abortion, cell donation for neurotransplantation 194–5
adult stem cells see somatic stem cells (SSCs)
afterlife, arguments for 15–18
Age of Enlightenment 37–8
Alzheimer’s disease (AD) cell therapy 191, 197, 208
gene therapy 28
loss of autonomy 141–4
molecular treatment trial 193
reactivation of atrophic neurons 23–5
use of fMRI 246
amygdala 9, 10, 19, 69, 358
amyotrophic lateral sclerosis (ALS) 208, 209, 273
anger circuit 69
animal cells see xenotransplantation/xenografting
anorexia nervosa 19
anterior cingulate gyrus 5, 6
anti-substantialism 100
Arendt, Hannah 141–2
Aristotle 146–7, 166, 168
attention-deficit hyperactivity disorder (ADHD) 326, 349
autonomic nervous system 141–4
autonomy
abstract concept 134–5
and freedom 138–40
and illness 142–4
and mortality 135
and rational capacity 135
and the language of the body 141–4
anthropological focus 135
connection with embodiment 136–44
effects of degenerative neurological disease 141–4
ethics of healthcare and pain care 180–1
afterlife, arguments for 15–18
Age of Enlightenment 37–8
Alzheimer’s disease (AD) cell therapy 191, 197, 208
gene therapy 28
loss of autonomy 141–4
molecular treatment trial 193
reactivation of atrophic neurons 23–5
use of fMRI 246
amygdala 9, 10, 19, 69, 358
amyotrophic lateral sclerosis (ALS) 208, 209, 273
anger circuit 69
animal cells see xenotransplantation/xenografting
anorexia nervosa 19
anterior cingulate gyrus 5, 6
anti-substantialism 100
Arendt, Hannah 141–2
Aristotle 146–7, 166, 168
attention-deficit hyperactivity disorder (ADHD) 326, 349
autonomic nervous system 141–4
autonomy
abstract concept 134–5
and freedom 138–40
and illness 142–4
and mortality 135
and rational capacity 135
and the language of the body 141–4
anthropological focus 135
connection with embodiment 136–44
effects of degenerative neurological disease 141–4
brain–computer interfaces (BCIs) 271
EEG-based interfaces 272–5, 277
enhancement applications 279
fMRI 276
history of BCI research 272–4
imaging technologies 276
increasing therapeutic options 285
invasive technologies 275–6
lie detection 277–8
neuroprostheses 272, 276–7
non-invasive technologies 274–5
potential ethical considerations 277–9
range of applications 276–7
replacing lost functionality 272, 273–4, 276–7
threat to privacy of thought 277–9
types of brain signals used for control 272–6
virtual worlds 271–2

brain development
changes during 7–15
early imprinting 7–8, 10–15
genetic identity 7, 8, 10–15
influence of the environment 7–15
interaction with culture 8
language 7–8
loss of ability to change 8–9
plastic and non-plastic aspects 7–9
prenatal influences 7
religious convictions 8
restrictions caused by organization 8–9
sexual differentiation 10–15
sexual orientation 7, 8

brain disorders
diagnostic and therapeutic developments 18–19
patient-tailored therapy 20–1
reactivation of atrophic neurons 23–5

brain function restoration 25–30
brain–machine interfaces 26
see also brain–computer interfaces
bypassing nervous system damage 26
gene therapy 28–9
intervention neurology 27–8
neural transplantation 26–7
neuroprosthetics 26
repair of local lesions 26–7
spinal cord injury 29–30
stem cell therapy 29–30
brain–machine interfaces 26
see also brain–computer interfaces

brain–mind relationship see mind–brain relationship
brain prostheses (BPs) 285
brain research, changing focus 1
brain scans
desire to use predictively 366–7
diagnostic potential 18–19
legitimacy conferred by 365–7
limits of contribution to self-understanding 369
persuasive effects on those viewing them 365–7
separating science from scientism 355–6
see also fMRI; neuroimaging

brain stroke, cell therapy 191, 197, 208
causality, mind–body relationship 106–14
cell therapy see neurotransplantation
Center for Neurotechnology Studies (CNS), workshops on ELSI and public policy 305–17
cerebral characterology 260–1
Chalmers, David, hard problem of consciousness 66, 72–7
Churchland, Paul 363–4, 368
clinical practice, influence of epistemological approach 222–5
cluster headache 21
cochlear implants 272, 285
cognitive neurobiology
neural-network models of moral cognition 148–70
reciprocal interaction with moral theory 147–8
computer metaphor for the brain 3, 78
computers see brain–computer interfaces (BCIs)
Comte, Auguste 37
confirmation bias xvii–xviii
congenital adrenal hyperplasia (CAH) 13
consciousness 136
and embodiment 138
and moral capacity 138
conscience 136

© in this web service Cambridge University Press
historical influences on current debate 50–60
implications for neuroethics 62–3
influences on postmodern thinking 50–60
insights from the history of ideas 60–3
study of altered states 49–50
use of metaphors from contemporary technology 61
see also mind, theories of consent
cell donation from abortion 195
human blastocyst donation 196–7
neurological patients 206–7, 209–10
policy issues in brain interventions 324
consequentialism xx
cranial electrotherapy stimulation (CES) 284
criminal behavior, and brain disorders 19
critical window concept in development 1
culture, interaction with brain development 8
cyberthink 289, 296
“cyborgization” (machine interfacing) of the human body 179
cytoarchitectonics 261
DARPA, brain–machine interface program 286
Decade of Pain Control and Research (2000–2010) xxix
Decade of the Brain (1990–2000) xxv, xxix
Decade of the Mind project xxix, 306, 319, 345
deep brain stimulation (DBS) 21–2, 284
degenerative neurological disease, loss of autonomy 141–4
deontology xix, xx
depression
risk factors 20
treatment of 20–1
use of deep brain stimulation 22
death psychology 97
Descartes, René 2, 97, 100, 101, 106, 109
diagnoscopy 259
Diagnostic and Statistical Manual (fifth edition) 345
disease, definition 226, 348–9
donor consent
cell donation from abortion 195
human blastocysts 196–7
Dostoevsky, Fyodor 16
drug treatments, causal interpretations 220–2
dystonia 21
Eccles, John 100
ECOg (electrocorticogram) 275
EEG (electroencephalography) 245, 259–60
EEG-based BCIs 272–5, 277
EEG studies, influence on theories of consciousness 78
embodiment
and autonomy 136–44
and conscience 138
and personal identity 136–8
language of the body 141–4
embryonic germ cells 192
embryonic stem cells (ESCs) 191, 192–3
neurotransplantation 29–30, 191, 196–8
emergentism 62, 223
empiricism
controversy with idealism 38, 41–4
debate on limits of 42–4
encapsulated cells, use in neurotransplantation 193
enhancement
policy issues 326
use of BCIs 279
see also neural engineering; treatment–enhancement debate
epilepsy
and religious experiences 15–16
cell therapy 191, 208
epiphenomenalism 107, 112–13, 114
epistemic crisis xxvii–xxviii
epistemological approaches
behavioral genetics 217–22
emergentist framework 223
ethical consequences 222–5
influence on clinical practice 222–5
interpretation of biological causality 222–3
pharmacogenomics 217–22
scientific reductionism 217–22
epistemological (good, valid) version of the hard problem 73–7
ethical implications of neuroscience 323
ethical, legal, and social implications (ELSI) of neurotechnology 303–19
ethics of neurogenetics 225–7
ethics of neuroscience xvi–xxi, 323
ethics of practice 323
eugenics 261
event-related desynchronization BCIs
273, 274–5

presurgical mapping of brain function 246, 247–8

fMRI-based BCIs 276

fMRI constraints and limitations 231

coloration of signals from different tasks 235–6

effects of data processing 233–5

effects of the experimental design 237

dtermination of the BOLD signal 237

subtraction method 236, 360–2

timescale disconnect 362

fMRI data processing 233–6

data preprocessing 233–4

generation of pictures showing areas of activation 235

neuro-essentialism 256–8

neuro-policy 257, 260–2

neuro-realism 257, 258–60

neuroethical challenge 250–62

neuroethical responsibilities 262–5

popular portrayal as mind-reading 258–62

scientific interpretation 250–6

social and cultural interpretations 256–62

statistical analysis of fMRI data 254–6

fMRI research

investigation of brain function 246

social and policy implications 246

fMRI studies

avoiding explanation by correlation 68–9

cortical bias 78–80

influence on theories of consciousness 78–80

insensitivity to timing 79

Fodor, Jerry 356, 363

freedom and autonomy 138–40

law of 139

situated freedom 138–40
Freud, Sigmund 15

functionalist versions of physicalism 104–5

gender identity and brain development 7, 8, 10–15
gene therapy, brain function restoration 28–9
genetics 338–9
genetic determinism in research 217–22
genetic factors in susceptibility to pain syndromes 174–5
genetic testing ethical issues in data interpretation 222–5
ethics of pre-symptomatic testing 224–5
potential consequences for individuals 224–5
genetics policy-making 338–9
use of neurogenetic information 183
Geschwind syndrome 16

glial celline-derived neurotrophic factor (GDNF) treatment 28–9

glial precursor cells, neurotransplantation 193
government involvement in neuroscience, range of options 328–30

hard problem of consciousness 66
avoiding explanation by correlation 68–70, 80
epipistemological (good, valid) version 73–7

"explanatory gap" argument 73, 74, 75

influence of available instrumentation 78–80

"knowledge argument" of consciousness 71, 77, 81, 83, 86
Kuhnian paradigm shifts 78
mental causation problem 71–2, 86

multiple realizability problem 77
ontological (bad, invalid) version 73, 74, 75, 76–7
philosophical paradoxes 70–2
practical implications 67–70
search for a general theory of consciousness 78–80
self-organization theory of consciousness 80–91

sources of bias in research 78–80
two hard problem arguments 72–7

hard problems of neuroscience xxvi

health care, ethical use of scientific understanding 225–7

heart, and emotions 5–6

Hegel, Georg Wilhelm Friedrich 139–40

Heidegger, Martin 60

Helmholtz, Hermann von 40, 43–4, 47, 48

everistics xvii

higher-level phenomena, explanation of 364–5

hippocampus, artificial 285

Hippocrates 2

Hobbes, Thomas 165

homosexuality, and brain development 12

human blastocysts, use in neurotransplantation 196–8

human condition criteria for identifying psychiatric disease 348–51
criteria for normality 348–51
definition of disease and illness 348–9

striving for improvement 343–5

treatment-enhancement debate 344–51

Human Genome Project, ELSI research 305

human identity see identity; personal identity

Huntington's disease (HD) 27, 191, 208–9, 210, 211

Huxley, Thomas H. 112

hypothalamic paraventricular nucleus 20

hypothalamo-neurohypophysial system 20

hypothalamo-pituitary-adrenal (HPA) axis 20

"I", relationship to the physical brain 55–60

idealism, controversy with empiricism 38, 41–4

identity and embodiment 136–8

and illness 142–4

see also personal identity

identity theory 102, 105–6, 113

illness, definition 226, 348–9

in vitro fertilization (IVF) treatment, donation of surplus blastocysts 196–8

information-gulping sixth sense 288, 291–2
informed consent
human blastocyst donation 195
neurological patients 206–7,
209–10
policy issues in brain interventions
324
interactionism 107, 114
interiority
and embodiment 136–7
and personal identity 141
human capacity for 141, 144
use of imagination and metaphors
141–4
international neuroethics policy
337–8
Internet 271, 278
intervention neurology 27–8
Joan of Arc 16
John Paul II, Pope 139
Johnson, Mark 166
Jonas, Hans 137
Kant, Immanuel xix, 135, 139, 165
Kantian philosophy, influence on
theories of mind 41–3
“knowledge argument” of
consciousness 71, 77, 81, 83, 86
Kuhn, Thomas xxviii
Kuhnian revolutions in the
philosophy of mind 74, 78
language development 7–8
LBS neurons (Layton BioScience
neurons) 193
lie detection 327
and psychological modularity
358–9, 362
EDA (electrodermal activity)
measurement 277–8
use of neuroimaging 358–9
localization of cognitive processes
356–60
locked-in syndrome 273, 285
machine interfacing (“cyborgization”)
of the human body 183
see also brain–computer interfaces
(BCIs)
MacIntyre, Alasdair 166–9, 356
maldyna 176–7
McGinn, Colin 55, 56, 58
media portrayal of scientific research
327
MEG (magnetoencephalography) 245,
275, 277
Meinhof, Ulrike 9
memory, unreliability of xvii–xviii
mental causation problem 71–2, 86,
110–14
mental functions
distributed nature 357–8, 361–2
gap between the knowable and the
known 362–4
limitations of functional imaging
360–2
localization thesis 356–60
modular theory 356–60
subtraction method of processing
brain scans 360–2
mental health
conceptions of 225–7
ethics of neurogenetics 225–7
metaethics, reciprocal interaction
with cognitive neurobiology
147–8
microarray techniques 19
mind
as product of the brain 3, 5
taxonomies of 356–60
versus soul 15–18
mind–body issue
advent of consciousness 114–15
anti-substantialism 100
causal relations 106–14
causality question 98–9
consciousness as a field
phenomenon 109
epiphenomenalism 107, 112–13,
114
evolution of consciousness 102–3,
110, 112, 114–15
functionalist versions of
physicalism 104–5
identity theory 102, 105–6, 113
interactionism 107, 114
interpretation of correlations
98–9
mental causation dilemmas
110–14
mind as consciousness 96
nature of the problem 95–9
non-reductive physicalism 102, 103
ontological question 97–8, 99
panpsychism 102
parallelism 107
phenomena of depth psychology
97
physicalism 103–6, 110–11, 113
property dualism 101–3, 114
pros and cons of dualism 99–103
reductive physicalism 103–4
soul 97–8, 99–101
substance dualism (substantialism)
95, 99–101
supervenience relations 98–9, 113
unconscious or subconscious states 97
mind–brain relationship 225–7
limit of contribution from brain scans 369
relevance of ordinary experience 368–9
mind control 296–7, 325
mind–matter relation, history of debate 55–60
mind-merging 289
mind, theories of consequences of Kantian philosophy 41–3
controversy between idealism and empiricism 38, 41–4
debate on limits of empiricism 42–4
dispute on spiritism (Leipzig 1877) 44–7
emergentism 62
experimental spiritism 38
historical influences on current debate 50–60
implications for neuroethics 62–3
implications of non-Euclidean geometry 42–4
influences on postmodern thinking 50–60
insights from the history of ideas 60–3
nineteenth century controversies 41–50
psychophysical parallelism 50, 55
psychophysiological theory 38, 40
rational empiricism 38
rise of rational and scientific concepts 37–8
separation of psychology and philosophy 37–8
use of metaphors from contemporary technology 61
Wundt’s rejection of spiritism 46–9
minimally conscious patients, use of fMRI 247, 248–9, 253
modular theory of mind 356–62
molecular replacement, neurotransplantation 193
molecular treatment, neurotransplantation 193
moral ambiguity, neural-network model 155
moral argument, neural-network model 156
moral autonomy, effects of personal maturation 141
see also autonomy
moral character, neural-network model 157–8
moral cognition, developments in understanding 146–7
moral cognitive phenomena, neural-network models 148–70
moral conflict, neural-network model 155–6
moral correction, neural-network model 160–3
moral deliberation, threats from sciences of the mind xviii–xxi
moral diversity, neural-network model 163
moral knowledge, neural-network model 149–53
moral learning, neural-network model 153–4
moral pathology, neural-network model 158–60
moral perception, neural-network model 154–5
moral progress comparison with scientific progress 166–70
neural-network model 163–5
moral theory, reciprocal interaction with cognitive neurobiology 147–8
moral unitary systematicity, neural-network model 165–6
moral virtues, neural-network model 156–7
MRI scans, diagnostic potential 18–19
see also MRI
multiple realization 106
multiple realizability problem of consciousness 77
multiple sclerosis (MS) 21, 29, 191, 197, 208
multiple systemic atrophy (MSA) 191
NASA, extension of human senses program 286
National Nanotechnology Initiative, ELSI research 305
National Neurotechnology Initiative (NNTI) 319
NBIC (nano-bio-info-cogno) convergence 287, 288
near-death experiences 16–18
nerve growth factor (NGF) gene therapy 28

© in this web service Cambridge University Press www.cambridge.org
neural engineering
brain–computer interfaces (BCIs)
brain prostheses (BPs)
converging technologies
cranial electrotherapy stimulation (CES)
deep brain stimulation (DBS)
developing field of research
enhancing desirable traits
increasing therapeutic options
NBIC (nano-bio-info-cogno) convergence
neural prostheses (NPs)
transcranial magnetic stimulation (TMS)
neural engineering future prospects
challenge to personal identity
cyberthink
disconnection from real life
effects on personal authenticity
ethical challenges of enhancement
improvement of cognitive abilities
improvement of mood and vegetative functions
improvement of motor abilities
improvement of sensory abilities
memory enhancement
mind control potential
mind-merging
potential demand for enhancements
pressures for limitless enhancement
privacy of personal information
proportionality between benefits and risks
shift from therapy to enhancement
social justice and the “neurodivide”
surveillance monopolies
threat to autonomy
transparency in society
virtual experience machine
neural grafting
neural-network models of cognition
moral ambiguity
moral argument
moral character
moral conflict
moral correction
moral diversity
moral knowledge
moral learning
moral pathology
moral perception
moral progress
moral unity/systematicity
moral virtues
scope of application
virtue ethics
neural prostheses (NPs)
novelty
neural tissue implantation
transcranial magnetic stimulation (TMS)
neural engineering future prospects
challenge to personal identity
cyberthink
disconnection from real life
effects on personal authenticity
ethical challenges of enhancement
improvement of cognitive abilities
improvement of mood and vegetative functions
improvement of motor abilities
improvement of sensory abilities
memory enhancement
mind control potential
mind-merging
potential demand for enhancements
pressures for limitless enhancement
privacy of personal information
proportionality between benefits and risks
shift from therapy to enhancement
social justice and the “neurodivide”
surveillance monopolies
threat to autonomy
transparency in society
virtual experience machine
neural grafting
neural-network models of cognition
moral ambiguity
moral argument
moral character
moral conflict
moral correction
moral diversity
moral knowledge
moral learning
moral pathology
moral perception
moral progress
moral unity/systematicity
moral virtues
scope of application
virtue ethics
neural prostheses (NPs)
novelty
neural tissue implantation
transcranial magnetic stimulation (TMS)
neural stem cell research 183
neural transplantation 183
pain in non-human animals 181
prudent use of scientific knowledge 184–5
purpose and potential 180–2
questions which it should address 184–5
respect for autonomy 180–1
threshold for intervention 182
treatment decisions 183–4
use of neurogenetic information 183
Neuroethics Society 339
neurogenetic data
ethical issues concerning interpretation 222–5
support for “disease” model of pain 222–3
neurogenetic testing
ethical issues in data interpretation 222–5
ethics of pre-symptomatic testing 224–5
potential consequences for individuals 224–5
neurogenetics
consequences of scientific reductionism 217–22
ethics of neurogenetics 225–7
explaining phenomenal aspects of disease 225–7
limitations of a reductive approach 225–7
neuroimaging
capacities and limitations 182
desire to use predictively 366–7
history of development 245
interpretation of brain images 356–60
legitimacy conferred by brain scans 365–7
lie detection 358–9
limits of contribution to self-understanding 369
persuasive effects of brain scans 365–7
popular portrayal as mind-reading 244
use in psychology 356
see also brain scans; fMRI; PET; SPECT
neuroimaging research
civic and democratic responsibility 263–4
critical and constructive self-reflection 265
deriving meaning from signals 250–2
equating structure and function 252–3
experimental design and task selection 253–4
need for responsiveness to inform the public 262–3
neuro-essentialism 256–8
neuro-policy 257, 260–2
neuro-realism 257, 258–60
neuroethical challenge of interpretation 250–62
neuroethical responsibilities 262–5
popular portrayal as mind-reading 258–62
prospective responsibility 264–5
responsibility for prospective uses 264–5
scientific interpretation 250–6
social and cultural interpretations 256–62
statistical analysis of data 254–6
neuromarketing 327
neuronal Darwinism 7, 8
neurons
functions 2–5
reactivation of atrophic neurons 23–5
neurophilosophy 368
of pain 172, 178–80
neuropolicy 257, 260–2
dimensions 327–30
government involvement 328–30
issues of brain intervention 324–7
links with neuroethics 323–4
neuropolicy making
agenda-setting stage 330–4
fragmented nature of the process 334–5
international neuroethics policy 337–8
lessons from genetics and genetic policy 338–9
role of expert input 335–7
stages of policy making 330–2
neuroprostheses 26, 272, 276–7
neuropsychological foundation for pain 173
neuroscience
challenges to the sense of self 125–32
implications of technologies xiv–xvi
limits to knowing others’ pain 178–9
unbalanced view of the human condition 140–1
neurosciences of pain, heuristic value 174–6

neuroscientific developments brain function restoration 25–30 brain structure and functions 2–5 central role of the brain 2–3 changing focus of brain research 1 computer metaphor for the brain 3

neurotechnology as a public good achieving widely supported public policy 303–19 ethical, legal, and social implications (ELSI) 303–19 framework for future studies of ELSI 317–19 mapping the path forward 317–19 need for evaluation and guidance processes 302–3 workshops on ELSI and public policy 305–17

neurotheology 136 neurotherapy, diagnostic and therapeutic developments 18–19

glial precursor cells 193 human embryonic or fetal cells 192–4 see also stem cells molecular replacement 193 molecular treatment 193 neural autografts 193 non-reproductive creation of the human blastocyst 197–8 range of treatment approaches 192 retrieval of primary cells 194–5 somatic stem cells (SSCs) 197–8, 200 stem cells 191, 192–4, 196–8 substantia nigra cells 190–1, 192 types of cell implant 192–4 viral vector-mediated gene transfer 198 xenograft tissue sources 198–9 xenotransplantation 193


non-reductive physicalism 102, 103

normality, criteria for 348–51

obesity 22

obsessive–compulsive disorder (OCD) 22

ontological reduction 364

ontological (bad, invalid) version of the hard problem 73, 74, 75, 76–7

out-of-body experiences 16–17

P300 wave-driven BCIs 272–3, 275

pain

approach to pain research 177–8

as a spectrum disorder 174, 176

boundaries of objective information 179

classification schemes 174

cognitive effects of persistent pain 175

complex nature of 173–4

definitions of maldynia 176–7

effects on the brain and mind 175

embodiment 173–4

experiential dimension 173–4

imperative to evaluate and treat 179–80

in non-human organisms 179–80, 181

individuality of experience 178–9

internal and external influences 177–8

neuropsychological foundation 173

objective explanation 173–4

relating explanation to experience 178

source of the feeling of pain 175–6

subjective understanding 173–4

uncertainty of others’ subjective experience 179

unique individual experience 175–6

see also neuroethics of pain care

pain control using biofeedback 5

pain disorders, implications of genetic test data 222–5

pain medicine, causal interpretations of drug treatments 220–2

pain relief, deep brain stimulation 21

pain research

consequences of scientific reductionism 217–22

“disease” model 222–3

genetic determinism 217–22

“illness” model 222

value of integrative pain research 177–8

pain syndromes, genetic susceptibility 174–5

pain therapeutics

approaches to the study of pain 173–4

assessment of pain 178–9

consilience of science and philosophy 173

imperative for right and good care 172

imperative to evaluate and treat 179–80

limits to knowing others’ pain 178–9

reciprocity between science and philosophy 173

panpsychism 102

parallelism 107

paralysed patients, use of BCIs 273–4, 276–7, 285

paraventricular nucleus 20

Parkinson’s disease (PD)

clinical trials of neural grafting (cell therapy) 190–1, 192

deep brain stimulation 21

developments in treatment 19

GDNF treatment trials 28–9

gene therapy 28–9

neurotransplantation interventions 26–7, 190–1, 194, 197, 201, 207–9, 211

placebo effects 22–3

patient-tailored therapy for brain disorders 20–1

Paul (apostle) 16

personal identity

challenges for neuroscience 120–2

challenges from emerging neuroscience 125–32

definition 122

importance in the modern age 119–22

influence of the modern context 119–22

manipulation of 130

nature of 117–18

scientific view 120–1

web of relations 122

PET (positron emission tomography) 244, 245, 251

see also neuroimaging

pharmacogenomics

consequences of scientific reductionism 217–22

epistemological approaches 217–22

philosophy–science separation xiii

phenomenology 260

physicalism 103–6, 110–11, 113
Index

Pinker, Steven 55, 56, 58, 362
placebo effect, neurobiological mechanisms 22–3
Plato 95, 97
policy dimensions of neuroscience 327–30
ethical, legal, and social implications (ELSI) of neurotechnology 303–19
governmental response to developments 328–30
individual use of technologies 328
neuroethics and public policy 323–4
regulatory policy 329–30
research and development of technologies 328
societal consequences of widespread application 328
policy issues of brain intervention 324–7
access to services 325–6
commercial uses of cognitive neuroscience 327
discrimination and stigmatization 325
distinction between experimentation and therapy 324–5
freedom and equality issues 327
individual responsibility 325
informed consent 324
lie detection 327
media portrayal of scientific research 327
mind control 325
nature of information to be collected 327
neuromarketing 327
overall contribution to health outcomes 326
priority in relation to other health care areas 326
risks and uncertainties 324–5
social advantage from enhancement 326
specific treatment issues 326
use in non-medical, commercial settings 325
use of information that is collected 327
vulnerability of patients 324–5
policy-making process
agenda-setting stage 330–4
fragmented nature of the process 334–5
international neuroethics policy 337–8
lessons from genetics and genetic policy 338–9
role of expert input 335–7
stages of policy making 330–2
post-traumatic tremor 21
primary cells, retrieval for neurotransplantation 194–5
privacy of thought 277–9
property dualism 101–3, 114
proteomics, use in brain disorders 19
psychiatric disease, criteria for identifying 348–51
psychiatry, use of deep brain stimulation 22
psychology
explanation of higher-level phenomena 364–5
localization of cognitive processes 356–60
modular theory of mind 356–60
reductive materialism 364–5, 367–8
rise of academic psychology 37–8
separation from philosophy 37–8
taxonomies of mind 356–60
use of neuroimaging 356
psychophysical parallelism 50, 55
psychophysiological theory 38, 40
public policy see policy
rational empiricism 38
rational enquiry, threat from sciences of the mind xvi–xviii
Rawls 165
recovered memories, unreliability xvii–xviii
reductionism see scientific reductionism
reductive materialism in psychology 364–5, 367–8
reductive physicalism 103–4
reflexivity 136
religion
and autonomy 134, 135
contemporary renaissance 58–9
religious convictions, and brain development 8
religious experiences, and temporal lobe epilepsy 15–16
research bias, sources of 78–80
restorative neuroscience 25–30
retinal implants 272, 285
schizophrenia, causes and treatments 19
Schrödinger, Erwin 102
science–philosophy separation xiii
scientific reductionism
bias caused by methodology 217–22
brain–mind relationship 225–7
conflation of illness and disease 226
confusing description and explanation 218–22
consequences in behavioral genetics 217–22
consequences in pharmacogenomics 217–22
ethical implications 220–2
self-articulacy 123
self-challenges for neuroscience 120–2
self-commitments which shape personhood 123
self-embodiment 122
self-features of a plausible view of 122–5
self-importance in the modern age 119–22
self-influence of the modern context 119–22
self-justifiable appropriation claim 122
self-manipulation of 130
self-multidimensionality 122
self-nature of 117–18
self-reflective stance 123–4
self-reflexivity 123
self-relationship to the physical brain 55–60
self-scientific view 120–1
self-search for 2
self-self-differentiating sense of self-sense of 123–4
self-sense of self-organization theory of self-consciousness 80–91
self-understanding self-limit of contribution from brain scans 369
self-relevance of ordinary experience 368–9
self-sensory/motor (SMR) and self-mu-rhythm-driven BCIs 273, 274–5
self-separation principle self-cell donation from abortion 195
self-cell donation from IVF programs 196–7
self-serotonergic function, interpretation of genetic data 218, 219
self-sexual differentiation of the brain 10–15
self-gender identity 7, 8, 10–15
self-homosexuality 12
self-influence of testosterone 10–11
self-sexual orientation 7, 8, 10–15
self-transsexuality 12–15
self-sexual orientation, and brain development 7, 8, 10–15
self-situated freedom 138–40
self-Slade, Henry 45–7
self-slow cortical potentials (SCP), use in BCIs 273, 274
self-somatic cell nuclear transfer (SCNT) 197
self-somatic stem cells (SSCs) 193, 197–8, 200
self-soul and the mind–body issue 97–8, 99–101
self-search for evidence 15–18
self-SPECT (single photon emission computed tomography) 245, 261, 262
self-spinal cord injury 277
self-cell therapy 191
self-experimental repair strategies 29–30
self-spiritism 44–9
self-stem cell therapy 29–30
self-cancer risk 199–200
self-stem cells cloning in the laboratory 192
self-embryonic germ cells 192
self-embryonic stem cells (ESCs) 191, 192–3
gene self-genetic quality 199–200
self-microbiological safety 199
self-neural stem cell research 183
self-neurotransplantation 191, 192–4, 196–8
self-retrieval for neurotransplantation 196–8
self-somatic stem cells (SSCs) 193, 197–8, 200
self-sources of 192–3
self-stroke 27–8, 191, 197, 208
self-subconscious states 97
self-substantia nigra cells, neurotransplantation 190–1, 192
self-suprachiasmatic nucleus (biological clock) 3–4, 20, 21, 25
self-synapses in the brain 3
self-tabula rasa theory of the newborn 8, 11
self-tardive dyskinesia 21
self-taxonomies of mind 356–60
<table>
<thead>
<tr>
<th>Index</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>technology, metaphors for</td>
<td>unconscious states 97</td>
</tr>
<tr>
<td>interpreting consciousness 61</td>
<td>Uttal, William 357–8, 362</td>
</tr>
<tr>
<td>testosterone, influence on the</td>
<td>Van Gogh, Vincent 16</td>
</tr>
<tr>
<td>developing brain 10–11</td>
<td>vegetative state patients, use of fMRI 247, 248–9, 253</td>
</tr>
<tr>
<td>therapeutic cloning 197</td>
<td>viral vector-mediated gene transfer 198</td>
</tr>
<tr>
<td>thought, product of the brain 3, 5</td>
<td>virtue ethics 166–70</td>
</tr>
<tr>
<td>Thought-Translation-Device (TTD) 273</td>
<td>Wittgenstein, Ludwig 100, 182</td>
</tr>
<tr>
<td>, 274</td>
<td>Wundt, Wilhelm founding of experimental psychology 39–41, 47</td>
</tr>
<tr>
<td>tinnitus in deaf patients 19</td>
<td>psychophysical parallelism 50, 55</td>
</tr>
<tr>
<td>Tourette syndrome 21</td>
<td>rejection of spiritism 46–9</td>
</tr>
<tr>
<td>transcranial magnetic stimulation</td>
<td>restricted scope of experimental psychology 49–50</td>
</tr>
<tr>
<td>(TMS) 284</td>
<td>view on altered states of consciousness 49–50</td>
</tr>
<tr>
<td>transplantation see</td>
<td>xenotransplantation/xenografting 193</td>
</tr>
<tr>
<td>neurotransplantation</td>
<td>, 202, 211</td>
</tr>
<tr>
<td>transsexuality, and brain</td>
<td>guidelines for tissue retrieval 198–9</td>
</tr>
<tr>
<td>development 12–15</td>
<td>tissue sources 198–9</td>
</tr>
<tr>
<td>treatment–enhancement debate</td>
<td>Zöllner, Johann 40, 43, 44, 45–7</td>
</tr>
<tr>
<td>criteria for identifying psychiatric</td>
<td></td>
</tr>
<tr>
<td>disease 348–51</td>
<td></td>
</tr>
<tr>
<td>criteria for normality 348–51</td>
<td></td>
</tr>
<tr>
<td>culture and social conventions 344–8</td>
<td></td>
</tr>
<tr>
<td>definition of disease and illness</td>
<td></td>
</tr>
<tr>
<td>348–9</td>
<td></td>
</tr>
<tr>
<td>human striving for improvement</td>
<td></td>
</tr>
<tr>
<td>343–5</td>
<td></td>
</tr>
<tr>
<td>tremor, use of deep brain</td>
<td></td>
</tr>
<tr>
<td>stimulation 21</td>
<td></td>
</tr>
</tbody>
</table>