations at high metallicity</td>
<td>276</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. A. Crowther</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>The stellar populations of metal-rich starburst galaxies: the frequency of Wolf–Rayet stars</td>
<td>288</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. R. Souza Leão, C. Leitherer, F. Bresolin & R. Cid Fernandes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part V</td>
<td>Physical processes at high metallicity</td>
<td>293</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Stellar winds from Solar-metallicity and metal-rich massive stars</td>
<td>295</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J. Puls</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>On the determination of stellar parameters and abundances of metal-rich stars</td>
<td>308</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y. Takeda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Are WNL stars tracers of high metallicity?</td>
<td>321</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. Gräfener & W.-R. Hamann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>The observable metal-enrichment of radiation-driven-plus-wind-blown H II regions in the Wolf–Rayet stage</td>
<td>327</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. Hensler, D. Kroeger & T. Freyer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Metal-rich A-type supergiants in M31</td>
<td>332</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N. Przybilla, K. Butler & R.-P. Kudritzki</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Part VI</td>
<td>Formation and evolution of metal-rich stars and stellar yields</td>
<td>339</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Massive-star evolution at high metallicity</td>
<td>341</td>
<td></td>
</tr>
<tr>
<td></td>
<td>G. Meynet, N. Mowlavi & A. Maeder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Supernovae in Galactic evolution: direct and indirect metallicity effects</td>
<td>354</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. Fröhlich, R. Hirschi, M. Liebendörfer, F.-K. Thielemann, G. Martínez Pinedo & E. Bravo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Progenitor evolution of Type-I supernovae: evolution and implications for yields</td>
<td>369</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sung-Chul Yoon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Star formation in the metal-rich Universe</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I. A. Bonnell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Metallicity of Solar-type main-sequence stars: seismic tests</td>
<td>393</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. Vauclair</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Chemical-abundance gradients in early-type galaxies</td>
<td>403</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P. Sánchez-Blazquez</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Contents

42 Oxygen-rich droplets and the enrichment of the interstellar medium
G. Stasińska, G. Tenorio-Tagle, M. Rodríguez & W.J. Henney

Part VII Chemical and photometric evolution beyond Solar metallicity

43 Models of the Solar vicinity: the metal-rich stage
L. Carigi

44 Chemical-evolution models of ellipticals and bulges
F. Matteucci

45 Chemical evolution of the Galactic bulge
B. Gibson, A.J. MacDonald, P. Sánchez-Blázquez & L. Carigi

46 How do galaxies become metal-rich? An examination of the yield problem
M. G. Edmunds

47 Abundance patterns: thick and thin disks
C. Chiappini

48 Formation and evolution of the Galactic bulge: constraints from stellar abundances
S. K. Ballero, F. Matteucci & L. Origlia

49 Summary
B. E. J. Pagel
Contributors

Karin Ammon, Astronomical Institute, Department of Physics and Astronomy, Universität Basel, Venusstrasse 7, CH-4102 Binningen, Switzerland

S. Arribas, CSIC – Departamento de Astrofísica Molecular e Infrarroja, Madrid, Spain

Silvia K. Ballero, Dipartimento di Astrofisica, Università di Trieste, Via G. B. Tiepolo 11, I-34124 Trieste, Italy

B. Barbuy, Universidade de São Paulo, IAG, Rua do Matão 1226, São Paulo 05508-900, Brazil

T. Bensby, European Southern Observatory, Alonso de Cordova 3107, Vitacura, Casilla 19001, Santiago 19, Chile

Edo Berger, Observatories of the Carnegie Institution, Pasadena, California, USA

T. Böker, European Space Agency – ESTEC, Noordwijk, The Netherlands

Ian A. Bonnell, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK

Angela Bragaglia, INAF – Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna, Italy

Eduardo Bravo, Departament de Física i Enginyeria Nuclear, Universitat Politècnica de Catalunya, Barcelona, Spain

Fabio Bresolin, Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA

A. Bunker, School of Physics, University of Exeter, Exeter, Devon EX4 4QJ, UK
Roland Buser, Astronomical Institute, Department of Physics and Astronomy, Universität Basel, Venusstrasse 7, CH-4102 Binningen, Switzerland

Keith Butler, Universitätssternwarte München, Scheinerstrasse 1, D-81679 München, Germany

Leticia Carigi, Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 70-264, México 04510, D.F., Mexico

Eugenio Carretta, INAF – Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna, Italy

Marcelo Castellanos, Universidad Autónoma de Madrid, Madrid, Spain

S. Charlot, Institute d’Astrophysique de Paris, Paris, France

Cristina Chiappini, INAF – Osservatorio Astronomico di Trieste, Via Tiepolo 11, I-34131 Trieste, Italy

Roberto Cid Fernandes, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil

Paul A. Crowther, Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, UK

L. da Silva, Observatorio Nacional, R. Gal. José Cristiano, 77, 20921-400, São Cristóvão, Rio de Janeiro, Brazil

G. de Marchi, European Space Agency – ESTEC, Noordwijk, The Netherlands

J. R. de Medeiros, Universidade Federal do Rio G. Norte, CEP 59072-970 Natal, Brazil

Ángeles I. Díaz, Universidad Autónoma de Madrid, Madrid, Spain

M. Döllinger, European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München, Germany

Alexandra Ecuvillon, Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain

M. G. Edmunds, School of Physics and Astronomy, Cardiff University, Queens Buildings, S The Parade, Cardiff CF24 3AA, UK

Sara L. Ellison, Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, BC, Canada

Sofia Feltzing, Lund Observatory, Box 43, SE-221 00 Lund, Sweden
Contributors

P. Ferruit, CRAL – Observatoire de Lyon, 9 Avenue Charles André, Saint-Genis Laval, France

M. Franx, Leiden Observatory, Leiden, The Netherlands

Tim Freyer, Institut für Theoretische Physik und Astrophysik, Universität Kiel, D-24098 Kiel, Germany

Carla Fröhlich, Department of Physics and Astronomy, Universität Basel, Switzerland

Jon P. Fulbright, Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA

Brad K. Gibson, University of Central Lancashire, Centre for Astrophysics, Preston PR1 2HE, UK

L. Girardi, INAF – Osservatorio Astronomico di Trieste, Via Tiepolo 11, I-34131 Trieste, Italy

G. Gräfener, Institut für Physik, Universität Potsdam, Am Neuen Palais 10, D-14469 Potsdam, Germany

Raffaele Gratton, INAF – Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, I-35122 Padova, Italy

B. Gustafsson, Department of Astronomy and Space Physics, University of Uppsala, SE-751 20 Uppsala, Sweden

Guillermo Hägele, Universidad Autónoma de Madrid, Madrid, Spain

W.-R. Hamann, Institut für Physik, Universität Potsdam, Am Neuen Palais 10, D-14469 Potsdam, Germany

A. Hatzes, Tautenburg, Germany

William J. Henney, Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Campus Morelia, Apartado Postal 3-72, 58090 Morelia, Mexico

Gerhard Hensler, Institut für Astronomie, Universität Wien, A-1180 Wien, Austria

V. Hill, Observatoire de Paris-Meudon, GEPI et CNRS UMR 8111, 92125 Meudon Cedex, France

Raphael Hirschi, Department of Physics and Astronomy, Universität Basel, Basel, Switzerland
Contributors

Garik Israelian, Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain

P. Jablonka, Observatoire de Genève, Chemin des Maillettes 51, CH-1290 Sauverny, Switzerland

P. Jakobsen, European Space Agency – ESTEC, Noordwijk, The Netherlands

Danica Kroeger, Institut für Theoretische Physik und Astrophysik, Universität Kiel, D-24098 Kiel, Germany

Pavel Kroupa, Argelander Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53121 Bonn, Germany

Rolf-Peter Kudritzki, Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822, USA

Daniel Kunth, Institut d’Astrophysique de Paris, F-75014 Paris, France

David L. Lambert, McDonald Observatory and Department of Astronomy, University of Texas, Austin, TX 78712, USA

A. Lecureur, Observatoire de Paris-Meudon, GEPI et CNRS UMR 8111, F-92125 Meudon Cedex, France

Claus Leitherer, Space Telescope Science Institute, Baltimore, MD, USA

Daniel J. Lennon, Isaac Newton Group of Telescopes, E-8700 Santa Cruz de La Palma, Tenerife, Spain

Matthias Liebendörfer, Department of Physics and Astronomy, Universität Basel, Switzerland

Angela J. MacDonald, University of Central Lancashire, Centre for Astrophysics, Preston PR1 2HE, UK

André Maeder, ISDC, Observatoire de Genève, Université de Genève, Chemin d’Ecogia 16, CH-1290 Versoix, Switzerland

R. Maiolino, INAF – Osservatorio Astronomico di Roma, Rome, Italy

Francesca Matteucci, Dipartimento di Astronomia, Università di Trieste, Via G. B. Tiepolo 11, I-34100 Trieste, Italy

Michael Mayor, Observatoire de Genève, 51 Chemin des Maillettes, CH-1290, Sauverny, Switzerland
Contributors

A. McWilliam, Observatories of the Carnegie Institute of Washington, 813 Santa Barbara Street, Pasadena, CA 91101, USA

Georges Meynet, Observatoire de Genève, Université de Genève, CH-1290 Sauverny, Switzerland

H. Moseley, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

Nami Mowlavi, ISDC, Observatoire de Genève, Université de Genève, Chemin d’Ecogia 16, CH-1290 Versoix, Switzerland

T. Nagao, National Astronomical Observatory of Japan, Osawa, Japan

Francisco Najarro, Instituto de Estructura de la Materia, CSIC, Serrano 121, E-29006 Madrid, Spain

M. S. Oey, Department of Astronomy, University of Michigan, Ann Arbor, MI 48109-1042, USA

Livia Origlia, INAF – Osservatorio Astronomico di Bologna, Via G. Ranzani 1, I-40127 Bologna, Italy

B. E. J. Pagel, Astronomy Centre, University of Sussex, Brighton BN1 9QH, UK

Luca Pasquini, European Southern Observatory, Karl-Schwarzchild-Strasse 2, D-85748 Garching bei München, Germany

Bryan E. Penprase, Pomona College, Department of Physics and Astronomy, Claremont, CA, USA

Max Pettini, Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK

Leonid Pilyugin, Main Astronomical Observatory, National Academy of Sciences of Ukraine, 03680 Kiev, Ukraine

Gabriel Martínez Pinedo, Gesellschaft für Schwerionenforschung, Darmstadt, Germany

Antonio Pipino, Dipartimento di Astronomia, Università di Trieste, I-34127 Trieste, Italy

Frédéric Pont, Observatoire de Genève, 51 Chemin des Maillettes, CH-1290, Sauverny, Switzerland

Carlos Allende Prieto, McDonald Observatory and Department of Astronomy, University of Texas, Austin, TX 78712, USA
Contributors

Norbert Przybilla, Dr. Karl Remeis-Sternwarte Bamberg, Sternwartstrasse 7, D-96049 Bamberg, Germany

Joachim Puls, Universitätssternwarte München, Scheinerstrasse 1, D-81679 München, Germany

Sofia Randich, INAF – Osservatorio di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy

B. Rauscher, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

Bacham E. Reddy, Indian Institute of Astrophysics, Bangalore, India

M. Regan, Space Telescope Science Institute, Baltimore, MD, USA

R. Michael Rich, Department of Physics & Astronomy, UCLA, Los Angeles, CA 90095-1547, USA

H. W. Rix, Max-Planck-Institut für Astronomie, Heidelberg, Germany

Mónica Rodríguez, Instituto Nacional de Astrofísica Óptica y Electrónica, AP 51, 72000 Puebla, Mexico

Nuno C. Santos, Centro de Astronomia e Astrofísica da Universidade de Lisboa, Observatorio Astronómico de Lisboa, Tapada da Ajuda, 1349-018 Lisboa, Portugal

Markus Samland, Astronomical Institute, Department of Physics and Astronomy, Universität Basel, Venusstrasse 7, CH-4102 Binningen, Switzerland

Patricia Sánchez-Blázquez, University of Central Lancashire, Centre for Astrophysics, Preston PR1 2HE, UK

Wallace Sargent, California Institute of Technology, Pasadena, CA 91125, USA

J. Setiawan, Max-Planck-Institut für Astronomie, Heidelberg, Germany

S. Simón-Díaz, Instituto de Astrofísica de Canarias, E-38200 La Laguna, Tenerife, Spain

João Rodrigo Souza Leão, Space Telescope Science Institute, Baltimore, MD, USA

Grażyna Stasińska, LUTH, Observatoire de Paris-Meudon, 5 Place Jules Jansen, F-92195 Meudon, France

Yoichi Takeda, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
Guillermo Tenorio-Tagle, Instituto Nacional de Astrofísica, Óptica y Electrónica, AP 51, 72000 Puebla, Mexico

Elena Terlevich, Instituto Nacional de Astrofísica, Óptica y Electrónica, AP 51, 72000 Puebla, México

Friedrich-Karl Thielemann, Department of Physics and Astronomy, Universität Basel, Switzerland

Monica Tosi, INAF – Osservatorio Astronomico di Bologna, Via Ranzani 1, I-40127 Bologna, Italy

Trinh X. Thuan, Astronomy Department, University of Virginia, Charlottesville, VA 22904, USA

S. C. Trager, Kapteyn Astronomical Institute, Rijksuniversiteit Groningen, Postbus 800, NL-9700 AV Groningen, The Netherlands

Carrie Trundle, Astrophysics Research Centre, The Queen’s University of Belfast, Belfast BT7 1NN, Northern Ireland, UK

Sylvie Vauclair, Laboratoire d’Astrophysique de Toulouse Tarbes, Observatoire Midi–Pyrénées, Université Paul Sabatier, Toulouse, France

Jose M. Vilchez, Instituto de Astrofísica de Andalucía (CSIC), Apartado Postal 3004, E-18080 Granada, Spain

O. Von der Lühe, Kippenheuer Institut für Sonnenphysik, Schoeneckerstrasse 6, D-79104 Freiburg, Germany

A. Weiss, Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, Postfach 1317, D-85741 Garching bei München, Germany

Pieter Westera, Astronomical Institute, Department of Physics and Astronomy, Universität Basel, Venusstrasse 7, CH-4102 Binningen, Switzerland

C. J. Willott, Herzberg Institute of Astrophysics, Victoria, BC, Canada V9E 2E7

Sung-Chul Yoon, Astronomical Institute “Anton Pannekoek”, Universiteit Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

M. Zoccali, Popular Universidad Católica de Chile, Departamento de Astronomía y Astrofísica, Casilla 306, Santiago 22, Chile
Preface

Even though metals constitute only a few per cent of the total mass fraction of stars, they have a huge impact on the way stars and galaxies evolve. In that respect, metallicity in the Universe is, like the salt in a dish, a small amount that can completely change its flavour!

The metal-rich stars have never attracted as much attention as the metal-poor halo stars, which tell us about the first supernovae and the early chemical evolution of our Galaxy. However, metal-rich stars are of interest in their own right and can shed new lights on very topical subjects. For instance, it is now well established that stars rich in metals are more likely to harbour giant planets. This awareness has elicited careful and detailed abundance studies of ever more metal-rich stars. As a byproduct, trends of the abundances of many elements at high metallicity are now available and await an interpretation in terms of stellar nucleosynthesis and chemical-evolution models. The extent to which these observed trends are in line with what is expected from the current stellar and chemical-evolution models largely remains to be checked and this is one of the main topics of these proceedings.

Putting the subject into a larger context, let us recall that the attainment of adequate models of the high-metallicity regime is of great interest for the study of the central regions of galaxies, which are thought to have higher-than-solar metallicity. Also, it appears that many quasar environments are metal-rich out to redshifts of at least 5. A better knowledge of star formation and evolution in central regions of galaxies would thus appear crucial to enhancing our understanding of these fascinating objects.

In these proceedings, the reader will find the latest observations of metal-rich stars (in the field, clusters, bulge, planet hosts, etc.), as well as presentations of models of atmospheres and spectral-line formation, models of stellar evolution...
Preface

and nucleosynthesis at high [Fe/H], discussions on the contribution of metal-rich stars to nucleosynthesis, and models for the chemical evolution of galaxies in the high-metallicity regime.

Many very interesting questions are addressed, for instance the following.

How do stars form in metal-rich regions?
What can be said on the possible variation of the initial mass function at high metallicity?
Is the upper mass limit lower at higher metallicity?
Is high metallicity a necessary condition for planet formation around stars?
Is there a minimum metallicity for planets to form around stars?
How different is the evolution of stars with higher-than-solar metallicity from that of their solar-metallicity counterparts?
What are the consequences for the stellar populations expected and the chemical enrichment of the interstellar medium?

About 100 participants from 19 countries took part and, it is hoped, enjoyed the week they spent in La Palma. Their written contributions contained in the present book will help to make the metal-rich Universe a topical subject for the next few years. Some of the figures communicate little or no information in black and white, so they have been made available in colour on the book’s website.

This conference could be organised thanks to the financial help of Cabildo Insular de La Palma, Patronato de turismo de La Palma, DISA Corporacion Petrolífera S.A. and Banco Bilbao Vizcaya Argentaria.

We would like to thank also the Scientific Organising Committee, which consisted of S. Feltzing (Sweden), D. Garnett (USA), G. Gilmore (UK), A. Herrero (Spain), D. Lambert (USA), F. Matteucci (Italy), A. McWilliam (USA), S. Randich (Italy), N. Santos (Portugal), Y. Takeda (Japan) and the two undersigned.

Our warmest thanks go to Judith de Araoz for her efficient work in managing the secretary’s office before, during and after the conference.

Garik Israelian and Georges Meynet