Index

a-posteriori probability, 269, 271, 317
a-priori probability, 269
accessibility, Markov chains, 47
ad hoc network, 332
additive noise, 9, 221
see also random processes
additive Gaussian noise, 9, 186
detection of binary signals in, 273
detection of non-binary signals in, 285
in wireless, 358, 389
see also Gaussian process; white Gaussian noise
AEP see asymptotic equipartition property
aliasing, 129, 133, 151
proof of aliasing theorem, 175, 180
amplitude-limited functions, 150
analog data compression, 93, 113
analogue sequence sources, 4, 17
see also quantization
analog source coding, 7
analogue to digital modulation, 183
analogy to pulse amplitude modulation, 194
see also analog waveform sources
analog to digital conversion, 7, 80
analog waveform sources, 16, 67, 84, 93, 112, 124
antennas
 fixed, 334
 moving, 337
 multiple, 327, 378
 receiving signal, 342
 transmission pattern, 335
antipodal signals, 273–281
ARQ see automatic retransmission request
asymptotic equipartition property (AEP), 38, 40
AEP theorem, 43
and data compression, 53
and Markov sources, 50
and noisy-channel coding theorem, 307
strong form, 64, 308
attenuation, 186
in wireless systems, 335, 340–342, 345
atypical sets, 42
automatic retransmission request (ARQ), 183
band-edge symmetry, 191
bandwidth, 196
see also baseband waveforms; passband waveforms
base 2 representation, 24
base stations, 331, 334
baseband-limited functions, 123
mean-squared error between, 125
baseband waveform, 84, 206, 208
basis of a vector space, 157
Bell Laboratories, 1
Bessel’s inequality, 165
binary antipodal waveforms, 281, 323, 361
binary interface, 2, 12, 13, 331
binary MAP rule see MAP test
binary minimum cost detection, 322
binary nonantipodal signals, detection, 275
binary orthogonal codes, 298, 307
binary PAM, 184
as a random process, 219
see also pulse amplitude modulation
binary pulse position modulation (PPM), 361, 365
binary simplex code, 300
binary symmetric channel (BSC), 304
biorthogonal codes, 302
biorthogonal signal sets, 294
‘bizarre’ function, 172, 180
block codes, 298–312
block length, 298
broadcast channels, 332
broadcast systems, 332
buffering, 20
Cantor sets, 142
capacity of channels, 253, 311, 312
Carleson, L., 110
carrierless amplitude-phase modulation (CAP), 215
Cauchy sequences, 168
CDMA, 333
channel coding, 381
convolutional code, 381
demodulation, 386
error detection, 381
fading, 382
IS95 standard, 379
modulation, 383
multiaccess interference, 386
receiver, 380
transmitter, 380
voice compression, 380
cells, 331, 340
cellular networks, 331, 334
central limit theorem, 223
channels, 7–10, 95, 181–183
additive noise, 9, 186, 221
capacity of, 11, 253, 296, 311, 312
coding theorem, 11, 253, 296,
302–312
discrete memoryless, 303
measurements of, 367–375
modeling for wireless, 334–358
multipath, 339
tapped delay model, 353, 354
waveform, 93
see also fading
circularly symmetric Gaussian random variable, 250, 251
closed intervals, 102
C*, complex n-space, 153
inner product, 158
code division multiple access see CDMA
coded modulation, 5, 11
codewords
channel, 268, 289, 298, 307
source, 18, 19, 28, 31
coding theorem see source coding theorem;
noisy-channel coding theorem
coherence frequency, 348, 388
coherence time, 347, 352, 358, 372, 388
coherent detection, 364
communication channels see channels
complement of a set, 104
complex proper Gaussian random variable see
circularly symmetric Gaussian random variable
complex random processes, 248
complex random variables, 248, 250, 266
complex vector spaces, 154
complex-valued functions, 93
compression see data compression
conditional entropy, 48
congestion control, 14
convolution, 115, 148
convolutional code, 312–316, 381
countable sets, 102, 133, 143
countable unions of intervals, 136, 138,
144, 145
covariance
of circularly symmetric random variables, 250, 251
of complex random vectors, 251
of effectively stationary random processes, 239
of filter output, 234
of jointly Gaussian random vector, 224
of linear functionals, 234, 239
matrix properties, 255
normalized, 227
of random processes, 220
of zero-mean Gaussian processes, 227
cover of a set, 104, 145
data compression, 7, 51, 65, 113
data detection see detection
data link control (DLC), 13
dB, 76, 186
decibels see dB
decision making, 268
see also detection
decision-directed carrier recovery, 208
decoding, 12, 44, 268, 314
degrees of freedom, 128, 149, 176, 202, 203
delay (propagation) 185, 335
delay spread, 348, 372
delay (wireless paths), 342, 345, 348–350
demodulation, 2, 8, 10, 183
design bandwidth, 191
detection, 268–294, 359–367
difference-energy equation, 99
differential entropy, 76–78
digital communication systems, 2
digital interface, 2, 12
see also binary interface
dimension of a vector space, 157
Dirac delta function, 100
discrete filters, and convolutional codes, 312
discrete memoryless channels (DMCs), 66, 303
capacity, 304
entropy, 55, 304
error probability, 306
mutual information, 305
transmission rate, 306
discrete memoryless sources (DMSs), 26, 62
discrete sets, 16
discrete sources, 16
probability models, 40, 55
discrete-time baseband models, 393
discrete-time Fourier transforms (DTFTs), 96, 120,
125, 132
discrete-time models, wireless channels, 389
discrete-time sources, 17
disjoint intervals, 102
distances between waveforms, 204
diversity, 349, 376, 389, 395
DMC see discrete memoryless channels
Doppler shift, 337, 346, 388
Doppler spread, 346, 352, 353, 388, 392
double-sideband amplitude modulation, 195
double-sideband quadrature-carrier (DSB-QC) demodulation, 203
modulation, 202
see also quadrature amplitude modulation (QAM)
downlinks, 332, 334
DTFT see discrete-time Fourier transforms
effectively stationary random processes, 238–241
effectively wide-sense stationary random processes, 238
effectively wide-sense stationary random processes (cont.) and linear functionals, 239
eigenvectors see eigenvalues electromagnetic paths, 388, 391
eigenvectors see eigenvalues
energy equation, 99, 110, 143
energy per bit, 253–254
energy, of waveforms, 98, 100, 204
test, 6, 40, 304
conditional, 48
differential, 76–78
and Huffman algorithm, 35
invariance, 76, 77
and mean square error, 84
nonuniform scalar quantizers, 85
prefix-free codes, 29
of quantizer output, 74
of symbols, 31, 35
of uniform distributions, 77
uniform scalar quantizers, 79
entropy, 6, 40
entropy, 256, 262
eigenvalues, 239
eigenvectors
false alarm, 272
Fano, Robert, 31, 35, 61
far field, 334, 338
feedback, 183, 368, 389
filters for random processes, 231–241
finite-dimensional projection, 164
finite-dimensional vector spaces, 156
finite-energy function, 109
finite-energy waveforms, 98, 155, 170
finite unions of intervals, 135, 144
fixed-length codes, 18
fixed-to-fixed-length codes, 56
fixed-to-fixed-length coding theorems, 43
fixed-to-variable-length codes, 37, 55
flat fading, 350, 353, 361
forward channels see downlinks
Fourier integral, 132, 149
Fourier series, 96, 147, 149
for \(L_1 \) waveforms, 109
and orthonormal expansions, 167
for truncated random processes, 257
thirty, 110, 169
uncorrelated coefficients, 259
Fourier transforms
definition, 114
and energy equation, 115
functions, 118
\(L_2 \) functions (waveforms), 114, 118
for probability densities, 230
table of transform pairs, 116
table of transform relations, 114
frames of data, 13
free space transmission, 334
frequency bands, 333
frequency diversity, 378
frequency-hopping, 252
full prefix-free codes, 22
functions of functions, measurability, 108
Gaussian noise, 9, 11, 186, 243, 244
see also Gaussian Processes
Gaussian processes, 218, 221, 222, 223–235
see also zero-mean Gaussian Processes
Gaussian random variables (rvs), 221–230
complex Gaussian rvs, 224–225, 229
covariance matrix for, 223
entropy, 77–78
Gaussian random vectors, 224
jointly Gaussian rvs, 222, 263–264
probability density for, 224–225, 229
see also zero-mean Gaussian random variables
Gaussian random vectors, 224
Gram–Schmidt procedure, 166, 278
group codes see linear codes
GSM standard, 333, 387
Hadamard matrices, 299, 301, 302, 328, 384
Hamming codes, 302
hard decisions in decoding, 289, 302
Hartley, R.V.L, 19
Hermitian matrix, 255
Hermitian transpose, 255
high rate assumption, 78
Hilbert filters, 201, 202
Huffman’s algorithm, 31–35, 48, 55, 59
hypothesis testing, 268
see also detection
ideal Nyquist, 190
IEEE 802.11 standard, 332
improper integrals, 117
infimum, 104
infinite-dimensional projection theorem, 168
infinite-dimensional vector space, 156
information theory, 1, 11, 31
inner product spaces, 158
inner products, 158
input modules, 3
instantaneous codes, 23
see also prefix-free codes
integrable functions, 108
intensity of white Gaussian noise, 244
interference, multiaccess, 360, 387
Internet protocol (IP), 13, 14
inner product spaces, 153
as signal space, 153
isometric 2 functions, 100, 101, 108, 118, 132
isometric 2 transforms, 148
isometric 2 waveforms, Fourier series, 109, 169
Lagrange multiplier, codeword lengths, 28
layering, 3, 4
Lebesgue integrals, 101, 106, 117, 132, 146
Lebesgue measure see measure
likelihood ratio, 271, 272
and Neyman–Pearson tests, 317
for PAM, 274
for QAM, 287, 288
likelihoods, 271, 277, 282
limit in mean square see \(L_2 \) convergence
linear codes, 299, 301
linear combination, 155
linear dependence, 226
linear filtering, 232
linear functionals, 231, 255
covariance, 234
for Gaussian processes, 231, 234
linear Gaussian channel, 9, 11
linear independence, 156
linear-time-invariant systems
filters, 8, 345, 388
wireless channels, 336, 337
linear-time-varying (LTV) systems
attenuation, 352
baseband convolution equation, 351
baseband impulse response, 352
baseband model, 350
convolution equation, 344
discrete-time channel model, 353
filters, 388
impulse response, 344, 392
input-output function, 351
system function, 343, 392, 393
time-varying impulse response, 344
link budget, 186
Lloyd–Max algorithm, 70, 73, 84
local area networks see wireless LANs
log likelihood ratio (LLR), 273
for binary antipodal waveforms, 282, 283
binary complex vector detection, 280
binary pulse-position modulation, 361
binary real vector detection, 277, 279
exercises, 323, 326
non-binary detection, 285
for PAM, 274
for QAM, 287
log pmf random variable, 36, 40, 41
LTI see linear-time-invariant systems
LTV see linear-time-varying (LTV) systems
LZ data compression algorithms, 51
majority-rule decoding, 11
MAP rule, 269, 271, 275, 285
MAP test, 271
binary antipodal waveforms, 282, 284
binary complex vector detection, 280
binary real vector detection, 277, 278
non-binary detection, 289
Markov chains, 46
accessibility, 47
ergodic, 47
exercises, 64
finite-state, 46, 47
Markov sources, 46
and AEP, 50
coding for, 48
conditional entropy, 48
Markov sources (cont.)
and data compression, 53
definition, 47
ergodic, 56
matched filter, 194, 284, 317
maximal-length shift register, 373
maximum a posteriori probability rule see MAP rule
maximum likelihood see ML rule
mean-squared distortion, 67, 70
of base-band limited functions, 125
minimization for fixed entropy, 73
minimum MSE estimation, 369
for nonuniform scalar quantizers, 86
for nonuniform vector quantizers, 87
and projection, 166
mean-squared error (MSE), 67, 84
of analogue waveform, 125
baseband-limited functions, 125
minimization for entropy, 73
minimum, 369
nonuniform scalar quantizers, 86
nonuniform vector quantizers, 87
projection vector, 166
measure, 100, 145
countable unions of intervals, 138
of functions, 106, 116, 145
of functions of functions, 108
of intervals, 106
of sets, 105, 139, 146
micro-cells, 340
minimum cost detection, 273, 322
minimum key shifting (MKS), 327
minimum mean square error (MMSE), 369
minmax test, 322
miss in radar detection, 272
ML rule, 272, 323
in binary pulse-position modulation, 362, 365
in binary vector detection, 277, 281
for channel estimation, 369
and convolutional codes, 314, 315
and MAP rule, 275
in non-binary detection, 288
models, probabilistic
discrete source, 26
finite energy waveform, 96
Gaussian rv, 222
for human speech, 68
Markov source, 47
random process, 216
stationary and WSS, 237
for wireless, 334–358
mobile telephone switching office (MTSO), 331
mod-2 sum, 299, 328
modems, 3, 183
modulation, 2, 8, 95, 181
modulation pulse, 187
Morse code, 19
MSE see mean-squared error
multiaccess channel, 332
multiaccess interference, 360
multipath delay, 388
see also delay (wireless paths)
multipath fading, 339, 341
see also fading
multipath spread, 358
see also Doppler spread
narrow-band fading, 350
networks, 5, 12
Neyman–Pearson tests, 273, 317
noise, 8, 10, 186, 216, 317
additive, 9
and phase error, 207
power, 252
stationary models, 237
wireless, 358
see also Gaussian noise; random processes
noiseless codes, 17
noisy channel coding theorem, 302–312
converse theorem, 306
for DMC, 303–306
for discrete-time Gaussian channel, 311
proof, 307–310
nominal bandwidth see Nyquist bandwidth
non-binary detection, 285
noncoherent detection, 389
error probability, 366
exercises, 393
with known channel magnitude, 363
and ML detection, 365
in Rician fading model, 365
nonnegative definite matrix, 256
norm bound corollary, 165
norms, 158, 159
normal random variables see Gaussian random variables
normalized covariance, 227
Nyquist bandwidth, 188, 191
Nyquist criterion, 190–194, 209–212
Nyquist rate, 7
Nyquist, ideal, 190
observation, as a random variable, 269
one-dimensional projections, 159
one-tap model, 389
on-off keying, 276
open intervals, 102
open set boundaries, 4
orthogonal codes, 297
see also orthogonal signal sets
orthogonal expansion, 97, 124, 126, 132, 153
see also orthonormal expansions
orthogonal matrices, 228, 256
orthogonal signal sets, 293–300, 324
orthonormal bases, 164, 166
orthonormal expansions, 180, 232
orthonormal matrices see orthogonal matrices
orthonormal sets, 193
outer measure, 104, 137
output modules, 3
packets, 12
Paley–Wiener theorem, 188, 312
PAM see pulse amplitude modulation
parity checks, 13, 300
parity-checks codes see linear codes
Parseval’s theorem, 115, 180
parsing, 20
passband waveforms, 183, 195, 200, 208
complex, positive frequency, 195
exercises, 214
paths, electromagnetic, 341, 388
periodic waveforms, 96
phase coherence, 207
phase errors, 206, 207
phase-shift keying (PSK), 198
physical layer, 13
pico-cells, 340
Plancherel’s theorem, 118, 132, 148, 170
Poisson processes, 247
positive definite matrix, 256
power spectral density see spectral density
prefix free codes, 21, 55, 58
entropy, 29
minimum codeword length, 27
source coding theorem, 38
principal axes, 229
probabilistic models see models, probabilistic
probability density, Gaussian rv, 230
probability of detection, 272
probability of error see error probability
probing signal sequences, 367, 368
projection theorem, 164
one-dimensional, 160
infinite-dimensional, 168
prolate spheroidal waveforms, 176
pseudo-noise sequences, 369, 372
pulse amplitude modulation, 184–189, 204
and analog source coding, 194
degrees of freedom, 203
demodulator, 189
detection, 273–279
exercises, 209
multilevel, 184
signal to noise ratio, 252
Pythagorean theorem, 160
quadrature amplitude modulation (QAM), 10, 196–204
4-QAM, PN sequences, 370
baseband modulator, 199
baseband–passband modulation, 200
and degrees of freedom, 203, 204
demodulation, 197, 199, 203
exercises, 214
implementation, 201
layers, 197
non-binary detection, 286
phase errors, 206
signal set, 198
signal-to-noise ratio, 252
quality of service, 185
quantization, 7, 67
for analog sources, 17
entropy-coded, 73
exercises, 88
regions, 68
scalar, 68
vector, 72
rake receivers, 367, 373, 396
random processes, 216–221
covariance, 220
effectively stationary, 238–241
linear functionals, 231–235
stationary, 231–235
wide-sense stationary, 236–238
random symbols, 27
random variables (rvs), 27
and AEP, 38
analog rvs, 67
in Fourier series, 96
measure of, 106
and random vectors (rvs), 222
and random processes, 217
see also complex rvs, Gaussian rvs, Rayleigh rvs, uniform distribution
random vectors (rvs), 222
binary complex, detection, 279, 325
binary real, detection, 276
complex, 250
complex Gaussian, 250, 267
ray tracing, 338, 341
Rayleigh fading, 323, 389
channel modelling, 356, 360, 364
exercises, 393
Rayleigh random variables, 263
real functions, 93, 116, 117
real vector space, 154
receiver operating characteristic (ROC), 318
rect function, 97, 116
rectangular pulse, Fourier series for, 97
Reed–Muller codes, 300, 328
reflections
from ground, 340
from wall, 337, 342
multiple, 341
Index

repetition encoding for error correction, 11
representation points, 69
reverse channels see uplinks
Rician fading, 365, 357, 389
Riemann integration, 101
Riesz–Fischer theorem, 168
\mathbb{R}^n, real n-space, 153
inner product, 178
rolloff factor, 192
run-length coding, 62
sample functions, 217
sample spaces, 217
sampling, 7, 94
and aliasing, 129
equations, 149, 179
sampling equation, 122
sampling theorem, 94, 122, 150, 174
scalars, 154
scattering, 341
Schwarz inequality, 160
segments of waveform, 112–113
self-information, 36
semiclosed intervals, 102
separated intervals, 102
shadow fading, 340
shadowing, 340
Shannon, Claude, 1
and channel capacity, 187, 253
and channel modeling, 8
and codewords, 31, 307, 310
and source modeling, 5
and noise, 8
and outputs, 6
and source/channel separation theorem, 3
Shannon Limit, 253
sibling, 31, 32
signal constellation, 182, 184, 198, 207, 209
signal space, 153, 169, 203, 246
signal, definition of, 182
simplex signal set, 293
sinc function, 117, 122, 236, 246, 265
slow fading, 341
soft decisions, 289, 302, 382
source coding, 44, 124
source coding theorems, 44, 45
source decoding, 2
source encoding, 2, 6, 17
source waveforms, 93
source/channel separation, 3, 16, 383
see also binary interface; digital interface
sources, types of, 16
spanning set of vector space, 156
spectral density, 115, 242, 255, 262
spectral efficiency, 253, 254
specular paths, 357
speech coding see voice processing
square root matrices, 257
standard M-PAM signal set, 184, 187
standardized interfaces, 3
standards, for wireless systems, 332, 333
stationary processes, 235–246
see also effectively stationary random processes;
wide-sense stationary (WSS) processes
stochastic processes see random processes
string of symbols, 20
strongly typical sets, 64, 308
subset inequality, 104, 137, 139
subspaces, 162
sufficient statistic, 272
suffix-free codes, 57
surprise, 36
symbol strings, 20
tap gain, 392
tap-gain correlation function, 357
TDM standard, 333, 380, 387
threshold for detection, 271, 277
threshold test, 273, 284, 318
tiling, 81
time diversity, 378
time spread, 388
time-limited waveforms, 96
time-varying impulse response, 344
see also linear time-varying systems
timing recovery, 185, 349
toy models for sources, 26
transition function of a DMC, 304
transition matrix of a DMC, 304
transitions, Markov chains, 46
transmission rate, 216, 253
transport control protocol (TCP), 12–14
trellis diagrams, 313
triangle inequality, 161, 178
truncated random processes, 257, 258
T-spaced sinc-weighted sinusoid expansion, 111,
113, 127, 132, 148
typical sets, 41
ultra-wide-band modulation (UWB), 184
uncertainty of a random symbol, 36
uniform distribution, 77
uniform scalar quantizers, 75, 84
entropy, 79
high rate, 78
mean-square distortion, 79
uniform vector quantizers, 76, 82, 83
union bound, 137, 140, 145
uniquely decodable sources, 17, 20
unitary matrix, 256
universal data compression, 51
uplinks, 332, 334
variable-length codes, 19
variable-length source coding, 55
variable-to-fixed codes, 44
variable-to-variable codes, 44
vector quantizers, 81, 84, 87
vector spaces, 153–180
vector subspaces, 162
vectors, 153
basis, 157
length, 158, 159
orthogonal, 158, 180
orthonormal, 163, 178
unit, 156
see also random vectors
Viterbi algorithm, 315–317
Viterbi decoder, 381
voice processing, 68, 94, 112, 359
Voronoi regions, 73, 74
Walsh functions, 384
water filling, 360
waveforms see analog waveform sources; \(\mathcal{L}_2 \) functions
wavelength cellular systems, 334
weak law of large numbers (WLLN), 38, 41
weakly typical sets, 64
white Gaussian noise, 244–247
see also additive Gaussian noise; Gaussian noise; Gaussian processes
wide-sense stationary (WSS) processes, 236, 242, 259, 260
wireless, history of, 330
wireless channels
bandpass models, 389
discrete-time models, 389
input-output modelling, 341
physical modelling, 334
power requirements, 359
probabilistic models, 356, 389
wireless LANs, 332
wireline channels, imperfections, 185
\(\mathbb{Z} \), the integers, 94
zero-mean Gaussian processes
covariance function, 220–221
definition, 223
filter output, 234
as orthonormal expansions, 232, 233
stationary, 235
zero-mean Gaussian random variables, 219, 222
zero-mean Gaussian random vectors, 227, 228, 230, 250
zero-mean jointly Gaussian random variables, 222, 250, 254
zero-mean jointly Gaussian random vectors, 224, 230, 250, 254