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Preliminary Concepts

1.1 Introduction

Optimization is the process of maximizing or minimizing a desired objective func-
tion while satisfying the prevailing constraints. Nature has an abundance of exam-
ples where an optimum system status is sought. In metals and alloys, the atoms take
positions of least energy to form unit cells. These unit cells define the crystalline
structure of materials. A liquid droplet in zero gravity is a perfect sphere, which is
the geometric form of least surface area for a given volume. Tall trees form ribs
near the base to strengthen them in bending. The honeycomb structure is one of
the most compact packaging arrangements. Genetic mutation for survival is another
example of nature’s optimization process. Like nature, organizations and businesses
have also strived toward excellence. Solutions to their problems have been based
mostly on judgment and experience. However, increased competition and consumer
demands often require that the solutions be optimum and not just feasible solutions.
A small savings in a mass-produced part will result in substantial savings for the
corporation. In vehicles, weight minimization can impact fuel efficiency, increased
payloads, or performance. Limited material or labor resources must be utilized to
maximize profit. Often, optimization of a design process saves money for a company
by simply reducing the developmental time.

In order for engineers to apply optimization at their work place, they must
have an understanding of both the theory and the algorithms and techniques. This
is because there is considerable effort needed to apply optimization techniques on
practical problems to achieve an improvement. This effort invariably requires tuning
algorithmic parameters, scaling, and even modifying the techniques for the specific
application. Moreover, the user may have to try several optimization methods to
find one that can be successfully applied. To date, optimization has been used more
as a design or decision aid, rather than for concept generation or detailed design. In
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2 Preliminary Concepts

this sense, optimization is an engineering tool similar to, say, finite element analysis
(FEA).

This book aims at providing the reader with basic theory combined with devel-
opment and use of numerical techniques. A CD-ROM containing computer pro-
grams that parallel the discussion in the text is provided. The computer programs
give the reader the opportunity to gain hands-on experience. These programs should
be valuable to both students and professionals. Importantly, the optimization pro-
grams with source code can be integrated with the user’s simulation software. The
development of the software has also helped to explain the optimization procedures
in the written text with greater insight. Several examples are worked out in the text;
many of these involve the programs provided. User subroutines to solve some of
these examples are also provided on the CD-ROM.

1.2 Historical Sketch

The use of a gradient method (requiring derivatives of the functions) for min-
imization was first presented by Cauchy in 1847. Modern optimization methods
were pioneered by Courant’s [1943] paper on penalty functions, Dantzig’s paper
on the simplex method for linear programming [1951]; and Karush, Kuhn, and
Tucker who derived the “KKT” optimality conditions for constrained problems
[1939, 1951]. Thereafter, particularly in the 1960s, several numerical methods to
solve nonlinear optimization problems were developed. Mixed integer program-
ming received impetus by the branch and bound technique originally developed by
Land and Doig [1960] and the cutting plane method by Gomory [1960]. Methods
for unconstrained minimization include conjugate gradient methods of Fletcher and
Reeves [1964] and the variable metric methods of Davidon–Fletcher–Powell (DFP)
in [1959]. Constrained optimization methods were pioneered by Rosen’s gradient
projection method [1960], Zoutendijk’s method of feasible directions [1960], the
generalized reduced gradient method by Abadie and Carpenter [1969] and Fiacco
and McCormick’s SUMT techniques [1968]. Multivariable optimization needed
efficient methods for single variable search. The traditional interval search meth-
ods using Fibonacci numbers and Golden Section ratio were followed by effi-
cient hybrid polynomial-interval methods of Brent [1971] and others. Sequential
quadratic programming (SQP) methods for constrained minimization were devel-
oped in the 1970s. Development of interior methods for linear programming started
with the work of Karmarkar in 1984. His paper and the related US patent (4744028)
renewed interest in interior methods (see the IBM Web site for patent search:
http://patent.womplex.ibm.com/).

Also in the 1960s, alongside developments in gradient-based methods, there
were developments in nongradient or “direct” methods, principally Rosenbrock’s
method of orthogonal directions [1960], the pattern search method of Hooke and
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1.2 Historical Sketch 3

Jeeves [1961], Powell’s method of conjugate directions [1964], the simplex method
of Nelder and Meade [1965], and the method of Box [1965]. Special methods that
exploit some particular structure of a problem were also developed. Dynamic pro-
gramming originated from the work of Bellman who stated the principle of optimal
policy for system optimization [1952]. Geometric programming originated from the
work of Duffin, Peterson, Zener [1967]. Lasdon [1970] drew attention to large-scale
systems. Pareto optimality was developed in the context of multiobjective optimiza-
tion. More recently, there has been focus on stochastic methods, which are better
able to determine global minima. Most notable among these are genetic algo-
rithms [Holland 1975, Goldberg 1989], simulated annealing algorithms that origi-
nated from Metropolis [1953], and differential evolution methods [Price and Storn,
http://www.icsi.berkeley.edu/∼storn/code.html].

In operations research and industrial engineering, use of optimization tech-
niques in manufacturing, production, inventory control, transportation, scheduling,
networks, and finance has resulted in considerable savings for a wide range of busi-
nesses and industries. Several operations research textbooks are available to the
reader. For instance, optimization of airline schedules is an integer program that
can be solved using the branch and bound technique [Nemhauser 1997]. Shortest
path routines have been used to reroute traffic due to road blocks. The routines
may also be applied to route messages on the Internet.

The use of nonlinear optimization techniques in structural design was pio-
neered by Schmit [1960]. Early literature on engineering optimization are Johnson
[1961], Wilde [1967], Fox [1971], Siddall [1972], Haug and Arora [1979], Morris
[1982], Reklaitis, Ravindran and Ragsdell [1983], Vanderplaats [1984], Papalam-
bros and Wilde [1988], Banichuk [1990], Haftka and Gurdal [1991]. Several authors
have added to this collection including books on specialized topics such as struc-
tural topology optimization [Bendsoe and Sigmund 2004], design sensitivity anal-
ysis [Haug, Choi and Komkov 1986], optimization using evolutionary algorithms
[Deb 2001] and books specifically targeting chemical, electrical, industrial, com-
puter science, and other engineering systems. We refer the reader to the bibliog-
raphy at end of this book. These, along with several others that have appeared in
the last decade, have made an impact in educating engineers to apply optimization
techniques. Today, applications are everywhere, from identifying structures of pro-
tein molecules to tracing of electromagnetic rays. Optimization has been used for
decades in sizing airplane wings. The challenge is to increase its utilization in bring-
ing out the final product.

Widely available and relatively easy to use optimization software packages,
popular in universities, include the MATLAB optimization toolbox and the
EXCEL SOLVER. Also available are GAMS modeling packages (http://gams.nist.
gov/) and CPLEX software (http://www.ilog.com/). Other resources include Web
sites maintained by Argonne national labs (http://www-fp.mcs.anl.gov/OTC/Guide/
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4 Preliminary Concepts

f

− f

x*
x Figure 1.1. Maximization of f is equivalent

to minimization of −f.

SoftwareGuide/) and by SIAM (http://www.siam.org/). GAMS is tied to a host of
optimizers.

Structural and simulation-based optimization software packages that can be
procured from companies include ALTAIR (http://www.altair.com/), GENESIS
(http://www.vrand.com/), iSIGHT (http://www.engineous.com/), modeFRONTIER
(http://www.esteco.com/), and FE-Design (http://www.fe-design.de/en/home.html).
Optimization capability is offered in analysis commercial packages such as ANSYS
and NASTRAN.

1.3 The Nonlinear Programming Problem

Most engineering optimization problems may be expressed as minimizing (or max-
imizing) a function subject to inequality and equality constraints, which is referred
to as a nonlinear programming (NLP) problem. The word “programming” means
“planning.” The general form is

minimize f (x)

subject to gi (x) ≤ 0 i = 1, . . . , m

and h j (x) = 0 j = 1, . . . , �

and xL ≤ x ≤ xU

(1.1)

where x = (x1, x2, . . . , xn)T is a column vector of n real-valued design variables. In
Eq. (1.1), f is the objective or cost function, g’s are inequality constraints, and h’s are
equality constraints. The notation x0 for the starting point, x∗ for optimum, and xk

for the (current) point at the kth iteration will be generally used.

Maximization versus Minimization

Note that maximization of f is equivalent to minimization of − f (Fig. 1.1).
Problems may be manipulated so as to be in the form (1.1). Vectors xL, xU

represent explicit lower and upper bounds on the design variables, respectively, and
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1.3 The Nonlinear Programming Problem 5
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Figure 1.2. Graphical representation of NLP in x-space.

are also inequality constraints like the g’s. Importantly, we can express (1.1) in the
form

minimize f (x)
subject to x ∈ �

(1.2)

where � = {x : g(x) ≤ 0, h(x) = 0, xL ≤ x ≤ xU}. �, a subset of Rn, is called the
feasible region.

In unconstrained problems, the constraints are not present – thus, the feasible
region is the entire space Rn. Graphical representation in design-space (or x-space)
for n = 2 variables is given in Fig. 1.2. Curves of constant f value or objective function
contours are drawn, and the optimum is defined by the highest contour curve passing
through �, which usually, but not always, is a point on the boundary �.

Example 1.1
Consider the constraints {g1 ≡ x1 ≥ 0, g2 ≡ x2 ≥ 0, g3 ≡ x1 + x2 ≤ 1}. The asso-
ciated feasible set � is shown in Fig. E1.1.

(0,0)

(0,1)

(1,0)
x1

x2

ΩFigure E1.1. Illustration of feasible set �.
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6 Preliminary Concepts

Upper Bound
It is important to understand the following inequality, which states that any fea-
sible design provides an upper bound to the optimum objective function value:

f (x∗) ≤ f (x̂) for any x̂ ∈ �

Minimization over a Superset
Given sets (i.e., feasible regions) S1 and S2 with S1 ⊆ S2; that is, S1 is a subset
of S2 (or contained within S2). If f ∗

1 , f ∗
2 represent the minimum values of a

function f over S1 and S2, respectively, then

f ∗
2 ≤ f ∗

1

To illustrate this, consider the following example. Let us consider monthly
wages earned among a group of 100 workers. Among these workers, assume
that Mr. Smith has the minimum earnings of $800. Now, assume a new worker
joins the group. Thus, there are now 101 workers. Evidently, the minimum
wages among the 101 workers will be less than or equal to $800 depending on
the wages of the newcomer.

Types of Variables and Problems
Additions restrictions may be imposed on a variables xj as follows:

xj is continuous (default).
xj is binary (equals 0 or 1).
xj is integer (equals 1 or 2 or 3, . . . , or N)
xj is discrete (takes values 10 mm, 20 mm, or 30 mm, etc.)

Specialized names are given to the NLP problem in (1.1) as follows:

Linear Programming (LP): when all functions (objective and constraints) are
linear (in x).

Integer Programming (IP): an LP when all variables are required to be
integers.

0–1 Programming: special case of an IP where variables are required to be
0 or 1.

Mixed Integer Programming (MIP): an IP where some variables are required to
be integers, others are continuous.

MINLP: an MIP with nonlinear functions.
Quadratic Programming (QP): when an objective function is a quadratic func-

tion in x and all constraints are linear.
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1.4 Optimization Problem Modeling 7

Convex Programming: when the objective function is convex (for minimization)
or concave (for maximization) and the feasible region � is a convex set. Here,
any local minimum is also a global minimum. Powerful solution techniques
that can handle a large number of variables exist for this category. Convexity
of � is guaranteed when all inequality constraints gi are convex functions and
all equality constraints hj are linear.

Combinatorial Problems: These generally involve determining an optimum per-
mutation of a set of integers, or equivalently, an optimum choice among a
set of discrete choices. Some combinatorial problems can be posed as LP
problems (which are much easier to solve). Heuristic algorithms (contain-
ing thumb rules) play a crucial role in solving large-scale combinatorial prob-
lems where the aim is to obtain near-optimal solutions rather than the exact
optimum.

1.4 Optimization Problem Modeling

Modeling refers to the translation of a physical problem into mathematical form.
While modeling is discussed throughout the text, a few examples are presented
below, with the aim of giving an immediate idea to the student as to how vari-
ables, objectives, and constraints are defined in different situations. Detailed
problem descriptions and exercises and solution techniques are given throughout
the text.

Example 1.2 (Shortest Distance from a Point to a Line)
Determine the shortest distance d between a given point x0 = (x0

1 , x0
2 ) and a

given line a0 + a1x1 + a2x2 = 0 (Fig. E1.2). If x is a point on the line, we may
pose the optimization problem:

minimize f = (x1 − x0
1

)2 + (x2 − x0
2

)2
subject to h(x) ≡ a0 + a1x1 + a2x2 = 0

d

x0

x1

x2

line

x

Figure E1.2. Shortest distance problem posed
as an optimization problem.
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8 Preliminary Concepts

where f is the objective function denoting the square of the distance (d2), x =
(x1, x2)T are two variables in the problem, and h represents a linear equality
constraint. The reader is encouraged to understand the objective function. At
optimum, we will find that the solution x∗ will lie at the foot of the perpendicular
drawn from x0 to the line.

In fact, the preceding problem can be written in matrix form as

minimize f = (x − x0)T(x − x0)

subject to h(x) ≡ aTx − b = 0

where a = [a1 a2], b = −a0. Using the method of Lagrange multipliers (Chap-
ter 5), we obtain a closed-form solution for the point x∗:

x∗ = x0 − (aTx0 − b)
(aTa)

a

Note that aTa is a scalar. The shortest distance d is

d =
∣∣aT x0 − b

∣∣
√

aT a

Extensions
The problem can be readily generalized to finding the shortest distance from a
point to a plane, in two or three dimensions.

Example 1.3 (Beam on Two Supports)
First, consider a uniformly loaded beam on two supports as shown in Fig. E1.3a.
The beam length is 2L units, and the spacing between supports is 2a units. We
wish to determine the half-spacing a/L so as to minimize the maximum deflec-
tion that occurs in the beam. One can assume L = 1.

2 L

2 a

w = 1 N/m

(a)

Figure E1.3a. Uniformly loaded beam on
two supports.

This simple problem takes a little thought to formulate and solve using
an available optimization routine. To provide insight, consider the deflected
shapes when the support spacing is too large (Fig. E1.3a), wherein the
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1.4 Optimization Problem Modeling 9

maximum deflection occurs at the center, and when the spacing is too small
(Fig. E1.3b), wherein the maximum deflection occurs at the ends. Thus, the
graph of maximum deflection versus spacing is convex or cup-shaped with a
well-defined minimum.

f f

(b) (c)

Figure E1.3b–c. Effect of support spacing on maximum deflection in beam.

Thus, we may state that the maximum deflection δ at any location in the
beam, can be reduced to checking the maximum at just two locations. With this
insight, the objective function f, which is to be minimized, is given by

f (a) ≡ max
0≤x≤1

δ(x, a) = max{δ(0, a), δ(1, a)} = max(δcenter, δend)

Absolute values for δ are to be used. Beam theory provides the relationship
between a and δ (x, a). We now have to solve the optimization problem

minimize f (a)

subject to 0 ≤ a ≤ 1

We may use the Golden Section Search or other techniques discussed in Chap-
ter 2 to solve this unconstrained one-dimensional problem.

Extension – I (Minimize Peak Stress in Beam)

The objective function in the beam support problem may be changed as follows:
determine a to minimize the maximum bending stress. Also, the problem may be
modified by considering multiple equally spaced supports.

Further, the problem of supporting above-ground, long, and continuous
pipelines such as portions of the famous Alaskan oil pipeline is considerably more
complicated owing to supports with foundations, code specifications, wind and seis-
mic loads, etc.

Extension – II (Plate on Supports)

The following (more difficult) problem involves supporting a plate rather than a
beam as in the preceding example. Given a fixed number of supports Ns, where
Ns ≥ 3 and an integer, determine the optimum support locations to minimize the

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87846-3 - Optimization Concepts and Applications in Engineering: Second Edition
Ashok D. Belegundu and Tirupathi R. Chandrupatla
Excerpt
More information

http://www.cambridge.org/9780521878463
http://www.cambridge.org
http://www.cambridge.org


10 Preliminary Concepts

maximum displacement due to the plate’s self-weight. This problem occurs, for
example, when a roof panel or tile has to be attached to a ceiling with a discrete
number of pins. Care must be taken that all supports do not line up in a straight line
to avoid instability. Generalizing this problem still further will lead to optimum fix-
turing of three-dimensional objects to withstand loads in service, handling, or during
manufacturing.

Example 1.4 (Designing with Customer Feedback)
In this example, we show one way in which customer feedback is used to develop
an objective function f for subsequent optimization. We present a rather simple
example to focus on concepts. A fancy outdoor cafe is interested in designing a
unique beer mug. Two criteria or attributes are to be chosen. The first attribute
is the volume, V in oz, and the second attribute is the aspect ratio, H/D, where
H = height and D = diameter. To manufacture a mug, we need to know the
design variables H and D. Lower and upper limits have been identified on each
of the attributes, and within these limits, the attributes can take on continuous
values. Let us choose

8 ≤ V ≤ 16, 0.6 ≤ H/D ≤ 3.0

To obtain customer feedback in an economical fashion, three discrete levels,
LMH or low/medium/high, are set for each attribute, leading to only 9 different
types of mugs. For further economy, prototypes of only a subset of these 9 mugs
may be made for customer feedback. However, in this example, all 9 mugs are
made, and ratings of these from a customer (or a group) is obtained as shown
in Table E1.4. For example, an ML mug corresponds to a mug of volume 12 oz
and aspect ratio 0.6, and is rated at 35 units. The linearly scaled ratings in the
last column correspond to a range of 0–100.

Table E1.4. Sample customer ratings of a set of mugs.

Sample mugs (V, H/D) Customer rating Scaled rating

L L 50.00 27.27
L M 60.00 45.45
L H 75.00 72.73
M L 35.00 0.00
M M 90.00 100.00
M H 70.00 63.64
H L 35.00 0.00
H M 85.00 90.91
H H 50.00 27.27
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