

River Discharge to the Coastal Ocean

A Global Synthesis

Rivers provide the primary link between land and sea, historically discharging annually about 36 000 km³ of freshwater and more than 20 billion tons of solid and dissolved sediments to the global ocean. Together with tides, winds, waves, currents, and geology, rivers play a major role in determining the estuarine and coastal environment. The movement of freshwater and the distribution of river-derived sediments to the ocean have fundamental impacts on a wide variety of coastal environments, ranging from the Mississippi and Nile deltas, to coastal Siberia, to the Indonesian archipelago.

Utilizing the world's largest database – 1534 rivers that drain more than 85% of the landmass discharging into the global ocean – this book presents a detailed analysis and synthesis of the processes affecting the fluvial discharge of water, sediment, and dissolved solids. The ways in which climatic variation, episodic events, and anthropogenic activities – past, present, and future – affect the quantity and quality of river discharge are discussed in the final two chapters. The book contains more than 165 figures - many in full color - including global and regional maps. An extensive appendix presents the 1534-river database as a series of 44 tables that provide quantitative data regarding the discharge of water, sediment and dissolved solids. The appendix's 140 maps portray the morphologic, geologic, and climatic character of the watersheds. The complete database is also presented within a GIS-based package available online at www.cambridge. org/milliman.

River Discharge to the Coastal Ocean: A Global Synthesis provides an invaluable resource for researchers, professionals, and graduate students in hydrology, oceanography, geology, geomorphology, and environmental policy.

JOHN D. MILLIMAN is Chancellor Professor of Marine Science at the Virginia Institute of Marine Science at the College of William and Mary, Virginia, and has been at the forefront of studies of river runoff to the coastal ocean since the 1970s. He is an Honorary Professor at the Institute of Oceanology, Chinese Academy of Sciences, and recipient of the 1992 Francis P. Shepard Medal for excellence in marine geology, and has published more than 180 research papers and 10 books.

KATHERINE L. FARNSWORTH is an Assistant Professor in the Department of Geoscience at the Indiana University of Pennsylvania. Her research examines the interaction between fluvial and marine systems including the flux and fate of sediments to the coastal oceans.

River Discharge to the Coastal Ocean

A Global Synthesis

JOHN D. MILLIMAN

Virginia Institute of Marine Science College of William and Mary Gloucester Pt., Virginia USA

KATHERINE L. FARNSWORTH

Department of Geoscience Indiana University of Pennsylvania Indiana, Pennsylvania USA

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States by Cambridge University Press, New York

www.cambridge.org

Information on this title: www.cambridge.org/9780521879873

© John D. Milliman and Katherine L. Farnsworth 2011

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2011

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Milliman, John D.

River discharge to the coastal ocean : a global synthesis / John D. Milliman, Katherine L. Farnsworth.

p. cm.

Includes bibliographical references and index.

ISBN 978-0-521-87987-3

- 1. Stream measurements. 2. Rivers. 3. Fluvial geomorphology.
- I. Farnsworth, Katherine L. II. Title.

GB1203.2.M55 2011

551.48'3-dc22 2010034896

ISBN 978-0-521-87987-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Foreword	<i>page</i> vii	Belize, Guatemala, El Salvador, Honduras	190
			Nicaragua, Costa Rica, Panama	193
1	Introduction	1	Cuba, Jamaica, Haiti, Dominican Republic,	
	Rivers and the coastal ocean	1	Puerto Rico	196
	About this book	1		
	Other global databases	3	Appendix B South America	199
	Problems with existing data	7	Venezuela and Colombia	200
	Some final cautions	12	Ecuador and Peru	203
			Chile, Argentina, Uruguay	207
2	Runoff, erosion, and delivery to the		Brazil	210
	coastal ocean	13	French Guiana, Suriname, Guyana	214
	Introduction	13		
	The hydrologic cycle and water discharge	13	Appendix C Europe	217
	Sediment: erosion and discharge	23	Iceland	218
	Dissolved solids	47	Norway, Sweden, Finland	221
	Summing up	61	Estonia, Latvia, Lithuania, Poland	225
			Germany, Denmark, the Netherlands,	
3	Temporal variations	70	Belgium	228
	Introduction	70	Scotland, England, Ireland	231
	Short-term cycles and their atmospheric		France	235
	and oceanic drivers	70	Spain and Portugal	238
	Temporal variation in global discharge		Italy	241
	and runoff	85	Albania, Croatia, Greece	245
	Events	91	Bulgaria, Romania, Ukraine	248
4	Human activities and their impacts	115	Appendix D Africa	251
	Introduction	115	Sudan, Egypt, Libya	252
	Watershed land-use	117	Tunisia, Algeria, Morocco,	
	Shared rivers	130	Western Sahara	255
	River control	131	Senegal, Gambia, Guinea Bissau, Guinea,	
	Case histories of four river systems	143	Sierra Leone and Liberia	258
	Summing up and projecting to the future	160	Ivory Coast, Ghana, Togo and Benin	261
			Nigeria, Cameroon, Equatorial Guinea,	
	Appendices. Global river data base	165	Gabon, Republic of Congo	264
	Introduction	165	Democratic Republic of Congo and Angola	267
	Tables and data categories	165	Namibia, South Africa, Mozambique, Madagascar	270
	Appendix A North and Central America	170	Tanzania, Kenya, Somalia	275
	Canada	171	• •	
	United States (Contiguous)	176	Appendix E Eurasia	278
	United States (Alaska)	181	Turkey and Georgia	279
	Hawaii plus Fiji	184	Lebanon and Israel	282
	Mexico	186	Saudi Arabia, Yemen, Iraq, Iran	285

vi				Contents
	Appendix F Asia	289	Appendix G Oceania	312
	Russia	290	Philippines	313
	Pakistan, India, Sri Lanka, Bangladesh	294	Indonesia and Papua New Guinea	316
	Burma, Brunei, Malaysia, Thailand, Vietnam	298	Australia	324
	China	302	New Zealand	329
	Taiwan	305		
	Japan and Korea	308	References	333
	•		Indexes	
			Geographic Index: Bodies of Water	367
			Geographic Index: Rivers	368
			Geographic Index: Terrestrial	379
			Topical Index	382

Foreword

We began this book primarily to collate into a single database relevant environmental data for rivers that discharge directly into the global ocean. As the book evolved, however, it began to take on a life of its own, and now contains, following a brief introductory chapter, three rather long chapters that attempt to give an overview to the environmental controls on fluvial discharge, short-term and longer-term temporal variations, and the impact of human activities on global rivers and their watersheds.

As geological oceanographers, we tend to view rivers differently than most hydrologists, geochemists or geomorphologists. While our data, analyses and interpretations of these data touch upon fundamental processes that govern fluvial runoff, physical, and chemical weathering, transport, dispersal and sedimentation, we do not explain in detail how fluvial systems work. We do, however, include a rather extensive bibliography that can help direct the interested reader to relevant literature.

In presenting such a large database – more than 1500 rivers – some of the data almost invariably will prove to be erroneous. We may have transposed numbers, and almost surely we have missed some key data sources. Where errors or omissions occur, we request the reader notify us – kindly, if possible – so that we can correct our mistakes and set the record straight.

There are many people whose help made this book possible. Because of the long time – more than three decades for JDM – over which we acquired and analyzed these data, we almost certainly have inadvertently omitted several (we hope not many) people, to whom we apologize. The Global River Data Centre (GRDC) and the US Geological Survey National Water Information System (NWIS) provided a large number of data used throughout the book. Charlie Vörösmarty's RIVDIS and Arctic RIMS databases were also very helpful, particularly in creating their various user-friendly internet databases. We also made liberal use of Michel Meybeck's global river database (Meybeck and Ragu, 1996), without which our discussion of chemical weathering in Chapter 2 would have been impossible.

Maria Michailova deserves special mention for the way in which she substantially clarified the extensive database for Russian rivers, many of which we either did not know or got wrong in our earlier attempt at a collation of global data (Milliman *et al.*, 1995). We also thank Yoshi Saito for help with data from Japan and China; Steve Smith for data from Mexico and southeast Asia; Yang Zuosheng, Wang

Ying, Wang Houjie, S. L. Yang and Kevin Xu (China); Jim Wilson (Ireland); Kristinn Einarsson (Iceland); Lea Kauppi and Pirkko Kauppila (Finland); Des Walling (England); Wolfgang Ludwig, Maria Snoussi and Albert Kettner (Mediterranean and Black Sea rivers); Guadalupe de la Lanza Espino (Mexico); Bastiaan Knoppers (Brazil); Pedro Depetris (Argentina); Juan Restrepo (Colombia); John Largier (South Africa); Pham Van Ninh (Vietnam); Murray Hicks and Berry Lyons (New Zealand); Kao Shuh-ji (Taiwan); Harish Gupta (India); Peter Harris (Australia); and Professor da Silva (Sri Lanka). Jeff Mount and Jon Warrick opened our eyes regarding California rivers.

There are many other colleagues and friends without whom parts of this book would have been difficult, if not impossible, to write. Phil Jones (Climate Research Unit, University of East Anglia) provided us with a 100-year precipitation database from which Kehui (Kevin) Xu was able to synthesize several maps used in Chapter 2. Kevin also provided us with a number of other maps that we used throughout Chapters 3 and 4. Jon Warrick, James Syvitski, Kao Shuh-ji, Noel Trustrum and Bob Gammish were extremely helpful in supplying us with photographs used in Chapters 3 and 4, as was Juan Restrepo in sharing with us his land-use maps of the Magdalena watershed. Mike Page's and Noel Trustrum's photo of a dammed lake (Fig. 3.55) is also gratefully acknowledged. The time spent with Leal Mertes on the Santa Clara provided much insight and many memories, and she would have almost certainly provided us with a startling cover for this book; we mourn her passing.

Additional conversations with and insights from James Syvitski, Des Walling, Michel Meybeck, and Jean-Luc Probst over the past 15 years also were extremely helpful. We thank them all for their continued friendship.

Bob Meade has been an admirable mentor and longtime steadfast friend. Our many conversations and insights over the years have proved particularly useful in helping us understand better the whys and wherefores of, as Bob would term it, potamology. Bob's critical reading of the first draft of this book proved invaluable; any omissions or errors in this book almost certainly occurred after his careful editing.

A particular heart-felt thanks goes to Marilyn Lewis, at the SMS/VIMS library, who, through the wonders of Interlibrary Loan, obtained for us many of the books and reprints that facilitated our access to the river literature.

viii Foreword

Harold Burrell's graphic skills, coupled with his patience as we continually reconsidered and re-thought figures for the book, are gratefully acknowledged.

Many of the data and insights in this book stem directly or indirectly from research grants awarded by the US National Science Foundation (NSF), the US Office of Naval Research (ONR), and the US Naval Oceanographic Office (NAVO). We thank in particular Peggy Schexnayder

(NAVO) for her unfailing interest and encouragement over the 12 years that we spent working on this book.

Finally, JDM thanks Ann Milliman for enduring those many evenings when thoughts of rivers and this book took precedence over some of the more domestic and romantic aspects of our life. KLF thanks her family and friends for their patience and encouragement throughout the process.