Cosmochemistry

How did the solar system's chemical composition arise and evolve?

This textbook provides the answers in the first interdisciplinary introduction to cosmochemistry. It makes this exciting and evolving field accessible to undergraduate and graduate students from a range of backgrounds, including geology, chemistry, astronomy, and physics.

The authors – two established research leaders who have helped pioneer developments in the field – provide a complete background to cosmochemical processes and discoveries, enabling students outside geochemistry to fully understand and explore the solar system's composition.

Topics covered include:

- synthesis of nuclides in stars
- partitioning of elements between solids, liquids and gas in the solar nebula
- overviews of the chemistry of extraterrestrial materials
- isotopic tools used to investigate processes such as planet accretion and element fractionation
- chronology of the early solar system
- geochemical exploration of planets.

Boxes provide basic definitions and mini-courses in mineralogy, organic chemistry, and other essential background information for students. Review questions and additional reading for each chapter encourage students to explore cosmochemistry further.

HARRY (Hap) Y. McSWEEN Jr. is Chancellor's Professor at the University of Tennessee. He has conducted research on cosmochemistry for more than three decades and was one of the original proponents of the hypothesis that some meteorites are from Mars. He has been a co-investigator for four NASA spacecraft missions and serves on numerous advisory committees for NASA and the US National Research Council. Dr. McSween has written or edited four books on meteorites and planetary science, and coauthored a textbook in geochemistry. He is a former president and Fellow of the Meteoritical Society, a Fellow of the American Academy of Arts and Sciences, recipient of the Leonard Medal, and has an asteroid named for him.

GARY HUSS is a Research Professor and Director of the W. M. Keck Cosmochemistry Laboratory at the Hawai'i Institute for Geophysics and Planetology, University of Hawai'i at Mānoa. In more than three decades of research on cosmochemistry, he was among the first

to study presolar grains, the raw materials for the solar system. He presently studies the chronology of the early solar system. He comes from a family of meteorite scientists: his grandfather, H. H. Nininger, has been called the father of modern meteoritics, and his father, Glenn Huss, and grandfather were responsible for recovering over 500 meteorites previously unknown to science. Dr. Huss is a former president and Fellow of the Meteoritical Society and also has an asteroid named for him.

Cosmochemistry

Harry Y. McSween, Jr.

University of Tennessee, Knoxville

Gary R. Huss

University of Hawai'i at Mānoa

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge. It furthers the Universitys mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

> www.cambridge.org Information on this title: www.cambridge.org/9780521878623

> > © Harry Y. McSween, Jr. and Gary R. Huss 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2010 Reprinted 2015

Printed in the United Kingdom by Print on Demand, World Wide

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data McSween, Harry Y. Cosmochemistry : probing the origin and chemical evolution of the solar system / Harry Y. McSween, Jr., Gary R. Huss. p. cm. Includes bibliographical references and index. ISBN 978-0-521-87862-3 1. Cosmochemistry. I. Huss, Gary R. II. Title. QB450.M37 2010 523'.02–dc22 2009054025

ISBN 978-0-521-87862-3 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

For Sue and Jackie

Contents

Pr	eface	page xvii
1	Introduction to cosmochemistry	1
	Overview	1
	What is cosmochemistry?	1
	Geochemistry versus cosmochemistry	3
	Beginnings of cosmochemistry (and geochemistry)	6
	Philosophical foundations	6
	Meteorites and microscopy	6
	Spectroscopy and the compositions of stars	9
	Solar system element abundances	10
	Isotopes and nuclear physics	11
	Space exploration and samples from other worlds	14
	New sources of extraterrestrial materials	18
	Organic matter and extraterrestrial life?	20
	The tools and datasets of cosmochemistry	20
	Laboratory and spacecraft analyses	21
	Cosmochemical theory	24
	Relationship of cosmochemistry to other disciplines	25
	Questions	26
	Suggestions for further reading	26
	References	27
2	Nuclides and elements: the building blocks of matter	29
	Overview	29
	Elementary particles, isotopes, and elements	29
	Chart of the nuclides: organizing elements by their nuclear properties	32
	Radioactive elements and their modes of decay	35
	The periodic table: organizing elements by their chemistry properties	38
	Chemical bonding	44
	Chemical and physical processes relevant to cosmochemistry	46
	Isotope effects from chemical and physical processes	49
	Summary	51
	Questions	52
	Suggestions for further reading	52
	References	52

viii	Contents	
	3 Origin of the elements	
	Overview	
	In the beginning	
	The Big Bang model	
	Observational evidence	
	Nucleosynthesis in stars	
	Classification, masses, and lifetimes of stars	
	The life cycles of stars	
	Stellar nucleosynthesis processes	
	Origin of the galaxy and galactic chemical evolution	
	Summary	
	Questions	
	Suggestions for further reading	
	References	
	4 Solar system and cosmic abundances: elements and isotopes	
	Overview	
	Chemistry on a grand scale	
	Historical perspective	
	How are solar system abundances determined?	
	Determining elemental abundances in the Sun	
	Spectroscopic observations of the Sun	
	Collecting and analyzing the solar wind	
	Determining chemical abundances in meteorites	
	Importance of CI chondrites	
	Measuring CI abundances	1
	Indirect methods of estimating abundances	1
	Solar system abundances of the elements	1
	Solar system abundances of the isotopes	1
	How did solar system abundances arise?	
	Differences between solar system and cosmic abundances	
	How are solar system abundances used in cosmochemistry?	
	Summary	
	Questions	
	Suggestions for further reading	1
	References	1
	5 Presolar grains: a record of stellar nucleosynthesis and proces	ises
	in interstellar space	1
	Overview	1
	Grains that predate the solar system	1
	A cosmochemical detective story	1
	Recognizing presolar grains in meteorites	1

CAMBRIDGE

ix	Contents	
	Known types of presolar grains	12'
	Identification and characterization of presolar grains	123
	Locating and identifying presolar grains	12
	Characterization of presolar grains	12
	Identification of stellar sources	13
	Grains from AGB stars	13
	Supernova grains	13
	Nova grains	13
	Other stellar sources	14
	Presolar grains as probes of stellar nucleosynthesis	14
	Input data for stellar models	14
	Internal stellar structure	14
	The neutron source(s) for the <i>s</i> -process	14
	Constraining supernova models	14
	Galactic chemical evolution	14
	Presolar grains as tracers of circumstellar and interstellar environments	14
	Silicon carbide	14
	Graphite grains from AGB stars	14
	Graphite grains from supernovae	14
	Interstellar grains	14
	•	14
	Presolar grains as probes of the early solar system	14
	Summary Questions	15.
		15.
	Suggestions for further reading References	15
6	Meteorites: a record of nebular and planetary processes	15
	Overview	15
	Primitive versus differentiated	15
	Components of chondrites	15
	Chondrules	15
	Refractory inclusions	16
	Metals and sulfide	16
	Matrix	16
	Chondrite classification	16
	Primary characteristics: chemical compositions	16
	Secondary characteristics: petrologic types	16
	Chondrite taxonomy	10
	Other classification parameters: shock and weathering	17
	Oxygen isotopes in chondrites Classification of nonchondritic meteorites	17
		17
	Primitive achondrites	17
	Acapulcoites and lodranites	17

X	Contents	
	TT 11.	176
	Ureilites Winonaites and IAB silicate inclusions	176
		178 178
	Magmatic achondrites Aubrites	178
	Howardites–eucrites–diogenites	178
	Angrites	179
	Irons and stony irons	179
	Classification and composition of iron meteorites	180
	Pallasites and mesosiderites	180
	Lunar samples	182
	Martian meteorites	184
	Oxygen isotopes in differentiated meteorites	185
	Summary	187
	Questions	188
	Suggestions for further reading	188
	References	189
7	Cosmochemical and geochemical fractionations	192
	Overview	192
	What are chemical fractionations and why are they important?	192
	Condensation as a fractionation process	195
	Condensation sequences	196
	Applicability of condensation calculations to the early solar system	201
	Volatile element depletions	205
	Gas-solid interactions	206
	Gas-liquid interactions	208
	Igneous fractionations	210
	Magmatic processes that lead to fractionation	210
	Element partitioning	211
	Physical fractionations	213
	Sorting of chondrite components	213
	Fractionations by impacts or pyroclastic activity	215
	Element fractionation resulting from oxidation/reduction	217
	Element fractionation resulting from planetary differentiation	218
	Fractionation of isotopes	220
	Mass-dependent fractionation	220
	Fractionations produced by ion-molecule reactions	221
	Planetary mass-dependent fractionations	222
	Mass-independent fractionation	222
	Radiogenic isotope fractionation and planetary differentiation	224
	Summary	225
	Questions	226
	Suggestions for further reading	226
	References	227

xi	_	Contents	
	8	Radioisotopes as chronometers	230
		Overview	230
		Methods of age determination	230
		Discussing radiometric ages and time	231
		Basic principles of radiometric age dating Long-lived radionuclides	231 237
		The 40 K $-{}^{40}$ Ar system	237
		The 87 Rb $-{}^{87}$ Sr system	238 242
		The 147 Sm $^{-143}$ Nd system	242
		The U–Th–Pb system	252
		The 187 Re $^{-187}$ Os system	230
		The 176 Lu $-{}^{176}$ Hf system	270
		Other long-lived nuclides of potential cosmochemical significance	276
		Short-lived radionuclides	278
		The $^{129}\text{L}^{-129}\text{Xe}$ system	282
		The ²⁶ Al– ²⁶ Mg system	284
		The ⁴¹ Ca– ⁴¹ K system	287
		The ⁵³ Mn– ⁵³ Cr system	288
		The ⁶⁰ Fe- ⁶⁰ Ni system	289
		The ¹⁰⁷ Pd– ¹⁰⁷ Ag system	291
		The ¹⁴⁶ Sm– ¹⁴² Nd system	293
		The 182 Hf $-{}^{182}$ W system	294
		The ¹⁰ Be– ¹⁰ B system	295
		Other short-lived nuclides of potential cosmochemical significance	297
		Summary	298
		Questions	299
		Suggestions for further reading	299
		References	300
	9	Chronology of the solar system from radioactive isotopes	308
		Overview	308
		Age of the elements and environment in which the Sun formed	308
		Age of the solar system	315
		Early solar system chronology	318
		Primitive components in chondrites	319
		Accretion and history of chondritic parent bodies	324
		Accretion and differentiation of achondritic parent bodies	327
		Accretion, differentiation, and igneous history of planets and the Moon	330
		Age of the Earth	330
		Age of the Moon	331
		Age of Mars	332
		Shock ages and impact histories	336
		Shock ages of meteorites	336

Shock ages of lunar rocks3The late heavy bombardment3Cosmogenic nuclides in meteorites3Cosmic-ray exposure ages3Terrestrial ages3Summary3Questions3Suggestions for further reading3References310The most volatile elements and compounds: organic matter,
The late heavy bombardment3Cosmogenic nuclides in meteorites3Cosmic-ray exposure ages3Terrestrial ages3Summary3Questions3Suggestions for further reading3References3
Cosmogenic nuclides in meteorites3Cosmic-ray exposure ages3Terrestrial ages3Summary3Questions3Suggestions for further reading3References3
Cosmic-ray exposure ages3Terrestrial ages3Summary3Questions3Suggestions for further reading3References3
Summary3Questions3Suggestions for further reading3References3
Questions3Suggestions for further reading3References3
Suggestions for further reading3References3
References 3
10 The most volatile elements and compounds: organic matter,
noble gases, and ices 3
Overview 3
Volatility 3
Organic matter: occurrence and complexity 3
Extractable organic matter in chondrites 3
Insoluble macromolecules in chondrites 3
Stable isotopes in organic compounds 3
Are organic compounds interstellar or nebular? 3
Noble gases and how they are analyzed 3
Noble gas components in extraterrestrial samples 3
Nuclear components 3
The solar components 3
Planetary components 3
Planetary atmospheres 3
Condensation and accretion of ices 3
Summary 3
Questions 3
Suggestions for further reading 3
References 3
11Chemistry of anhydrous planetesimals3
Overview 3
Dry asteroids and meteorites 3
Asteroids: a geologic context for meteorites 3
Appearance and physical properties 3
Spectroscopy and classification 3
Orbits, distribution, and delivery 3
Chemical compositions of anhydrous asteroids and meteorites 3
Analyses of asteroids by spacecraft remote sensing 3
Chondritic meteorites 3
Differentiated meteorites 3
Thermal evolution of anhydrous asteroids 3

xiii	Contents	
	Thermal structure of the asteroid belt	40
	Collisions among asteroids	40
	Summary	40
	Questions	40
	Suggestions for further reading	40
	References	41
	12 Chemistry of comets and other ice-bearing planetesimals	41
	Overview	41
	Icy bodies in the solar system	41
	Orbital and physical characteristics	41
	Orbits	41
	Appearance and physical properties	41
	Chemistry of comets	41
	Comet ices	41
	Comet dust: spectroscopy and spacecraft analysis	41
	Interplanetary dust particles	42
	Returned comet samples	42
	Ice-bearing asteroids and altered meteorites	43
	Spectroscopy of asteroids formed beyond the snowline	43
	Aqueous alteration of chondrites	43
	Thermal evolution of ice-bearing bodies	43
	Chemistry of hydrated carbonaceous chondrites	43
	Variations among ice-bearing planetesimals	43
	Summary	44
	Questions	44
	Suggestions for further reading	44
	References	44
	13 Geochemical exploration of planets: Moon and Mars	
	as case studies	44
	Overview	44
	Why the Moon and Mars?	44
	Global geologic context for lunar geochemistry	44
	Geochemical tools for lunar exploration	44
	Instruments on orbiting spacecraft	44
	Laboratory analysis of returned lunar samples and lunar meteorites	45
	Measured composition of the lunar crust	43
	-	43
	Sample geochemistry Geochemical mapping by spacecraft	45 45
	Compositions of the lunar mantle and core	43
	Geochemical evolution of the Moon	45 45
	Global geologic context for Mars geochemistry	46

xiv	Contents	
	Geochemical tools for Mars exploration	464
	Instruments on orbiting spacecraft	464
	Instruments on landers and rovers	465
	Laboratory analyses of Martian meteorites	466
	Measured composition of the Martian crust	469
	Composition of the crust	470
	Water, chemical weathering, and evaporites	472
	Compositions of the Martian mantle and core	475
	Geochemical evolution of Mars	477
	Summary	477
	Questions	478
	Suggestions for further reading	478
	References	479
14	Cosmochemical models for the formation of the solar system	484
	Overview	484
	Constraints on the nebula	484
	From gas and dust to Sun and accretion disk	484
	Temperatures in the accretion disk	489
	Localized heating: nebular shocks and the X-wind model	492
	Accretion and bulk compositions of planets	495
	Agglomeration of planetesimals and planets	495
	Constraints on planet bulk compositions	495
	Models for estimating bulk chemistry	498
	Formation of the terrestrial planets	499
	Planetesimal building blocks	499
	Delivery of volatiles to the terrestrial planets	503
	Planetary differentiation	504
	Formation of the giant planets	507
	Orbital and collisional evolution of the modern solar system	511
	Summary	512
	Questions	513
	Suggestions for further reading	514
	References	514
Ар	pendix: Some analytical techniques commonly used	
	in cosmochemistry	518
	Chemical compositions of bulk samples	518
	Wet chemical analysis	518
	X-ray fluorescence (XRF)	519
	Neutron activation analysis	519
	Petrology, mineralogy, mineral chemistry, and mineral structure	520
	Optical microscopy	520
	Electron-beam techniques	520

xv	Contents	
	Other techniques for determining chemical composition	
	and mineral structure	525
	Proton-induced X-ray emission (PIXE)	525
	Inductively coupled-plasma atomic-emission spectroscopy	
	(ICP-AES)	525
	X-ray diffraction (XRD)	525
	Synchrotron techniques	526
	Mass spectrometry	527
	Ion sources	527
	Mass analyzers	528
	Detectors	530
	Mass spectrometer systems used in cosmochemistry	531
	Raman spectroscopy	534
	Flight instruments	535
	Gamma-ray and neutron spectrometers	535
	Alpha-particle X-ray spectrometer	536
	Mössbauer spectrometer	536
	Sample preparation	536
	Thin-section preparation	536
	Sample preparation for EBSD	537
	Sample preparation for the TEM	537
	Preparing aerogel "keystones"	538
	Preparation of samples for TIMS and ICPMS	538
	Details of radiometric dating systems using neutron activation	539
	⁴⁰ Ar– ³⁹ Ar dating	539
	¹²⁹ I- ¹²⁹ Xe dating	540
	Suggestions for further reading	541
Index		543

Preface

Cosmochemistry provides critical insights into the workings of our local star and its companions throughout the galaxy, the origin and timing of our solar system's birth, and the complex reactions inside planetesimals and planets (including our own) as they evolve. Much of the database of cosmochemistry comes from laboratory analyses of elements and isotopes in our modest collections of extraterrestrial samples. A growing part of the cosmochemistry database is gleaned from remote sensing and *in situ* measurements by spacecraft instruments, which provide chemical analyses and geologic context for other planets, their moons, asteroids, and comets. Because the samples analyzed by cosmochemists are typically so small and valuable, or must be analyzed on bodies many millions of miles distant, this discipline leads in the development of new analytical technologies for use in the laboratory or flown on spacecraft missions. These technologies then spread to geochemistry and other fields where precise analyses of small samples are important.

Despite its cutting-edge qualities and newsworthy discoveries, cosmochemistry is an orphan. It does not fall within the purview of chemistry, geology, astronomy, physics, or biology, but is rather an amalgam of these disciplines. Because it has no natural home or constituency, cosmochemistry is usually taught (if it is taught at all) directly from its scientific literature (admittedly difficult reading) or from specialized books on meteorites and related topics. In crafting this textbook, we attempt to remedy that shortcoming. We have tried to make this subject accessible to advanced undergraduate and graduate students with diverse academic backgrounds, although we do presume some prior exposure to basic chemistry. This goal may lead to uneven treatment of some subjects, and our readers should understand that our intended audience is broad.

Cosmochemistry is advancing so rapidly that we can only hope to provide a snapshot of the discipline as it is currently understood and practiced. We have found even that to be a challenge, because we could not hope to possess expertise in all the subjects encompassed by this discipline. We have drawn heavily on the contributions of many colleagues, especially those who educate by writing thoughtful reviews. That assistance is gratefully acknowledged through our annotated suggestions for further reading at the end of each chapter.

The topics covered in the chapters of this book include the following, in this order:

- An introduction to how cosmochemistry developed, and to how it differs from geochemistry
- A review of the characteristics and behaviors of elements and nuclides
- A discussion of how elements are synthesized within stars, and how the chemistry of the galaxy has evolved over time

xviii	Preface
	 An assessment of the abundances of elements and isotopes in the solar system A description of presolar grains, and how they constrain stellar nucleosynthesis and processes in interstellar space
	• An introduction to meteorites and lunar samples
	• An evaluation of processes that have fractionated elements and isotopes in interstellar space, in the solar nebula, and within planetary bodies
	 An explanation of how radioactive isotopes are used to quantify solar system history A synthesis of the radiometric age of the solar system and the ages of its constituents An assessment of the most volatile materials – organic matter, noble gases, and ices
	 An assessment of the most volatile materials – organic mater, noble gases, and ices A survey of the chemistry of anhydrous planetesimals and the samples we have of them A survey of the chemistry of ice-bearing comets and asteroids and the samples we have of them
	 Examples of modern geochemical exploration of planetary bodies – the Moon and Mars A review of the formation of the solar system, from the perspective of cosmochemistry An Appendix describing some important analytical methods used in cosmochemistry
	More-established disciplines are taught using tried-and-true methods and examples, the results of generations of pedagogical experimentation. Cosmochemistry does not yet offer that. Most of those who dare to teach cosmochemistry, including the authors of this book, have never actually been students in a cosmochemistry course. In the authors' case, we have learned from a handful of scientists who have guided our introduction to the field, including
	Calvin Alexander, Bob Pepin, Ed Anders, Jim Hays, Dick Holland, Ian Hutcheon, Klaus Keil, Roy Lewis, Dimitri Papanastassiou, Jerry Wasserburg, and John Wood. We hope that this book on cosmochemistry will guide other students and their teachers as they explore

together this emerging, interdisciplinary subject, and that they will enjoy the experience as

much as we have.