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Preface

Since the first systematic exposition of the theory of involutive systems of
vector fields ([T5]) was published almost 15 years ago, the subject has under-
gone considerable development and many new applications have been found.
Systems of vector fields arise as a local basis of an involutive sub-bundle
� of the complexified tangent bundle CT� . Involutivity of � means that
the commutation bracket of two smooth sections of � must also be a section
of � . Examples of involutive structures ���� � include foliations, complex
structures, and CR structures. In these examples, � ∩� has constant rank.
However, in recent work on integral geometry, natural examples of involu-
tive structures have arisen for which the rank of � ∩� changes from point
to point ([BE], [BEGM], and [EG1]). In the works [BE] and [BEGM], the
cohomology of involutive structures is a key ingredient. Examples of invo-
lutive structures where the rank of � ∩� is not constant also arise naturally,
for instance, on the tangent bundle of symmetric spaces (see [Sz] and the
references therein) or in the study of the generalized similarity principle for
the equation

Lu= Au+Bu

where L is a planar complex vector field not necessarily elliptic, which is
intimately linked to the study of infinitesimal deformations of surfaces in R

3

with non-negative curvature (see [Me3], [Me4], and the references therein).
This book introduces the reader to a number of results on systems of vector

fields with complex-valued coefficients defined on a smooth manifold � .
Most of the time, it will be assumed that the involutive structure ���� � is
locally integrable. The latter means that the orthogonal of � , which is a sub-
bundle T ′ of the complexified cotangent bundle CT ∗� , is locally generated
by exact differentials. When ���� � is locally integrable, each point has a
neighborhood U such that if �L1� � � � �Ln� are n smooth vector fields that form

ix
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x Preface

a basis of � over U , then we can findm= dim�−n smooth, complex-valued
functions Z1� � � � �Zm which are solutions of the equations

Ljh= 0� 1≤ j ≤ n (1)

and whose differentials are linearly independent over C at each point of U .
The m functions Z = �Z1� � � � �Zm� are sometimes referred to as a complete
set of first integrals in the neighborhood U .
In 1981, in [BT1], Baouendi and Treves proved that in a locally inte-

grable structure, each solution of (1) can be locally approximated by a
sequence Pk�Z� where the Pk are holomorphic polynomials of m variables
and Z = �Z1� � � � �Zm� is a complete set of first integrals. This approxima-
tion theorem has enabled several researchers to use the methods of complex
analysis, harmonic analysis, and partial differential equations to study many
problems on locally integrable structures. These problems include: the local
and microlocal regularity of the solutions of (1); the determination of sets of
uniqueness for solutions of (1); the solvability of the differential complex
associated with the structure ���� �; and many other properties of the
solutions of (1).
This book attempts to present a systematic treatment of some of these

results in a way that is accessible to graduate students with a background
in real analysis, one complex variable, and basic introductions to several
complex variables and linear PDEs including the theory of distributions.
Chapter I introduces the basic concepts in the theory of involutive and

locally integrable structures. Special classes of involutive structures such as
complex structures, CR structures, elliptic structures, and real analytic struc-
tures are identified and examples are provided. Useful local representations
both for general involutive and locally integrable structures are also discussed.
A proof of the Newlander–Nirenberg theorem is presented in the appendix to
Chapter I. Chapter II is devoted to the approximation theorem of Baouendi
and Treves. It is shown that the approximation is valid in many function
spaces used in analysis: the Lebesgue spaces Lp� 1≤ p<�; Sobolev spaces;
Hölder spaces; and localizable Hardy spaces hp� 0< p <�. Applications to
uniqueness in the Cauchy problem and extendability of CR functions are also
included. Chapter III presents a variety of results on unique continuation for
solutions and approximate solutions in a locally integrable structure ���� �.
The orbits of Sussmann associated with the real parts RL of the smooth
sections of � play a crucial role in many problems, including the study of
unique continuation and the chapter includes a discussion of some of the
properties of these orbits. Chapter IV provides a detailed treatment of locally
solvable vector fields. In the first part of the chapter, where the focus is on
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Preface xi

planar vector fields, the solvability condition ��� of Nirenberg and Treves is
discussed and a priori estimates are proved in Lp and in a mixed norm that
involves the Hardy space h1�R�. A duality argument is then used to derive
local solvability results in Lp� 1<p<� and in L�	R
bmo�R��. The chapter
also includes sections on the sufficiency and necessity of condition ��� for
local solvability in higher dimensions. The first part of Chapter V introduces
certain submanifolds in an involutive structure ���� � which are important
in the study of solutions. These submanifolds are generalizations of the totally
real and generic CR submanifolds encountered in CR manifolds. The second
part of the chapter introduces the FBI transform first in R

n and then in a locally
integrable structure. The FBI transform is then applied to derive edge-of-the-
wedge type results. It is also applied to study the microlocal singularities
of the solutions of a first-order nonlinear PDE and a generalization of the
F. and M. Riesz theorem. Chapter VI studies some boundary properties of the
solutions of locally integrable vector fields. These properties include the exis-
tence of a trace at the boundary, pointwise convergence of solutions to their
boundary values, and the validity of Hardy space-like properties. Chapter VII
describes the differential complex attached to a general involutive structure.
An invariant definition of this complex is followed by a useful representa-
tion in appropriate coordinates. An approximate Poincaré Lemma for locally
integrable structures is also proved in the chapter. Chapter VIII deals with
the local solvability theory of the undetermined systems of partial differen-
tial equations naturally associated with a locally integrable structure, that is,
the cohomology theory of its differential complex. Necessary and sufficient
conditions are studied in some detail when the structure is analytic, or elliptic,
or has corank one. Concerning the latter class, a thorough exposition of the
geometric characterization of local solvability in degree one for real analytic
structures is presented.
Finally we conclude with an epilogue which summarizes some of the

results obtained in recent years on diverse areas such as the similarity prin-
ciple, Mizohata structures, and hyperfunction solutions in hypoanalytic mani-
folds. Two applications of the similarity principle are described. The first
application concerns uniqueness in the Cauchy problem for a class of semi-
linear equations. The second application involves the theory of bending of
surfaces.
There are numerous interesting results on complex vector fields and invo-

lutive structures that have been obtained since the publication of [BT1] and
which are not covered in this book. The authors have selected the material
with which they have had first-hand experience. In the notes at the end of each
chapter, we indicate some related works and provide additional references.
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xii Preface

The reader is referred to [BER] for a further reference on CR manifolds and
to [T5] for additional topics on involutive structures.
We are grateful to Elisandra Bär, Sagun Chanillo, Nicholas Hanges, Gustavo

Hoepfner, and Gerson Petronilho for reading parts of the manuscript, pointing
out errors and suggesting improvements.
We are also grateful to Peter Thompson of Cambridge University Press for

the expedience with which our book has been handled.
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