Contents

Preface
page xi
Acknowledgements
xiv

1 Introduction to digital communication
1
1.1 Standardized interfaces and layering
3
1.2 Communication sources
5
1.2.1 Source coding
6
1.3 Communication channels
7
1.3.1 Channel encoding (modulation)
10
1.3.2 Error correction
11
1.4 Digital interface
12
1.4.1 Network aspects of the digital interface
12
1.5 Supplementary reading
14

2 Coding for discrete sources
16
2.1 Introduction
16
2.2 Fixed-length codes for discrete sources
18
2.3 Variable-length codes for discrete sources
19
2.3.1 Unique decodability
20
2.3.2 Prefix-free codes for discrete sources
21
2.3.3 The Kraft inequality for prefix-free codes
23
2.4 Probability models for discrete sources
26
2.4.1 Discrete memoryless sources
26
2.5 Minimum L for prefix-free codes
27
2.5.1 Lagrange multiplier solution for the minimum L
28
2.5.2 Entropy bounds on L
29
2.5.3 Huffman’s algorithm for optimal source codes
31
2.6 Entropy and fixed-to-variable-length codes
35
2.6.1 Fixed-to-variable-length codes
37
2.7 The AEP and the source coding theorems
38
2.7.1 The weak law of large numbers
39
2.7.2 The asymptotic equipartition property
40
2.7.3 Source coding theorems
43
2.7.4 The entropy bound for general classes of codes
44
2.8 Markov sources
46
2.8.1 Coding for Markov sources
48
2.8.2 Conditional entropy
48
2.9 Lempel–Ziv universal data compression

2.9.1 The LZ77 algorithm 51

2.9.2 Why LZ77 works 53

2.9.3 Discussion 54

2.10 Summary of discrete source coding 55

2.11 Exercises 56

3 Quantization

3.1 Introduction to quantization 67

3.2 Scalar quantization 68

3.2.1 Choice of intervals for given representation points 69

3.2.2 Choice of representation points for given intervals 69

3.2.3 The Lloyd–Max algorithm 70

3.3 Vector quantization 72

3.4 Entropy-coded quantization 73

3.5 High-rate entropy-coded quantization 75

3.6 Differential entropy 76

3.7 Performance of uniform high-rate scalar quantizers 78

3.8 High-rate two-dimensional quantizers 81

3.9 Summary of quantization 84

3.10 Appendixes 85

3.10.1 Nonuniform scalar quantizers 85

3.10.2 Nonuniform 2D quantizers 87

3.11 Exercises 88

4 Source and channel waveforms

4.1 Introduction 93

4.1.1 Analog sources 93

4.1.2 Communication channels 95

4.2 Fourier series 96

4.2.1 Finite-energy waveforms 98

4.3 L_2 functions and Lebesgue integration over $[-T/2, T/2]$ 101

4.3.1 Lebesgue measure for a union of intervals 102

4.3.2 Measure for more general sets 104

4.3.3 Measurable functions and integration over $[-T/2, T/2]$ 106

4.3.4 Measurability of functions defined by other functions 108

4.3.5 L_1 and L_2 functions over $[-T/2, T/2]$ 108

4.4 Fourier series for L_2 waveforms 109

4.4.1 The T-spaced truncated sinusoid expansion 111

4.5 Fourier transforms and L_2 waveforms 114

4.5.1 Measure and integration over \mathbb{R} 116

4.5.2 Fourier transforms of L_2 functions 118

4.6 The DTFT and the sampling theorem 120

4.6.1 The discrete-time Fourier transform 121

4.6.2 The sampling theorem 122

4.6.3 Source coding using sampled waveforms 124

4.6.4 The sampling theorem for $[\Delta - W, \Delta + W]$ 125
4.7 Aliasing and the sinc-weighted sinusoid expansion

4.7.1 The T-spaced sinc-weighted sinusoid expansion 127
4.7.2 Degrees of freedom 128
4.7.3 Aliasing – a time-domain approach 129
4.7.4 Aliasing – a frequency-domain approach 130

4.8 Summary 132

4.9 Appendix: Supplementary material and proofs

4.9.1 Countable sets 133
4.9.2 Finite unions of intervals over $[-T/2, T/2]$ 135
4.9.3 Countable unions and outer measure over $[-T/2, T/2]$ 136
4.9.4 Arbitrary measurable sets over $[-T/2, T/2]$ 139

4.10 Exercises 143

5 Vector spaces and signal space 153

5.1 Axioms and basic properties of vector spaces 154
5.1.1 Finite-dimensional vector spaces 156
5.2 Inner product spaces 158
5.2.1 The inner product spaces \mathbb{R}^n and \mathbb{C}^n 158
5.2.2 One-dimensional projections 159
5.2.3 The inner product space of L^2 functions 161
5.2.4 Subspaces of inner product spaces 162
5.3 Orthonormal bases and the projection theorem 163
5.3.1 Finite-dimensional projections 164
5.3.2 Corollaries of the projection theorem 165
5.3.3 Gram–Schmidt orthonormalization 166
5.3.4 Orthonormal expansions in L^2 167
5.4 Summary 169
5.5 Appendix: Supplementary material and proofs 170
5.5.1 The Plancherel theorem 170
5.5.2 The sampling and aliasing theorems 174
5.5.3 Prolate spheroidal waveforms 176
5.6 Exercises 177

6 Channels, modulation, and demodulation 181

6.1 Introduction 181
6.2 Pulse amplitude modulation (PAM) 184
6.2.1 Signal constellations 184
6.2.2 Channel imperfections: a preliminary view 185
6.2.3 Choice of the modulation pulse 187
6.2.4 PAM demodulation 189
6.3 The Nyquist criterion 190
6.3.1 Band-edge symmetry 191
6.3.2 Choosing $\{p(t - kT); k \in \mathbb{Z}\}$ as an orthonormal set 193
6.3.3 Relation between PAM and analog source coding 194
6.4 Modulation: baseband to passband and back 195
6.4.1 Double-sideband amplitude modulation 195
6.5 Quadrature amplitude modulation (QAM)
- **6.5.1 QAM signal set** 198
- **6.5.2 QAM baseband modulation and demodulation** 199
- **6.5.3 QAM: baseband to passband and back** 200
- **6.5.4 Implementation of QAM** 201

6.6 Signal space and degrees of freedom
- **6.6.1 Distance and orthogonality** 204

6.7 Carrier and phase recovery in QAM systems
- **6.7.1 Tracking phase in the presence of noise** 207
- **6.7.2 Large phase errors** 208

6.8 Summary of modulation and demodulation 208

6.9 Exercises 209

7 Random processes and noise 216

7.1 Introduction 216

7.2 Random processes 217
- **7.2.1 Examples of random processes** 218
- **7.2.2 The mean and covariance of a random process** 220
- **7.2.3 Additive noise channels** 221

7.3 Gaussian random variables, vectors, and processes 221
- **7.3.1 The covariance matrix of a jointly Gaussian random vector** 224
- **7.3.2 The probability density of a jointly Gaussian random vector** 224
- **7.3.3 Special case of a 2D zero-mean Gaussian random vector** 227
- **7.3.4 \(Z = AW \), where \(A \) is orthogonal** 228
- **7.3.5 Probability density for Gaussian vectors in terms of principal axes** 228
- **7.3.6 Fourier transforms for joint densities** 230

7.4 Linear functionals and filters for random processes 231
- **7.4.1 Gaussian processes defined over orthonormal expansions** 232
- **7.4.2 Linear filtering of Gaussian processes** 233
- **7.4.3 Covariance for linear functionals and filters** 234

7.5 Stationarity and related concepts 235
- **7.5.1 Wide-sense stationary (WSS) random processes** 236
- **7.5.2 Effectively stationary and effectively WSS random processes** 238
- **7.5.3 Linear functionals for effectively WSS random processes** 239
- **7.5.4 Linear filters for effectively WSS random processes** 239

7.6 Stationarity in the frequency domain 242

7.7 White Gaussian noise 244
- **7.7.1 The sinc expansion as an approximation to WGN** 246
- **7.7.2 Poisson process noise** 247

7.8 Adding noise to modulated communication 248
- **7.8.1 Complex Gaussian random variables and vectors** 250

7.9 Signal-to-noise ratio 251
7.10 Summary of random processes 254
7.11 Appendix: Supplementary topics 255
 7.11.1 Properties of covariance matrices 255
 7.11.2 The Fourier series expansion of a truncated random process 257
 7.11.3 Uncorrelated coefficients in a Fourier series 259
 7.11.4 The Karhunen–Loeve expansion 262
7.12 Exercises 263

8 Detection, coding, and decoding 268
 8.1 Introduction 268
 8.2 Binary detection 271
 8.3 Binary signals in white Gaussian noise 273
 8.3.1 Detection for PAM antipodal signals 273
 8.3.2 Detection for binary nonantipodal signals 275
 8.3.3 Detection for binary real vectors in WGN 276
 8.3.4 Detection for binary complex vectors in WGN 279
 8.3.5 Detection of binary antipodal waveforms in WGN 281
 8.4 M-ary detection and sequence detection 285
 8.4.1 M-ary detection 285
 8.4.2 Successive transmissions of QAM signals in WGN 286
 8.4.3 Detection with arbitrary modulation schemes 289
 8.5 Orthogonal signal sets and simple channel coding 292
 8.5.1 Simplex signal sets 293
 8.5.2 Biorthogonal signal sets 294
 8.5.3 Error probability for orthogonal signal sets 294
 8.6 Block coding 298
 8.6.1 Binary orthogonal codes and Hadamard matrices 298
 8.6.2 Reed–Muller codes 300
 8.7 Noisy-channel coding theorem 302
 8.7.1 Discrete memoryless channels 303
 8.7.2 Capacity 304
 8.7.3 Converse to the noisy-channel coding theorem 306
 8.7.4 Noisy-channel coding theorem, forward part 307
 8.7.5 The noisy-channel coding theorem for WGN 311
 8.8 Convolutional codes 312
 8.8.1 Decoding of convolutional codes 314
 8.8.2 The Viterbi algorithm 315
 8.9 Summary of detection, coding, and decoding 317
 8.10 Appendix: Neyman–Pearson threshold tests 317
 8.11 Exercises 322

9 Wireless digital communication 330
 9.1 Introduction 330
 9.2 Physical modeling for wireless channels 334
 9.2.1 Free-space, fixed transmitting and receiving antennas 334
 9.2.2 Free-space, moving antenna 337
 9.2.3 Moving antenna, reflecting wall 337
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.2.4</td>
<td>Reflection from a ground plane</td>
<td>340</td>
</tr>
<tr>
<td>9.2.5</td>
<td>Shadowing</td>
<td>340</td>
</tr>
<tr>
<td>9.2.6</td>
<td>Moving antenna, multiple reflectors</td>
<td>341</td>
</tr>
<tr>
<td>9.3</td>
<td>Input/output models of wireless channels</td>
<td></td>
</tr>
<tr>
<td>9.3.1</td>
<td>The system function and impulse response for LTV systems</td>
<td>343</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Doppler spread and coherence time</td>
<td>345</td>
</tr>
<tr>
<td>9.3.3</td>
<td>Delay spread and coherence frequency</td>
<td>348</td>
</tr>
<tr>
<td>9.4</td>
<td>Baseband system functions and impulse responses</td>
<td>350</td>
</tr>
<tr>
<td>9.4.1</td>
<td>A discrete-time baseband model</td>
<td>353</td>
</tr>
<tr>
<td>9.5</td>
<td>Statistical channel models</td>
<td></td>
</tr>
<tr>
<td>9.5.1</td>
<td>Passband and baseband noise</td>
<td>358</td>
</tr>
<tr>
<td>9.6</td>
<td>Data detection</td>
<td></td>
</tr>
<tr>
<td>9.6.1</td>
<td>Binary detection in flat Rayleigh fading</td>
<td>359</td>
</tr>
<tr>
<td>9.6.2</td>
<td>Noncoherent detection with known channel magnitude</td>
<td>360</td>
</tr>
<tr>
<td>9.6.3</td>
<td>Noncoherent detection in flat Rician fading</td>
<td>363</td>
</tr>
<tr>
<td>9.7</td>
<td>Channel measurement</td>
<td></td>
</tr>
<tr>
<td>9.7.1</td>
<td>The use of probing signals to estimate the channel</td>
<td>367</td>
</tr>
<tr>
<td>9.7.2</td>
<td>Rake receivers</td>
<td>368</td>
</tr>
<tr>
<td>9.8</td>
<td>Diversity</td>
<td>373</td>
</tr>
<tr>
<td>9.9</td>
<td>CDMA: the IS95 standard</td>
<td></td>
</tr>
<tr>
<td>9.9.1</td>
<td>Voice compression</td>
<td>379</td>
</tr>
<tr>
<td>9.9.2</td>
<td>Channel coding and decoding</td>
<td>380</td>
</tr>
<tr>
<td>9.9.3</td>
<td>Viterbi decoding for fading channels</td>
<td>381</td>
</tr>
<tr>
<td>9.9.4</td>
<td>Modulation and demodulation</td>
<td>382</td>
</tr>
<tr>
<td>9.9.5</td>
<td>Multiaccess interference in IS95</td>
<td>383</td>
</tr>
<tr>
<td>9.10</td>
<td>Summary of wireless communication</td>
<td>386</td>
</tr>
<tr>
<td>9.11</td>
<td>Appendix: Error probability for noncoherent detection</td>
<td>388</td>
</tr>
<tr>
<td>9.12</td>
<td>Exercises</td>
<td>390</td>
</tr>
</tbody>
</table>

References 398
Index 400