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Elementary methods for linear OΔEs

As Shakespeare says, if you’re going to do a thing
you might as well pop right at it and get it over.

(P. G. Wodehouse, Very Good, Jeeves!)

This chapter is a rapid tour through the most useful methods for solving
scalar linear ordinary difference equations (OΔEs). En route, we will see
some differences between OΔEs and ordinary differential equations (ODEs).
Yet what is most striking is how closely methods for linear OΔEs correspond
to their counterparts for linear ODEs. Much of this similarity is due to
linearity.

1.1 Basic definitions and notation

An OΔE or system of OΔEs has a single integer-valued independent variable,
n, that can take any value within a domain D ⊂ Z. A scalar OΔE (also called a
recurrence relation) has just one dependent variable, u, which we shall assume
is real-valued. The OΔE is linear if it can be written in the form

ap(n) u(n+p) + ap−1(n) u(n+p−1) + · · · + a0(n) u(n) = b(n), (1.1)

where p is a positive integer and each ai is a given real-valued function. The
order of the OΔE at n is the difference between the highest and lowest argu-
ments of u in (1.1). A point n ∈ D is a regular point of the OΔE if ap(n) and
a0(n) are both nonzero; otherwise it is singular. The OΔE (1.1) is of order p
only at regular points; it is of lower order at singular points.

Example 1.1 The following OΔE has two singular points:

(n − 1)2u(n + 2) + 2u(n + 1) + (1 − n2) u(n) = 0, n ∈ Z.
At n = −1, the OΔE reduces to the first-order equation 4 u(1) + 2 u(0) = 0. At
n = 1, it amounts to 2u(2) = 0, which is not even a difference equation. �
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2 Elementary methods for linear OΔEs

Example 1.2 As an extreme example, consider the OΔE(
1 + (−1)n) u(n + 2) − 2u(n + 1) +

(
1 − (−1)n) u(n) = 0, n ∈ Z. (1.2)

Although this looks like a second-order OΔE, every point is singular! Further-
more, (1.2) yields exactly the same equation when n = 2m as it does when
n = 2m + 1, namely

u(2m+2) = u(2m+1). �

Given an OΔE (1.1), we call D a regular domain if it is a set of consecutive
regular points. Suppose that Z is a regular domain, so that ap(n) and a0(n) are
nonzero for every integer n. Suppose also that, for some n0, the p consecutive
values u(n0), . . . , u(n0+ p−1) are known. Then one can calculate u(n0+ p) by
setting n = n0 in (1.1). Repeating this process, using n = n0+1, n0+2, . . . in
turn, produces u(n0+ i) for all i > p. The remaining values of u can also be
obtained by setting n = n0−1, n0−2, and so on. Thus p (arbitrary) consecutive
conditions determine a unique solution of the OΔE. This result holds for any
regular domain; consequently, the general solution of every pth-order linear
OΔE on a regular domain depends upon p arbitrary constants.

When the domain is not regular, various oddities may occur. For instance,
the general solution of (1.2) depends on infinitely many arbitrary constants,
because for each m ∈ Z, one of the pair {u(2m+1), u(2m+2)} must be given in
order to determine the other. To avoid having to deal separately with singular-
ities, we will ensure that D is regular from here on, setting ap(n) = 1 without
loss of generality; under these conditions, we describe the OΔE (1.1) as being
in standard form.

For a pth-order linear ODE,

y(p)(x) + ap−1(x) y(p−1)(x) + · · · + a0(x) y(x) = b(x),

the usual convention suppresses the argument x where this can be assumed,
leading to a slightly shorter expression:

y(p) + ap−1(x) y(p−1) + · · · + a0(x) y = b(x).

Similarly, it is helpful to write the OΔE (1.1), in standard form, as

up + ap−1(n) up−1 + · · · + a0(n) u = b(n), (1.3)

where u and ui are shorthand for u(n) and u(n+ i), respectively. Suppressing
the independent variable(s) saves considerable space, particularly for partial
difference equations1, so we will do this for all unknown functions of n. If a

1 For instance, if u depends on n = (n1, n2, n3, n4) then u(n1 + 1, n2 + 3, n3 + 2, n4 + 1) is written
as u1,3,2,1.
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1.1 Basic definitions and notation 3

function f is given, or is assumed to be known, we use f (n), f (n + 1), and so
on. In particular, a solution of the OΔE (1.3) will be an expression of the form

u = f (n),

where, for each n ∈ D, u(n) = f (n) satisfies (1.1) with ap(n) = 1.
If b(n) = 0 for each n ∈ D then (1.3) is homogeneous; otherwise, (1.3) is

inhomogeneous and its associated homogeneous equation is

up + ap−1(n) up−1 + · · · + a0(n) u = 0. (1.4)

These definitions correspond to those that are used for linear ODEs. Just as for
ODEs, there is a principle of linear superposition: if u = f1(n) and u = f2(n)
are any two solutions of (1.4) then

u = c1 f1(n) + c2 f2(n) (1.5)

is a solution for all constants c1 and c2. Henceforth, the notation ci and c̃i will
be reserved for arbitrary constants. (Sometimes it is convenient to replace one
set of arbitrary constants, {ci}, by another set, {c̃i}.)

Suppose that p solutions of (1.4), u = fi(n), i = 1, . . . , p, are linearly inde-
pendent2 on D, which means that

p∑
i=1

ci fi(n) = 0, for all n ∈ D if and only if c1 = c2 = · · · = cp = 0.

Then the principle of linear superposition implies that

u =
p∑

i=1

ci fi(n) (1.6)

is a solution of (1.4) for each choice of values for the p arbitrary constants
ci; consequently (1.6) is the general solution of (1.4). If, in addition, u = g(n)
is any particular solution of a given inhomogeneous OΔE (1.3), the general
solution of that OΔE is

u = g(n) +
p∑

i=1

ci fi(n). (1.7)

These results are proved in the same way as their counterparts for ODEs.

2 A simple test for linear independence is given in Exercise 1.1.
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4 Elementary methods for linear OΔEs

1.2 The simplest OΔEs: solution by summation

The starting-point for the solution of ODEs is the Fundamental Theorem of
Calculus, namely ∫ x1

x=x0

y′(x) dx = y(x1) − y(x0).

A similar result holds for difference equations. Define the action of the forward
difference operator Δn on any function f (n) by

Δn f (n) ≡ f (n + 1) − f (n), for all n ∈ Z. (1.8)

In particular,

Δnu ≡ u1 − u and Δnui ≡ ui+1 − ui, i ∈ Z. (1.9)

By summing consecutive differences, we obtain

n1−1∑
k=n0

Δk f (k) =
n1−1∑
k=n0

(
f (k + 1) − f (k)

)
= f (n1) − f (n0). (1.10)

This very useful result is known as the Fundamental Theorem of Difference
Calculus. We can use it immediately to solve OΔEs of the form

u1 − u = b(n), n ≥ n0. (1.11)

Replacing n by k in (1.11) and ( f , n1) by (u, n) in (1.10) yields

u = u(n0) +
n−1∑
k=n0

b(k); (1.12)

we adopt the convention that a sum is zero if its lower limit exceeds its upper
limit, which occurs here only when n = n0. The OΔE (1.11) is recovered by
applying the forward difference operator Δn to (1.12):

Δnu =

⎛⎜⎜⎜⎜⎜⎜⎝u(n0) +
n∑

k=n0

b(k)

⎞⎟⎟⎟⎟⎟⎟⎠−
⎛⎜⎜⎜⎜⎜⎜⎝u(n0) +

n−1∑
k=n0

b(k)

⎞⎟⎟⎟⎟⎟⎟⎠ = b(n).

If the initial condition u(n0) is known, (1.12) is the unique solution of (1.11)
that satisfies this initial condition; otherwise u(n0) in (1.12) can be replaced
by an arbitrary constant c1, which yields the general solution of (1.11). For
instance, the general solution of the simplest OΔE, Δnu = 0, on any regular
domain is u = c1.
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1.2 The simplest OΔEs: solution by summation 5

1.2.1 Summation methods

The solution (1.12) involves an unevaluated sum over multiple points k. If the
sum is written as a function that is evaluated at n only, the solution is said to be
in closed form. To obtain a closed-form solution of the OΔE (1.11), we need
to find an antidifference (or indefinite sum) of the function b(k), which is any
function B(k) that satisfies

ΔkB(k) = b(k) for every k ∈ D. (1.13)

If B(k) is an antidifference of b(k), so is B(k)+ c for any real constant c. More-
over, u = B(n) is a particular solution of (1.11), so the general solution of this
OΔE is

u = B(n) + c̃1.

Indeed, if we substitute (1.13) into the sum in (1.12) and use the Fundamental
Theorem of Difference Calculus, we obtain

u = B(n) − B(n0) + u(n0).

Summation is the difference analogue of integration, so antidifferences are
as useful for solving OΔEs as antiderivatives (or indefinite integrals) are for
solving ODEs. Table 1.1 lists some elementary functions and their antidiffer-
ences; these are sufficient to deal with the most commonly occurring sums.
The functions k(r) in Table 1.1 are defined as follows:

k(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
k!

(k − r)!
, k ≥ r,

0, k < r.
(1.14)

The formula for the antidifference of k(r) looks very like the formula for the
indefinite integral of xr; it is easy to evaluate sums of these functions, as we are
on familiar ground. In particular, we can sum all polynomials in (non-negative)
k, because these can be decomposed into a sum of the functions

k(r) = k(k − 1) · · · (k − r + 1), 0 ≤ r ≤ k.

Example 1.3 Evaluate
n−1∑
k=1

k2 and
n−1∑
k=1

k3 in closed form.

Solution: Write k2 = k(k − 1) + k = k(2) + k(1); then row 3 of Table 1.1 yields

k2 = Δk

(
1
3

k(3) +
1
2

k(2)

)
.
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6 Elementary methods for linear OΔEs

Table 1.1 Antidifferences of some elementary functions: Δk
(
B(k)

)
= b(k).

Function b(k) Antidifference B(k)

1 1 k

2 k k(k − 1)/2

3 k(r), (r � −1, k ≥ 0) k(r+1)/(r + 1)

4 ak, (a � 1) ak/(a − 1)

5 cos(ak + b), (a � 0,mod 2π) sin(ak + b − a/2)/
(
2 sin(a/2)

)
6 sin(ak + b), (a � 0,mod 2π) − cos(ak + b − a/2)/

(
2 sin(a/2)

)

Now sum to get

n−1∑
k=1

k2 =

[
1
3

k(3) +
1
2

k(2)

]n

k=1

=
1
6

n(n − 1)(2n − 1).

Similarly, the decomposition k3 = k(3) + 3k(2) + k(1) yields

n−1∑
k=1

k3 =

[
1
4

k(4) + k(3) +
1
2

k(2)

]n

k=1

=
1
4

n2(n − 1)2. �

The functions k(r) are also useful for summing some rational polynomials
because, for r < 0,

k(r) =
1

(k + 1)(k + 2) · · · (k − r)
. (1.15)

Example 1.4 Calculate
n−1∑
k=1

k
(k + 1)(k + 2)(k + 3)

.

Solution: First decompose the summand as follows:

k
(k + 1)(k + 2)(k + 3)

=
1

(k + 1)(k + 2)
− 3

(k + 1)(k + 2)(k + 3)
= k(−2)−3k(−3).

Then use row 3 of Table 1.1 to obtain

n−1∑
k=1

k
(k + 1)(k + 2)(k + 3)

=

[
−k(−1) +

3
2

k(−2)

]n

k=1

=
n(n − 1)

4(n + 1)(n + 2)
. �

The method used in this example works for any rational polynomial of the
form k(r)Pm(k), where r ≤ −2 and Pm(k) is a polynomial of degree m ≤ −r−2.
The reason why Pm(k) must be at least two orders lower than 1/k(r) is that terms
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1.2 The simplest OΔEs: solution by summation 7

proportional to k(−1) cannot be evaluated in closed form. The sums

Hn =

n−1∑
k=0

k(−1) =

n∑
k=1

1
k

are called harmonic numbers. For large n, the harmonic numbers are approx-
imated to O(n−2) by Hn ≈ ln(n) + γ + 1/(2n); here γ ≈ 0.5772 is the Euler
constant. A better estimate, whose error is O(n−4), is

Hn ≈ ln(n + 1) + ln(n)
2

+ γ +
1

6n(n + 1)
.

A sum whose summand is a periodic function of k may be expressed in
closed form as follows. Calculate the contribution per period and multiply this
by the number of complete periods in the range; then add any remaining terms.
If the period is small, this is often the simplest way of evaluating such sums.
Alternatively, one can write the periodic function as a sum of sines and cosines
and then use rows 5 and 6 of Table 1.1.

Example 1.5 Calculate
0∑

k=n

(−1)k(k−1)/2, where n < 0.

Solution: Note that (−1)k(k−1)/2 =
√

2 sin
(
(2k+1)π/4

)
; so row 6 gives

0∑
k=n

(−1)k(k−1)/2 =
[− cos (kπ/2)

]1
k=n = cos (nπ/2) . �

These methods of summation can be combined to deal with summands that
are products of powers, polynomials and periodic functions. It would be con-
venient if there were an analogue of the Leibniz product rule (which leads
directly to the formula for integration by parts). Unlike the differential opera-
tor d/dx, however, the forward difference operator does not satisfy the Leibniz
product rule, because

Δn{ f (n) g(n)} = f (n + 1) g(n + 1) − f (n) g(n)

� Δn{ f (n)}g(n) + f (n)Δn{g(n)}.
Instead, the following modified Leibniz rule holds:

Δn{ f (n) g(n)} = Δn{ f (n)} g(n + 1) + f (n)Δng(n). (1.16)

This leads to the extraordinarily useful summation by parts formula,

n1−1∑
k=n0

f (k)Δkg(k) =
[
f (k) g(k)

]n1

k=n0
−

n1−1∑
k=n0

{Δk f (k)} g(k + 1). (1.17)
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8 Elementary methods for linear OΔEs

Example 1.6 Calculate
n−1∑
k=1

kak, where a � 1.

Solution: Substitute f (k) = k, g(k) = ak/(a − 1) into (1.17) to obtain

n−1∑
k=1

kak=

[
kak

a − 1

]n

k=1

−
n−1∑
k=1

ak+1

a − 1
=

[
kak

a − 1
− ak+1

(a − 1)2

]n

k=1

=
nan

a − 1
− an+1 − a

(a − 1)2
.

�

These elementary summation techniques are sufficient to deal with most
simple problems; however, there are many functions whose sum cannot be ex-
pressed in closed form. Nevertheless, we will regard an OΔE as being solved
when its general solution is given, even if this is in terms of one or more un-
evaluated sums.

1.2.2 The summation operator

So far, we have restricted attention to OΔEs for which n ≥ n0. If solutions are
sought for all n ∈ Z, or for n < n0, it is also necessary to solve

u1 − u = b(n), n < n0. (1.18)

To do this, use (1.10) with n0 and n1 replaced by n and n0 respectively, which
yields

u = u(n0) −
n0−1∑
k=n

b(k). (1.19)

It is helpful to combine (1.12) and (1.19) by defining the summation operator
σk as follows:

σk{ f (k); n0, n1} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n1−1∑
k=n0

f (k), n1 > n0;

0, n1 = n0;

−
n0−1∑
k=n1

f (k), n1 < n0.

(1.20)

This operator satisfies the identity

σk{ f (k); n0, n + 1} = σk{ f (k); n0, n} + f (n). (1.21)

So, given u(n0), the solution of

Δnu = b(n), n ∈ Z, (1.22)
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1.3 First-order linear OΔEs 9

that satisfies the initial condition is

u = u(n0) + σk{b(k); n0, n}. (1.23)

If no initial condition is prescribed, the general solution of (1.22) is

u = c1 + σk{b(k); n0, n}, (1.24)

where n0 is any convenient integer in the domain. In accordance with the prin-
ciple of linear superposition, u = c1 is the general solution of the associated
homogeneous equation, Δnu = 0, and u = σk{b(k); n0, n} is a particular solu-
tion of (1.22).

1.3 First-order linear OΔEs

The standard form of any first-order linear homogeneous OΔE is

u1 + a(n) u = 0, a(n) � 0, n ∈ D. (1.25)

As in the last section, we begin by solving the OΔE on D = {n ∈ Z : n ≥ n0}
before generalizing the result to arbitrary regular domains. To find u for n > n0,
replace n by n − 1 in (1.25) and rearrange the OΔE as follows:

u = −a(n − 1) u−1. (1.26)

Then replace n by n − 1, n − 2, . . . , n0 + 1 successively in (1.26) to obtain

u = (−1)2a(n − 1) a(n − 2) u−2

= (−1)3a(n − 1) a(n − 2) a(n − 3) u−3

...

= (−1)n−n0 a(n − 1) a(n − 2) a(n − 3) · · · a(n0) u(n0).

Therefore the solution of (1.25) for n > n0 is

u = u(n0)
n−1∏
k=n0

(− a(k)
)
= u(n0)(−1)n−n0

n−1∏
k=n0

a(k). (1.27)

If no initial condition is prescribed, u(n0) is replaced by an arbitrary constant.

Example 1.7 Solve the initial-value problem

u1 − 3u = 0, n ≥ 0, subject to u(0) = 2.

Solution: Substitute a(n) = −3, n0 = 0 and u(n0) = 2 into (1.27) to obtain

u = 2
n−1∏
k=0

3 = 2 × 3n. �
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10 Elementary methods for linear OΔEs

Example 1.8 Let α be a positive constant. Find the general solution of

u1 − (n + α) u = 0, n ≥ 0.

Solution: Here a(n) = −(n + α) and n0 = 0, so (1.27) yields

u = c1

n−1∏
k=0

(k + α) =
c1Γ(n + α)
Γ(α)

.

Here Γ(z) is the gamma function (the analytic continuation of the factorial func-
tion to the complex plane with the non-positive integers 0,−1,−2, . . . deleted).
The gamma function satisfies

Γ(z + 1) = zΓ(z); (1.28)

for Re{z} > 0, it is defined by the integral

Γ(z) =
∫ ∞

0
t z−1e−t dt. (1.29)

A simple integration by parts shows that the definition (1.29) is consistent with
(1.28). The gamma function may also be evaluated in the region Re{z} ≤ 0,
except at the deleted points. This is done by using (1.28) repeatedly to find Γ(z)
in terms of Γ(z+N), where N ∈ N is large enough to make Re{z+N} positive.
Two immediate consequences of (1.28) and (1.29) are the useful identities

Γ(n + 1) = n! for all n ∈ N, Γ(1/2) =
√
π . �

It is worth observing that (1.27) is closely related to the formula (1.12) for
inverting the forward difference operator. For simplicity, suppose that a(n) < 0
for every n ≥ n0 and that u(n0) > 0; this guarantees that u is positive through-
out the domain. Then the logarithm of (1.26), with n replaced by n+1, amounts
to the OΔE

Δn(ln u) = ln
(− a(n)

)
, n ≥ n0. (1.30)

From (1.12), the general solution of (1.30) is

ln u = ln
(
u(n0)

)
+

n−1∑
k=n0

ln
(− a(k)

)
= ln

⎛⎜⎜⎜⎜⎜⎜⎝u(n0)
n−1∏
l=n0

(− a(l)
)⎞⎟⎟⎟⎟⎟⎟⎠ ,

which is the logarithm of (1.27). In other words, we could have solved (1.25)
by transforming it to an OΔE of a type that we already know how to solve. The
same approach lies at the heart of many methods for OΔEs and ODEs alike:
transform them to something simpler. Later in this chapter, we will consider
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