
www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87940-8 - Programming with Higher-Order Logic 
Dale Miller and Gopalan Nadathur
Excerpt
More information

Introduction

This book is about the nature and benefits of logic programming in the set-
ting of a higher-order logic. We provide in this Introduction a perspective on
the different issues that are relevant to a discussion of these topics. Logic pro-
gramming is but one way in which logic has been used in recent decades to
understand, specify, and effect computations. In Section I.1, we categorize the
different approaches that have been employed in connecting logic with compu-
tation, and we use this context to explain the particular focus we will adopt. The
emphasis in this book will be on interpreting logic programming in an expres-
sive way. A key to doing so is to allow for the use of an enriched set of logical
primitives while preserving the essential characteristics of this style of speci-
fication and programming. In Section I.2, we discuss a notion of expressivity
that supports our later claims that some of the logic programming languages
that we present are more expressive than others. The adjective “higher order”
has been applied to logic in the past in a few different ways, one of which might
even raise concern about our plan to use such a logic to perform computations.
In Section I.3, we sort these uses out and make clear the kind of higher-order
logic that will interest us in subsequent chapters. Section I.4 explains the style
of presentation that we follow in this book: Broadly, our goal is to show how
higher-order logic can influence programming without letting the discussion
devolve into a formal presentation of logic or a description of a particular pro-
gramming language. The last two sections discuss the prerequisites expected
of the reader and the organization of the book.

I.1 Connections between logic and computation

The various roles that logic has played in analyzing and performing compu-
tations can be understood as falling under two broad categories that we call
the computation-as-model and the computation-as-deduction approaches. We
describe these below.

1

http://www.cambridge.org/9780521879408
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87940-8 - Programming with Higher-Order Logic 
Dale Miller and Gopalan Nadathur
Excerpt
More information

2 Introduction

In the computation-as-model approach, computations are understood
abstractly via mathematical structures that are based on notions such as nodes,
transitions, and states. Logic is employed in an external sense in this context
to make statements about such structures. That is, computations are treated
as models for logical expressions. Intensional operators, such as the triples of
Hoare logic or the modals of temporal and dynamic logics, are often employed
to express propositions about change in state. This use of logic to describe and
reason about computations probably represents the oldest and most broadly
successful interactions between the two areas.

In contrast, the computation-as-deduction approach uses logical expressions
such as formulas, terms, types, and proofs directly as elements of the specified
computation. In this more rarefied setting, two rather different methods have
been employed in describing computations. The proof normalization approach
views the state of a computation as a proof term and the process of comput-
ing as reducing such a term to normal form via, say, β-reduction. This view
of computation provides a theoretical basis for the functional programming
paradigm. In the proof normalization approach, one uses the fact that a given
program (proof) has at most one normalized value, and one focuses on produc-
ing this value. If types are used, they generally denote “abstract domains” of
values, such as the integers and function spaces. In the alternative proof search
approach, the state of a computation is viewed as a sequent that comprises a
formula that is to be proved and a collection of assumptions from which the
formula is to be established. The process of computing is identified with the
search for a derivation of a sequent: The changes that take place in sequents
during proof search capture the dynamics of computation. This view of compu-
tation can be used to provide a proof-theoretic basis for the logic programming
paradigm.

Of course, proof search is a rather general activity. For example, mathemati-
cians can be said to be searching for proofs when they try to determine the
validity of a proposition. However, it is not sensible to identify the steps that
mathematicians take in building proofs with the low-level steps that are used to
propel computations associated with a logic program. A particularly important
difference between proofs used to realize computations and unrestricted proofs
is the fact that in general reasoning, lemmas are discovered and used routinely.
In the general setting, the attempt to prove one proposition, say, B, often results
in the enunciation of a lemma, say, C, and subsequent attempts to find proofs of
C and C ⊃ B. This process may be repeated—another lemma D may be helpful
in proving C, and so on—and the result could be a large number of lemmas
whose proofs are all used to support the proof of B. In the sequent calculi, i.e.,
the calculi that have been proposed for proving sequents, the cut rule provides
the mechanism for introducing lemmas in the course of proof search. As such,

http://www.cambridge.org/9780521879408
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87940-8 - Programming with Higher-Order Logic 
Dale Miller and Gopalan Nadathur
Excerpt
More information

Introduction 3

this rule is a frequent and critical component in any attempt to model genuine
mathematical reasoning using such calculi.

Since choosing lemmas involves creativity, the cut rule poses a problem for
the mechanization of reasoning. A result that has obvious connotations in this
context is Gentzen’s famous cut-elimination theorem (for classical and intu-
itionistic logic) that says that if a formula can be proved using the cut rule, then
it also can be proved without the cut rule. The proof of this theorem is based
intuitively on the observation that lemmas always can be in-lined or re-proved
each time they are needed. The derivations that result from the elimination of
uses of the cut rule are often huge and of little value to a mathematician. The
fact that they can be constructed, however, is quite interesting from the perspec-
tive of computation. The in-lining of proofs, via cut elimination or the closely
related operation of β-reduction, is the process that underlies computation in
the functional programming paradigm. In the logic programming paradigm as
we describe it here, the cut rule is excluded from the execution of logic pro-
grams, and computation is based on the search for cut-free proofs. The cut rule
and the cut-elimination theorem, however, can be used to reason about logic
programs; i.e., they are part of the metatheory of the paradigm.

I.2 Logical primitives and programming expressivity

In the logic programming setting, one generally partitions formulas into two
classes. A formula can be a member of a logic program, and as such, it provides
part of the computational meaning of the nonlogical constants that appear in it.
A formula also can be a goal or query, and in this role, it represents something
to be derived from a given logic program. We shall often idealize the state of
the search for a proof by a collection of sequents. A sequent in this context will
be an expression written as �; P −→ G, comprising three parts: a signature
� that is a set of typed, nonlogical constants; a logic program P; and a goal G

that is to be proved. The signature � denotes the set of constants and predicates
that are available for building the terms and formulas in G and P .

An important aspect of logic programming is that a complete proof strategy,
in principle, can be structured in the following goal-directed fashion. If the goal
formula is not an atom, that is, if its top-level symbol is a logical constant or
quantifier, then the search for a proof is completely committed to dealing with
that top-level logical constant. Thus the “search semantics” of the logical con-
nectives is fixed and independent of the logic program. On the other hand, if the
goal formula is atomic, then the logic program P is consulted to discover how
that atom might be proved. Typically, this involves using backchaining, which
is the process of finding in the logic program an implicational formula whose
consequent matches the atom and then trying to prove its antecedent. Logic

http://www.cambridge.org/9780521879408
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87940-8 - Programming with Higher-Order Logic 
Dale Miller and Gopalan Nadathur
Excerpt
More information

4 Introduction

programming can be seen abstractly as a logical framework in which a strategy
that alternates between goal reduction and backchaining is complete, i.e., is
capable of finding a proof whenever one exists. This viewpoint is developed in
more detail in Section 2.2.

The computational dynamics in logic programming arises from the way the
signature, the program, and the query change during the search for a proof.
We therefore can understand this dynamics qualitatively by considering the
following question.

Assume that during an attempt to prove the sequent �; P −→ A, the search yields
the attempt to prove the sequent �′; P ′ −→ A′. What differences can occur when
moving from the first to the second sequent?

In this book, we shall consider logic programs based on Horn clauses and on a
more general class of formulas called hereditary Harrop formulas. If P is a Horn
clause program (either first order or higher order), then �′ and P ′ must be iden-
tical to � and P , respectively. Thus the signature and logic program are global
and immutable and have a flat structure during computation; in particular, Horn
clauses do not support the capability of using some data structures and some
clauses locally and only for auxiliary calculations. The differences between the
atoms A and A′ are determined, on the other hand, by the logic program P , and
these can be rich enough to capture arbitrary computations. Notice, however,
that the dynamics of such computations has a largely nonlogical character; that
is, it is dependent on the meaning associated with predicate symbols through
the assumptions in the logic program. If programs are allowed to involve more
logical primitives, more of the character of the dynamics of computation may
depend on the logical structure, and as a result, the metatheory of the logic can
be of more value in proving properties of those programs.

Using hereditary Harrop formulas improves the dynamics of proof search:
In particular, both the signature �′ and the program P ′ can be larger than �

and P , respectively. As a particular consequence, it is possible for a program
to grow by the addition of clauses that can be used only in a local proof search
attempt. Similarly, it is possible to introduce data constructors that are available
only for part of the computation. In this way, the logical framework is capable
of supporting the use of modular programming and data abstraction techniques.

We shall limit our attention to classical and intuitionistic logic as they are
applied to Horn clauses and to hereditary Harrop formulas. If one were to con-
sider proof search in the more general setting of linear logic, the alternation
between goal reduction and backchaining still would yield a complete proof
procedure (for a suitable presentation of linear logic), and the dynamics of
proof search would improve beyond what we have observed for the two frag-
ments of logic just discussed. Although this is an interesting direction to pursue,

http://www.cambridge.org/9780521879408
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87940-8 - Programming with Higher-Order Logic 
Dale Miller and Gopalan Nadathur
Excerpt
More information

Introduction 5

logic programming based on linear logic is beyond the scope of the topics we
consider here.

I.3 The meaning of higher-order logic

The term higher-order logic has been used ambiguously in the literature. We
identify three common interpretations below and then explain the sense in which
we will be using the form in this book.

Philosophers of mathematics often distinguish between first-order logic and
second-order logic. The latter logic, which is used as a formal basis for all of
mathematics, involves quantification over the domain of all possible functions.
A consequence of Kurt Gödel’s celebrated first incompleteness theorem is that
truth in this logic cannot be recursively axiomatized. Thus higher-order logic
interpreted in this sense consists largely of a model-theoretic study, typically
of the standard model of arithmetic.

Proof-theoreticians take logic to be synonymous with a formal system that
provides a recursive enumeration of the notion of theoremhood. A higher-
order logic is understood no differently. The distinctive characteristic of such
a logic, instead, is the presence of predicate quantification and of compre-
hension, i.e., the ability to form abstractions over formula expressions. These
features, especially the ability to quantify over predicates, profoundly influence
the proof-theoretic structure of the logic. One important consequence is that the
simpler induction arguments of cut elimination that are used for first-order logic
do not carry over to the higher-order setting, and more sophisticated techniques,
such as the “candidats de réductibilité ” due to Jean-Yves Girard, must be used.
Semantical methods also can be employed, but the collection of models now
must include nonstandard models that use restricted function spaces in addition
to the standard models used for second-order logic.

Implementers of deduction usually interpret higher-order logic as any com-
putational logic that employ λ-terms and quantification at higher-order types,
although not necessarily at predicate types. Notice that if quantification is
extended only to non–predicate function variables, then the logic is similar
to a first-order one in that the cut-elimination process can be defined using an
induction involving the sizes of (cut) formulas. However, such a logic may
incorporate a notion of equality based on the rules of λ-conversion, and the
implementation of theorem proving in it must use (some form of) higher-order
unification.

Clearly, it is not sensible to base a programming language on a higher-order
logic in the first sense. Our use of this term therefore is restricted to the second

http://www.cambridge.org/9780521879408
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87940-8 - Programming with Higher-Order Logic 
Dale Miller and Gopalan Nadathur
Excerpt
More information

6 Introduction

and third senses. Notice that these two views are distinct. As we have already
commented, a logic that is higher order in the third sense may well not permit
quantification over predicates and thus may not be higher order in the second
sense. Conversely, a logic can be higher order in the second sense but not in the
third: There have been proposals for adding forms of predicate quantification
to computational logics that do not use λ-terms and in which the equality of
expressions continues to be based on the identity relation.

The actual higher-order logic that we shall use in this book is a simpli-
fied form of an intuitionistic version of the Simple Theory of Types that was
developed by Alonzo Church. Our simplification leaves out axioms concerning
extensionality, infinity, and choice that are needed for formalizing mathemat-
ics but that do not play a role in and indeed interfere with use of the logic in
describing computations. The resulting logic extends first-order logic by permit-
ting quantification at all types and replaces both first-order terms and first-order
formulas by simply typed λ-terms complemented by a notion of equality based
on β- and η-conversion. This logic does permit predicate quantification, which
makes theorem proving in it particularly challenging. In first-order logic, sub-
stitution into an expression does not change its logical structure, and all the
needed instantiations in a proof can be produced simply through the unification
of atomic formulas. With the inclusion of predicate quantification, instantia-
tions can introduce new occurrences of logical connectives and quantifiers in
formulas, and as a result, unification is not rich enough to find all substitutions
needed for proofs. However, we shall, restrict the uses of predicate variables
in the logic programming languages we consider in such a way that unification
becomes sufficient once again for finding all the necessary instantiations.

I.4 Presentation style

This book is intended to be an exposition of programming techniques based on
the use of a higher-order logic. In order to discuss these techniques in detail,
we need to be able to present actual logic programs. More specifically, a con-
crete syntax must be picked for programs and goals, language principles such
as modularity and typing must be established, and strategies for dealing effec-
tively with nondeterministic proof search must be chosen. Toward meeting these
requirements, we introduce the programming language λProlog, which repre-
sents one way of addressing these pragmatic aspects. This language also gives
us a setting in which to discuss relevant issues concerning the computational
use of higher order logic. Thus goal-directed search for higher-order hereditary
Harrop formulas must be translated into an operational semantics and, subse-
quently, an implementation of λProlog. Similarly, higher-order logic and a rich
use of logical primitives raises the issue of solving equations between λ-terms

http://www.cambridge.org/9780521879408
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87940-8 - Programming with Higher-Order Logic 
Dale Miller and Gopalan Nadathur
Excerpt
More information

Introduction 7

modulo β- and η-conversion rules and in the presence of mixed quantifier pre-
fixes. The λProlog language gives us a concrete setting in which to understand
the structure of such issues as well as to appreciate practical approaches to
solving them.

Although we discuss λProlog explicitly, this is not intended to be a book
about λProlog. We introduce the syntax of this language and we display sev-
eral λProlog programs, but we do not provide enough information about the
language for this book to serve as a programming manual. Rather, the focus
is on painting a broad picture of the interplay between proof search in higher-
order logic and computational principles: This focus underlies the discussion
of language structure initially and the presentation later of several applications
where higher-order logic programming techniques lead to appealing and natural
solutions. A reader who is not satisfied with this kind of exposure to the lan-
guage and wants a more detailed, manual-like presentation should consult the
documentation accompanying one of its implementations, such as the Teyjus
system that is briefly described in the Appendix.

While our emphasis is on understanding high-level, logic-related aspects
of programming, we emphasize that this book is not a formal development of
logic in any sense. In particular, we try to build a good intuitive understanding
of higher-order logic characteristics, but we do this without providing many
formal definitions and theorems. Instead, most formal aspects of this logic
are exposed through examples and probed by tracing computational behavior.
However, detailed bibliographic references to literature containing such formal
presentations are included at the end of many chapters for the interested reader.

I.5 Prerequisites

The ideal reader of this book would have had prior exposure to high-level
programming and to the rudiments of logic and logic programming. We specif-
ically assume that the reader knows how to write and execute simple programs
in some dialect of Prolog. We use small programming examples in λProlog
to bring out the different ideas we present. A reader who has a programming
feel for Prolog will find these examples easy to understand because λProlog
inherits many features and conventions from Prolog. Conversely, someone not
familiar with how computations are organized in logic programming languages
may have difficulty in understanding the λProlog examples in detail. Knowl-
edge of “advanced” aspects of Prolog, however, is not necessary. In fact, such
knowledge could be confusing: Advanced Prolog features often derive from
nonlogical aspects of the language, whereas our focus here will be on finding
logical solutions to the problems that have led to the proliferation of nonlogical
solutions that are familiar to Prolog programmers.

http://www.cambridge.org/9780521879408
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87940-8 - Programming with Higher-Order Logic 
Dale Miller and Gopalan Nadathur
Excerpt
More information

8 Introduction

I.6 Organization of the book

This book has four conceptual parts that are identified in Figure I.1 together
with their dependencies.

The first part introduces a proof-theoretic foundation for logic programming
in the setting of first-order logic. Chapter 1 describes how symbolic objects
might be represented using simply typed first-order terms that are manipulated
using first-order unification. Chapter 2 presents an abstract framework for logic
programming and elaborates this framework using first-order Horn clauses.
The resulting language then is extended in Chapter 3 by using a richer class of
formulas known as first-order hereditary Harrop formulas.

The second part of this book generalizes the structure of logic programming
languages discussed in the first part to the higher-order setting. Chapter 4 intro-
duces simply typed λ-terms and exposes some of the properties of the reduction
computation and the process of solving equations relative to these terms. For-
mulas are identified as the specific collection of simply typed λ-terms that have
a certain type, and Church’s Simple Theory of Types defines a logic over these
formulas. Chapter 5 identifies higher-order versions of Horn clauses and hered-
itary Harrop formulas within this logic. These classes of formulas provide the
basis for higher-order logic programming, some characteristics of which we
also expose in this chapter.

The third part of this book deals with pragmatic issues related to program-
ming. Chapter 6 shows how code-structuring possibilities can be realized by
exploiting features of higher-order hereditary Harrop formulas. The Appendix

Programming system: Chapter 6, Appendix

Higher-order logic foundations: Chapters 4, 5

First-order logic foundations: Chapters 1, 2, 3

λ-Terms as data: Chapters 7, 8, 9, 10, 11

Figure I.1 Dependency and grouping of chapters.

http://www.cambridge.org/9780521879408
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87940-8 - Programming with Higher-Order Logic 
Dale Miller and Gopalan Nadathur
Excerpt
More information

Introduction 9

describes how the logic specifications presented in this book can be written as
λProlog programs and executed using the Teyjus implementation of λProlog.

The fourth part of this book is devoted to showing the benefits of the ability to
compute directly on λ-terms. One part of this discussion consists of explaining
the general structure that supports this approach. Chapter 7 illustrates how com-
putations on λ-terms can be used to encode and manipulate syntactic objects that
contain binding operators. Proof search in higher-order logic requires solving
variously quantified equalities between λ-terms, and as a result, higher-order
unification plays an important role in the implementation of such logic program-
ming languages. Chapter 8 discusses the structure of procedures for higher-order
unification and the more limited higher-order pattern unification that underlies
computation in an important subset of higher-order hereditary Harrop formulas
that is known as Lλ. The remaining chapters in this fourth part, which can be read
independently of each other, present different applications that involve com-
puting on symbolic structures encoded using λ-terms. In particular, Chapter 9
considers the problem of implementing natural deduction and sequent calculus
proof systems as well as tactic-based provers, Chapter 10 considers several
computations in the context of the untyped λ-calculus and a simple functional
programming language built on it, and Chapter 11 considers specifications and
computations related to the π -calculus.

http://www.cambridge.org/9780521879408
http://www.cambridge.org
http://www.cambridge.org


www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87940-8 - Programming with Higher-Order Logic 
Dale Miller and Gopalan Nadathur
Excerpt
More information

1

First-Order Terms and
Representations of Data

Our initial discussion of logic programming focuses on first-order languages.
In this chapter, we limit our attention to the capabilities for representing data
that are present in such languages. These capabilities are provided for by first-
order terms. The terms that we use in our exposition of data representation
here are similar to those in a conventional logic programming language such
as Prolog with one difference: We shall be interested in a typed version of
these terms. In the first two sections that follow, we describe the structure
of the types that are employed to classify terms. Section 1.3 then introduces
typed first-order terms, and the following section discusses the pragmatics of
using such terms to represent structured and recursively constructed data. The
last section in this chapter considers the operation of first-order unification,
the primary mechanism for analyzing data that are encoded using first-order
terms. To ground this discussion—in particular, to show how the type and term
languages may be identified in a programming setting—we use the actual syntax
of λProlog in our presentation.

1.1 Sorts and type constructors

The starting point for a type system is a set of atomic or unanalyzable types. We
shall refer to such types as sorts. Most typed programming languages have a set
of built-in sorts associated with them. In the case of λProlog, any implementa-
tion of the language is expected to support at least the following collection of
sorts with the corresponding denotations:

int an implementation dependent range of integers
real an implementation dependent set of real numbers
string sequences of characters
in_stream character streams that can be read from

10

http://www.cambridge.org/9780521879408
http://www.cambridge.org
http://www.cambridge.org

	http://www: 
	cambridge: 
	org: 


	9780521879408: 


