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Preface

Because the concept of a graph was introduced to represent how objects are
connected, it is not surprising that connectivity has been a central notion in graph
theory since its birth in the 18th century. Various definitions of connectivities
have been proposed, for example, edge-connectivity, vertex-connectivity, and their
ramifications. Closely related to connectivity are flows and cuts in graphs, where
the cut may be regarded as a dual concept of connectivity and flows.

A recent general trend in the research of graph theory appears as a shift to
its algorithmic aspects, and improving time and space complexities has been a
strong incentive for devising new algorithms. This is also true for topics related to
connectivities, flows, and cuts, and much important progress has been made. Such
topics include computation, enumeration, and representation of all minimum cuts
and small cuts; new algorithms to augment connectivity of a given graph; their
generalization to more abstract mathematical systems; and so forth. In view of
these, it would be a timely attempt to summarize those results and present them in
a unified setting so that they can be systematically understood and can be applied
to other related fields.

In these developments, we observe that a simple tool known as maximum
adjacency (MA) ordering has been a profound influence on the computational
complexity of algorithms for a number of problems. It is defined as follows.

MA ordering: Given a graph G = (V, E), a total ordering σ = (v1,

v2, . . . , vn) of vertices is an MA ordering if |E(Vi−1, vi )| ≥ |E(Vi−1, v j )|
holds for all i, j with 2 ≤ i < j ≤ n, where Vi = {v1, v2, . . . , vi } and
E(V ′, v) is the set of edges from vertices in V ′ to v.

To our knowledge, MA ordering was first introduced in a paper by R. E. Tarjan
and M. Yannakakis [300], where it was called the Maximum Cardinality Search
and used to test chordality of graphs, to test acyclicity of hypergraphs, and to
solve other problems. We then rediscovered MA ordering [232], showing that it is
effective for problems such as finding a forest decomposition and computing the

ix
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x Preface

minimum cuts of a graph. The extension in this direction has continued, and many
problems are found to have faster algorithms.

The topics covered in this book are forest decomposition, minimum cuts, small
cuts, cactus representation of cuts, connectivity augmentation, and source location
problems. Mathematical tools used to solve these problems, such as maximum
flows, extreme vertex sets, and edge splitting, are also discussed in detail. A
generalization to a more abstract system than a graph is attempted on the basis of
submodular and posimodular set functions.

The primary purpose of this book is to serve as a research monograph that
covers the aforementioned algorithmic results attained in the area of graph con-
nectivity, putting emphasis on results obtained from the introduction of MA or-
dering. However, this book is also appropriate as a textbook in graduate courses
of mathematical sciences and operations research, because it starts with basic
definitions of graph theory and contains most of the important results related to
graph connectivities, flows, and cuts. Because the concept of connectivity is an
important notion in many application areas, such as communication, transporta-
tion, production, scheduling, and power engineering, this book can be used as a
reference for specialists working in such areas.

We would like to express our deep thanks to the many people who helped us
to complete this project. First of all, we appreciate all the collaborations and com-
ments given to us by Peter Eades, Andras Frank, Satoru Fujishige, Takuro Fuku-
naga, Magnús M. Halldórsson, Seokhee Hong, Toshimasa Ishii, Satoru Iwata,
Tibor Jordán, Yoko Kamidoi, Kazuhisa Makino, Kiyohito Nagano, Mariko
Sakashita, Kei Yamashita, and Liang Zhao, among others. We are particularly
grateful to the late Professor Peter Hammer of Rutgers University for encouraging
us to write this book. Finally we extend our thanks to our wives, Yuko and Mizuko,
respectively, for their generous understanding.

Hiroshi Nagamochi
Toshihide Ibaraki

2007
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Notation

� set of reals 1
�+ set of nonnegative reals 1
�− set of nonpositive reals 1
Z set of integers 1
Z+ set of nonnegative integers 1
Z− set of nonpositive integers 1
�a� smallest integer not smaller than a 1
�a	 largest integer not larger than a 1
[a, b] closed interval; set of reals c with a ≤ c ≤ b 1
(a, b) open interval; set of reals c with a < c < b 1
|V | cardinality of a set V 1
2V power set of V 1
( V

2 ) set of all pairs of elements in V 1
V (G) vertex set of a graph G 2
E(G) edge set of a graph G 2
n |V | 2
m |E | 2
V [F] set of end vertices of edges in F 2
h(e) the head of a directed edge e 2
t(e) the tail of a directed edge e 2
δ(G) minimum degree of a graph G 2
�(G) maximum degree of a graph G 2
cG(e) weight of edge e in G 3
cG(u, v) weight of edge {u, v} in G 3
E(X, Y ; G) set of undirected edges joining a vertex in X and a vertex

in Y for undirected graph G; set of directed edges with a
tail in X and a head in Y for directed graph G

4

d(X, Y ; G)
∑

e∈E(X,Y ;G) cG(e) 3
E(X ; G) E(X, V − X ; G) 4

xi
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xii Notation

d(X ; G) d(X, V − X ; G) for undirected graph G, where d(∅; G) =
d(V ; G) = 0 is assumed

4

d+(X ; G) d(X, V − X ; G) for directed graph G 4
d−(X ; G) d(V − X, X ; G) for directed graph G 4
�G(v) set of neighbors of v in G 6
�+

G (X ) set of out-neighbors of v in G 6
�−

G (X ) set of in-neighbors of v in G 6
G − F graph obtained from G by removing edges in F 7
G/F graph obtained from G by contracting each edge in F into

a single vertex and deleting any resulting loops
7

G + E ′ graph obtained from G by adding the edges in E ′ 8
G[X ] subgraph induced from G by X 8
G − X graph obtained from G by removing the vertices in X

together with the edges incident with a vertex in X
8

G/X graph obtained from G by contracting vertices in X into
a single vertex and deleting any resulting loops

8

G + b star augmentation of G defined by b 8
λ(u, v; G) local edge-connectivity between u and v 9
λ(S, v; G) size of a cut separating S and v 10
λ(G) edge-connectivity of G 10
κ(G) vertex-connectivity of G 10
κ(u, v; G) local vertex-connectivity between u and v 10
κ(S, v; G) minimum size of a vertex cut separating S and v 11
κ̂(S, v; G) maximum number of paths between S and v such that no

two paths share any vertex other than v

11

er reversal edge of e 22
dist(u, v; G) distance from u to v in G 26
Ĝ digraph obtained by contracting all the strongly connected

components in G
31

ψG(v)
∑{cG(e) | e = (v, u) ∈ E}−∑{cG(e) | e = (u, v) ∈ E} 33

λα(u, v; G) local α-connectivity 36
λT (u, v; G) local T -connectivity 37
µ	(u, v; G) local 	-mixed connectivity 37
λ+

s (G) min{λ(s, v; G) | v ∈ V − s} 38
λ−

s (G) min{λ(v, s; G) | v ∈ V − s} 38
E set of ordered pairs (u, v) such that u, v ∈ V , u �= v and

(u, v) �∈ E
39

E(X, Y ) {(u, v) ∈ E | u ∈ X, v ∈ Y } 39
κ+

s (G) min{κ(s, v; G) | (s, v) ∈ E(s, V − s)} 39
κ−

s (G) min{κ(v, s; G) | (v, s) ∈ E(V − s, s)} 39
GS digraph obtained by adding to G a new vertex s and

directed edges (s, v) and (v, s) for every v ∈ S
40

κs,T (GS) min{κ(s, v; GS) | (s, v) ∈ E(s, T ; GS)} 41

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87864-7 - Algorithmic Aspects of Graph Connectivity
Hiroshi Nagamochi and Toshihide Ibaraki
Frontmatter
More information

http://www.cambridge.org/9780521878647
http://www.cambridge.org
http://www.cambridge.org


Notation xiii

κT,s(GS) min{κ(v, s; GS) | (v, s) ∈ E(T, s; GS)} 41
α(n, n) inverse function of Ackermann function 45
Y(G) set of all maximal components of G 51
X (G) family of all extreme vertex sets of G 53
C(R) set of all minimum cuts in R 55
τ (E) transversal number of a hypergraph E 60
ν(E) matching number of a hypergraph E 61
D(v) set of all descendants of v in a tree 61
vX a unique vertex in X such that X ⊆ D(vX ) 61
L(E) line graph of a hypergraph E 62
Gw edge-weighted complete graph defined such that

c(u, v) = ∑
X∈E :{u,v}⊆X w(X ) for hyperedge weight w

64

Ck(G) set of cuts with size k in G 67
G digraph obtained from a digraph G by reversing the

direction of every edge
69

U (G) underlying graph of a digraph G 72
Ck(u, v; G) set of all mixed cuts having size k and separating vertices

u and v in G
79

Se edge set such that e ∈ Se and e′ ∈ Se if and only if {e, e′}
is a 2-cut

88

G↓ deg 2 graph obtained by repeating the operation to delete E(v,

V − v; G) and to add new edge connecting the two neigh-
bors of v for all vertices v with degree 2

93

G↓e (V, (E − Se) ∪ De), where Se = {{x0, y0}, . . . , {xh, yh}}
and De = {{y0, x1}, . . . , {yh, x0}}

93

[X ]G for a subset of vertices in G/E ′, set of all vertices in V
that are contracted to some vertices in X

95

[M3(G/E ′)]G {[X1]G, [X2]G, . . . , [X p]G} for M3(G/E ′) = {X1,

X2, . . . , X p}
95

G + a × X graph obtained by adding vertex a and edge {a, u} for
every vertex u ∈ X

103

G + X × X graph obtained by adding edges {u, v} for all nonadjacent
pairs of vertices u, v ∈ X

103

val(s, t ; H ) value of a maximum (s, t)-flow in an undirected graph or
digraph H

108

G̃ digraph obtained by replacing each edge with two
oppositely oriented edges in an undirected graph G

108

G f residual digraph defined by G̃ and (s, t)-flow f 108
E f 1(G) set of edges e in G such that f (e′) = 1 or f (e′′) = 1

for directed edges e′ and e′′ corresponding to e in G̃
108

E f 0(G) set of edges e in G such that f (e′) = f (e′′) = 0
for directed edges e′ and e′′ corresponding to e in G̃

108
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xiv Notation

G f,k spanning subgraph (V, E f 1(G) ∪ F1 ∪ F2 ∪ · · · ∪ Fk) of
G, where (F1, F2, . . . , Fm) is a forest decomposition of
E f 0(G)

108

λs(G) s-proper edge-connectivity of graph G 117
Va,b set obtained from V by identifying a, b ∈ V as a single

element
130

G/(u, v, δ) graph obtained fron G by splitting edges {s, u} and {s, v}
by weight δ

141

C(α; G) set of all β-cuts in G satisfying α ≤ β 142
Cr (α; G) set of all β-cuts X with r �∈ X 142
V(h,k) Vh ∪ Vh+1 ∪ · · · ∪ Vk for an o-partition (V1, V2, . . . , Vr )

and 1 ≤ h ≤ k ≤ r
146

Gs graph obtained from G by eliminating s after isolating s
in G

150

C(G) set of all minimum cuts in G 145
V(h,k) Vh ∪ Vh+1 ∪ · · · ∪ Vk for an ordered partition (V1, . . . , Vr )

and 1 ≤ h ≤ k ≤ r
146

δ(x, y) cycle distance between two nodes x and y in a cactus 162

3(C) set of all maximal circular MC partition of size 3 over

cuts C
168

Ccomp(π ) set of all minimum cuts in C(G) that are compatible with
a partition π

174

Cindv(π ) set of all minimum cuts in C(G) that are indivisible with
a partition π

174

X (G) family of extreme vertex sets in an edge-weighted
graph G

192

XB:A {X ∈ X (G) | X ⊆ V − A, X ∩ B �= ∅} for disjoint
subsets A, B ⊆ V

201

TB:A tree representation for XB:A ∪ {V } 201
u∗(Y ) one of the Y -minimizers 202
Xk(G) {X ∈ X (G) | d(X ; G) < k} 220
c(G) number of components in G 238
parity(v; G) 0 if d(v; G) is even, or 1 otherwise 243
M(G) set of all minimal minimum cuts in a graph G 247
�G(k) edge-connectivity augmentation function of a graph G 254
[a, b] range from a to b 257
π (R) size of a set R of ranges 257
[a, b]|k upper k-truncation of a range [a, b] 257
R|k upper k-truncation of a range set R 258
[a, b]|k lower k-truncation of a range [a, b] 258
R|k lower k-truncation of a range set R 258
Ch(X ) family of extreme vertex sets that are the children of X

in the tree representation of the extreme vertex sets
260

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87864-7 - Algorithmic Aspects of Graph Connectivity
Hiroshi Nagamochi and Toshihide Ibaraki
Frontmatter
More information

http://www.cambridge.org/9780521878647
http://www.cambridge.org
http://www.cambridge.org


Notation xv

bot(r ) bottom of a range r 265
top(r ) top of a range r 265
Ek,	 family of all minimal deficient sets 289
κ̂+(S, v; G) maximum number of internally vertex-disjoint directed

paths from S to v

295

κ̂−(S, v; G) maximum number of internally vertex-disjoint directed
paths from v to S

295

T f time to evaluate the value of a set function f 307
X ( f ) family of all extreme subsets of a set function f 315
P( f ) polyhedron of a system (V, f ) 322
B( f ) base polyhedron of a system (V, f ) 322
P−( f ) P( f ) ∩ �n

− 322
B−( f ) B( f ) ∩ �n

− 322
P+( f ) P( f ) ∩ �n

+ 322
B+( f ) B( f ) ∩ �n

+ 322
Ch(X ) set of children of a set X in a laminar family 324
pa(X ) parent of a set X in a laminar family 324
M(X ) set of all minimal subsets in a laminar family X 326
E P−( f ) set of all extreme points in B−( f ) 336

n set of all permutations of (1, 2, . . . , n) 336
L( f ) set of all π -minimal vectors in B−( f ) for each π ∈ 
n 336
M(X ; X ) set of all maximal subsets Z ∈ X with Z ⊆ X 337
W( f, g) family of all minimal deficient sets of (V, f, g) 342
Sv family of all v-solid sets 345
S( f ) ∪v∈VSv 345
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