AN INTRODUCTION TO RADIO ASTRONOMY

Third Edition

Written by two prominent figures in radio astronomy this well-established, graduate-level textbook is a thorough and up-to-date introduction to radio telescopes and techniques. It is an invaluable overview for students and researchers turning to radio astronomy for the first time.

The first half of the book describes how radio telescopes work – from basic antennas and single-aperture dishes through to full aperture-synthesis arrays. It includes reference material on the fundamentals of astrophysics and observing techniques. The second half of the book reviews radio observations of our Galaxy, stars, pulsars, radio galaxies, quasars and the cosmic microwave background.

This third edition describes the applications of fundamental techniques to newly developing radio telescopes, including ATA, LOFAR, MWA, SKA and ALMA, which all require an understanding of aspects specific to radio astronomy. Two entirely new chapters now cover cosmology, from the fundamental concepts to the most recent results of WMAP.

BERNARD F. BURKE is William A. M. Burden Professor of Astrophysics, Emeritus, in the Department of Physics, Massachusetts Institute of Technology. He was the co-discoverer of radio noise from Jupiter, and he was later involved in the development of very-long-baseline interferometry. He has been a Visiting Professor at the University of Leiden and the University of Manchester, is a member of the National Academy of Science, and is on the governing board of the National Science Foundation.

F. GRAHAM-SMITH is an Emeritus Professor at the Jodrell Bank Observatory, University of Manchester. He has been Director of the Royal Greenwich Observatory and President of the Royal Astronomical Society, and was the 13th Astronomer Royal. He is a Fellow of the Royal Society, and researches in many fields of radio astronomy, particularly pulsars.

Cambridge University Press 978-0-521-87808-1 - An Introduction to Radio Astronomy, Third Edition Bernard F. Burke and F. Graham-Smith Frontmatter <u>More information</u>

AN INTRODUCTION TO RADIO ASTRONOMY

Third Edition

BERNARD F. BURKE

Massachusetts Institute of Technology

F. GRAHAM-SMITH Jodrell Bank Observatory, University of Manchester

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

> Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521878081

© B. Burke and F. Graham-Smith 2010

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 1996 Second edition 2002 Third edition 2010

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-87808-1 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Cambridge University Press 978-0-521-87808-1 - An Introduction to Radio Astronomy, Third Edition Bernard F. Burke and F. Graham-Smith Frontmatter <u>More information</u>

Contents

Pr	Preface					
1	Introduction					
	1.1	The role of radio observations in astronomy	1			
	1.2	Thermal and non-thermal processes	3			
	1.3	Radiation processes and radio observations	5			
2	The	nature of the radio signal	7			
	2.1	Flux density: the jansky	7			
	2.2	Antenna temperature	10			
	2.3	Electromagnetic waves	15			
	2.4	Wave polarization	18			
	2.5	Stokes parameters	20			
	2.6	Radio polarimetry in practice	22			
3	Sign	nals, noise, radiometers and spectrometers	24			
	3.1	Gaussian random noise	24			
	3.2	Band-limited noise	26			
	3.3	Detection and integration	28			
	3.4	Radiometer principles	30			
	3.5	Low-noise amplifiers and mixers	33			
	3.6	Radiometers in practice	34			
	3.7	Digital techniques	38			
	3.8	Spectrometry	39			
	3.9	Cross-correlation radiometry: interferometry	42			
4	Sing	gle-aperture radio telescopes	44			
	4.1	Fundamentals: dipoles and horns	44			
	4.2	Arrays of radiating elements	50			
	4.3	Frequency-independent antennas	53			
	4.4	Aperture distributions and beam patterns	54			
	4.5	Partially steerable telescopes	59			
	4.6	Steerable telescopes	60			
	4.7	Feed systems	62			

 4.8 Focal-plane arrays 4.9 Surface accuracy and efficiency 4.10 Radio telescopes today 4.11 Smoothing the response to a sky brightness distribution 5 The two-element interferometer 5.1 The basic two-element interferometer 5.2 Interferometers with finite bandwidth 	63 65 67 70 73 74 78 80 82 84 84 86 90
 4.9 Surface accuracy and efficiency 4.10 Radio telescopes today 4.11 Smoothing the response to a sky brightness distribution 5 The two-element interferometer 5.1 The basic two-element interferometer 5.2 Interferometers with finite bandwidth 	65 67 70 73 74 78 80 82 84 86 90
 4.10 Radio telescopes today 4.11 Smoothing the response to a sky brightness distribution 5 The two-element interferometer 5.1 The basic two-element interferometer 5.2 Interferometers with finite bandwidth 	67 70 73 74 78 80 82 84 86 90
 4.11 Smoothing the response to a sky brightness distribution 5 The two-element interferometer 5.1 The basic two-element interferometer 5.2 Interferometers with finite bandwidth 	70 73 74 78 80 82 84 84 86 90
distribution 5 The two-element interferometer 5.1 The basic two-element interferometer 5.2 Interferometers with finite bandwidth	70 73 74 78 80 82 84 84 86 90
 5 The two-element interferometer 5.1 The basic two-element interferometer 5.2 Interferometers with finite bandwidth 	73 74 78 80 82 84 86 90
5.1 The basic two-element interferometer5.2 Interferometers with finite bandwidth	74 78 80 82 84 86 90
5.2 Interferometers with finite bandwidth	78 80 82 84 86 90
	80 82 84 86 90
5.3 Interferometers and finite source size	82 84 86 90
5.4 Fourier transforms and the <i>u</i> -, <i>v</i> -plane	84 86 90
5.5 Practical considerations	86 90
5.6 Very-long-baseline interferometry (VLBI)	90
5.7 Beam switching	
5.8 The interferometer in geodesy and astrometry	90
5.9 Interferometry at millimetre wavelengths	92
5.10 Optical interferometry	93
6 Aperture synthesis	96
6.1 Interferometer arrays	96
6.2 Cross-power products in an array	99
6.3 Calibration	109
6.4 Reducing the data	109
6.5 Producing a map	111
6.6 Self-calibration	113
6.7 Frequency diversity	114
6.8 Wide fields and wide bandwidths	115
6.9 Wide fields: mosaicing	117
6.10 Signal-to-noise limitations and dynamic range	117
6.11 VLBI arrays	120
6.12 Space VLBI	121
6.13 Aperture synthesis at millimetre wavelengths	122
7 Radiation, propagation and absorption of radio waves	124
7.1 Radiative transfer	125
7.2 Synchrotron radiation	127
7.3 A power-law energy distribution	130
7.4 Synchrotron self-absorption	133
7.5 Free–free radiation	133
7.6 Radio spectral lines	136
7.7 Masers	138
7.8 Propagation through ionized gas	140
7.9 Faraday rotation	141
7.10 Scintillation	143
7.11 Propagation in the Earth's atmosphere	145

vii		Contents	
8	The local Universe		
	8.1	Stars and galaxies	148
	8.2	Aspects of the Milky Way	151
	8.3	Measurement of sky brightness temperature	153
	8.4	The spectrum of the Galactic continuum	156
	8.5	Synchrotron radiation: emissivity	158
	8.6	The energy spectrum of cosmic rays	160
	8.7	Polarization	162
	8.8	Faraday rotation: the Galactic magnetic field	162
	8.9	Loops and spurs	169
	8.10	The Local Bubble	171
	8.11	Other galaxies	172
9	The in	terstellar medium	174
	9.1	Atoms and molecules	174
	9.2	Kinetic, radiation and state temperatures	181
	9.3	The 21-cm spectral line of neutral hydrogen	183
	9.4	H II regions and supernova remnants	187
	9.5	Heating and cooling mechanisms	189
	9.6	Dense molecular clouds	191
	9.7	Interstellar scintillation	192
	9.8	Supernova remnants (SNRs)	193
0	Galact	201	
	10.1	The circular approximation	202
	10.2	Spiral structure	206
	10.3	Non-circular motions	211
	10.4	The Galactic centre	216
	10.5	The scale of the Galaxy	221
	10.6	Atoms and molecules in other galaxies	221
1	Stars	C C	224
	11.1	Surface brightness	224
	11.2	The Sun	227
	11.3	The planets	231
	11.4	Circumstellar envelopes	234
	11.5	Circumstellar masers	235
	11.6	The silicon oxide masers	235
	11.7	The water masers	236
	11.8	The hydroxyl masers	237
	11.9	Classical novae	238
	11.10	Recurrent novae	243
	11.11	Non-thermal radiation from binaries and flare stars	245
	11.12	X-ray binaries – Cyg X-3 and SS 433	246
	11.13	Superluminal motion	248

Cambridge University Press 978-0-521-87808-1 - An Introduction to Radio Astronomy, Third Edition Bernard F. Burke and F. Graham-Smith Frontmatter More information

viii		Contents	
12	Pulsars		
	12.1	Neutron-star structure	25
	12.2	Rotational slowdown	25
	12.3	Rotational behaviour of the Crab and Vela pulsars	25
	12.4	Glitches in rotation rate	26
	12.5	Superfluid rotation	26
	12.6	Radio and optical emission from pulsars	26
	12.7	The radiation mechanism and refraction	26
	12.8	The population and evolution of pulsars	27
	12.9	Searches and surveys; the constraints	27
	12.10	Trigonometric distance and proper motion	27
	12.11	X-ray pulsars	27
	12.12	Binary radio pulsars	27
	12.13	Magnetic dipole moments	280
	12.14	Velocities	28
	12.15	Binary orbits and interactions	282
	12.16	Tests of general relativity	284
13	Radio galaxies and quasars		
	13.1	Radio emission from normal galaxies	28
	13.2	Spectra and dimensions	29
	13.3	Structures	293
	13.4	A simple model of active galactic nuclei	29
	13.5	The accretion disc	30
	13.6	The torus	30
	13.7	The core and the jets	30
	13.8	Spectra of quasars and other AGNs	304
	13.9	The radio brightness temperature of the core	305
	13.10	Superluminal motion	30
	13.11	The radio jets and lobes	309
	13.12	The kiloparsec-scale radio sources	31
	13.13	Repeating and quiescent quasars	31.
14	Cosmo	blogy fundamentals	31′
	14.1	Cosmology transformed	318
	14.2	Observing the CMB	32
	14.3	Relativistic cosmology	324
	14.4	Connecting GR cosmology with observations	329
	14.5	The early Universe	33
	14.6	Isotropy, curvature and inflation	33
15	The a	ngular structure of the CMB	34
	15.1	The coordinate frame of the Universe	340
	15.2	COBE and WMAP: the Wilkinson Microwave Anisotropy Mission	34
	15.3	Barvons and cold dark matter	34

ix		Contents	
	15.4	The geometry of the acoustic oscillations	351
	15.5	Physics of the acoustic oscillations	354
	15.6	Deriving the cosmological parameters	355
16	Cosn	nology: discrete radio sources and gravitational lensing	360
	16.1	Evolution and the radio-source counts	360
	16.2	Angular diameter and expansion velocity	366
	16.3	Gravitational lensing	367
	16.4	Observations of lenses: rings, quads and others	374
	16.5	Time delay	378
	16.6	Weak gravitational imaging	380
	16.7	Microlensing	381
17	The f	future of radio astronomy	383
	17.1	The Cosmic Century	383
	17.2	The cosmic microwave background	384
	17.3	The interstellar medium	385
	17.4	Angular resolution: stars and quasars	386
	17.5	Optical and infrared interferometry	387
	17.6	New large radio telescopes	388
	17.7	The protection of radio frequencies in astronomy	393
App	pendix	1 Fourier transforms	397
App	oendix 1	2 Celestial coordinates, distance and time	405
App	oendix .	3 The origins of radio astronomy	412
App	Appendix 4 Calibrating polarimeters		
References			425
Index			437

Cambridge University Press 978-0-521-87808-1 - An Introduction to Radio Astronomy, Third Edition Bernard F. Burke and F. Graham-Smith Frontmatter <u>More information</u>

Preface

Astronomy makes use of more than 20 decades of the electromagnetic spectrum, from radio to gamma rays. The observing techniques vary so much over this enormous range that there are distinct disciplines of gamma-ray, X-ray, ultraviolet, optical, infrared, millimetre and radio astronomy, often concentrated in individual observatories. Modern astrophysics depends on a synthesis of observations from the whole wavelength range, and the concentration on radio in this text needs some rationale. Apart from the history of the subject, which developed from radio communications rather than as a deliberate extension of conventional astronomy, there are two outstanding characteristics that call for a special exposition. First, the astrophysics: long-wavelength radio waves are most often observed as a continuum in which the interaction with matter follows classical electrodynamics. High-energy electrons are involved; they are created in a variety of circumstances, and their radiation as they circulate in magnetic fields gives evidence of new phenomena, often showing a close link to the phenomena observed in X-rays and gamma-rays. At the shorter wavelengths the low quantum energy gives access to spectral lines from atomic and molecular species at comparatively low temperatures. Second, the techniques: radio astronomy takes account of the phase as well as the intensity of incoming radio waves, allowing the development of interferometers of astonishingly high angular resolution and sensitivity.

The third edition of this *Introduction* was stimulated by recent remarkable advances both in techniques and astrophysics. Without question the most important advance has been in the observations of the cosmic microwave background by the WMAP satellite. We present the results of the 5-year data reductions, which give a large number of fundamental cosmological constants with unprecedented accuracy. Also, a new generation of radio telescopes, with dramatically improved performance, is under construction, most of them such large enterprises that they necessarily involve international collaboration. The techniques follow well-established principles, but the advent of massive computer power and broad-band fibre-optic communications has only recently brought these schemes within the range of possibility. At the same time, the success of existing telescopes has shown what can be achieved by the new telescopes in several astrophysical domains, such as pulsars and black-hole physics, and particularly in addressing fundamental cosmology.

We aim therefore to extend our exposition of the fundamentals of radio astronomy in two directions, cosmology and technology. The cosmological discoveries of WMAP

xii

Preface

demonstrate new directions for CMB measurements, with polarization having particularly strong potential. The techniques of aperture synthesis have developed to allow the use of very large collecting areas. With the ever-advancing technology of digital circuits and wideband, low-noise amplifiers, the attendant increased sensitivity and high angular resolution, including wide field coverage, open new areas of astrophysical research. These instruments will demand the efforts of a large work force, and they will provide material for a large new body of observers and astrophysicists. Our aim is to provide a basic introduction for this expanding community.

The plan of the book is twofold: we hope that the scope and impact of radio-astronomy observations will be demonstrated in the astrophysical discussion, and at the same time we intend to give a brief but comprehensive treatment of the elegant technologies that have developed. The breadth of the subject matter necessarily limits the length of the treatment for each subject; we have tried, therefore, to provide recent, comprehensive references to the extent that they are available. Cosmology, and especially the study of the cosmic microwave background, has been transformed in the last decade; here we have attempted a basic exposition as well as a presentation of the astounding conclusions from recent observations.

In addition to the astronomy graduate student and those professionally committed to radio astronomy, there is a wider audience for whom this book is intended: the interested astronomers from outside the field who want to be informed of the principal ideas current in radio astronomy, and may even be thinking of carrying out radio observations that would complement other work in progress. Even though we have mainly kept our discussions within the boundary of radio astronomy for the sake of convenience, everyone is aware that the boundaries between disciplines have dwindled in importance. Radio observations would have been a baffling puzzle if the optical identifications of sources had not been made, and both radio and X-ray astronomers have long been aware of their kinship, since both study high-energy phenomena, though at the opposite ends of the spectrum. The techniques vary, but the astronomer of the future should have access to the entire electromagnetic spectrum.

The text of this third edition has been extensively rewritten, especially in the important technical areas of interferometry and aperture synthesis and in most areas of astrophysics and cosmology. Keeping up with such a rapidly moving subject is impossible, but we have taken the advice of many colleagues, and have attempted to keep to the original objectives. We hope we have succeeded in providing an introduction that is useful both to the observer and to the astrophysicist; perhaps it will appeal most to those who, like ourselves, enjoy membership of both categories.

Bernard F. Burke F. Graham-Smith