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Quantum fields in Minkowski spacetime

The theory of quantum fields in curved spacetime is a generalization of the
well-established theory of quantum fields in Minkowski spacetime. To a great
extent, the behavior of quantum fields in curved spacetime is a direct conse-
quence of the corresponding flat spacetime theory. Local entities, such as the
field equations and commutation relations, are to a large extent determined by
the principle of general covariance and the principle of equivalence. However,
global entities which are unique in Minkowski spacetime lose that uniqueness in
curved spacetime. For example, the vacuum state, which in Minkowski space-
time is determined by Poincaré invariance, is not unambiguously determined in
curved spacetime. This ambiguity is closely tied to the phenomenon of particle
creation by certain gravitational fields, as in the expanding universe or near a
black hole.

It is logical, therefore, to review the relevant aspects of flat spacetime quantum
field theory. This will serve to establish the necessary background, to fix our
notation, and to highlight those aspects of the theory which can be carried over to
curved spacetime, as well as those which lose their meaning in curved spacetime.
We will often be brief, emphasizing concepts while omitting many derivations, and
only touch on particular topics. Our discussion of the curved spacetime theory
in later chapters will be more detailed.

In this initial chapter, we discuss the canonical formulation, including the
Schwinger action principle and the relation between symmetry transformations
and conserved currents (Schwinger 1951b, 1953). We review the dynamical
descriptions known as the Heisenberg picture, the Schrödinger picture, and the
interaction picture. We introduce the Fock representations, in which states are
described in terms of their particle content, and the Schrödinger representation,
in which the states are described by field configurations. We include discussions
of the Maxwell and Yang–Mills gauge fields, as well as the Dirac field, and the
definitions of spin and angular momentum.
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2 Quantum fields in Minkowski spacetime

1.1 Canonical formulation

Recall that in classical mechanics the equations of motion of a particle or system
of particles having independent generalized coordinates qi(t) and velocities q̇i(t)
are given by the principle of stationary action. This principle states that the
action

S =
∫ t2

t1

dt L(q, q̇) (1.1)

is stationary under arbitrary variations of the qi which vanish on the bound-
ary of the region of integration. Here L is the Lagrangian of the system. The
Hamiltonian is defined by

H(q, p) =
∑

i

piq̇i − L,

where

pi =
∂L

∂q̇i
(1.2)

is the momentum conjugate to qi. The system is quantized by taking the qs and
ps to be Hermitian operators acting on a Hilbert space, and by imposing the
canonical commutation relations

[qi, qj ] = 0, [pi, pj ] = 0,

[qi, pj ] = iδi,j . (1.3)

Here δi,j is the Kronecker delta. We are using units with � = c = 1. From (1.3) it
follows that if F (q, p) is a function of the coordinate and momentum operators,
then (assuming F can be Taylor expanded in p)

[qi, F ] = i
∂F

∂pi
. (1.4)

The above commutation relations imply that the qi are a complete set of commut-
ing observables with continuous spectra consisting (in the absence of impenetrable
walls) of all real numbers. The same can be said for the pi. (An observable is an
Hermitian operator with a complete set of eigenstates.) The eigenstates1 of the
qi are the kets |q′ >, where q′ denotes the set of eigenvalues q′i of the operators
qi. Thus,

qi|q′ >= q′i|q′ >,

with the normalization

< q′|q′′ >= δ(q′ − q′′),

1 We use the conventions of Dirac (1958) in distinguishing the eigenvalue of an operator from
the operator by using a ′.
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1.1 Canonical formulation 3

where δ(q′ − q′′) is the Dirac δ-function. It also follows that

< q′|pi|q′′ >= −i
∂δ(q′ − q′′)

∂q′i
,

and that

< q′|p′ >= (2π)−n/2 exp

(
i

n∑
i=1

p′iq
′
i

)
,

where |p′ > is an eigenket of the pi having delta function normalization, and we
have taken the index i to run from 1 to n. (For derivations, see Messiah (1961, pp.
302–309).) If F (q, p) is a function of the qi and pi with any well-defined ordering
of factors, then

< q′|F (q, p)|q′′ >= F

(
q′,−i

∂

∂q′

)
δ(q′ − q′′), (1.5)

where F (q′,−i(∂/∂q′)) is the same ordered function with −i(∂/∂q′i) replacing pi

in each position.
In the Schrödinger or configuration space representation, the abstract opera-

tors are represented by matrix elements based on the |q′ >, such as that of pi

above, and the states are represented by functions. For example, a state |ψ > is
represented by the Schrödinger wave function ψ(q′) =< q′|ψ >. An example is
the wave function < q′|p′ > above, representing a particle of definite momentum.
Similarly, in the momentum-space representation the operators are represented
by matrix elements formed from the |p′ > and the states are represented by
functions such as < p′|ψ >.

Up to now the description has been purely kinematical, with time playing
no role. The dynamical evolution of the system is governed by the Hamiltonian
H(q, p, t). We have allowed for the possibility that H may have explicit time
dependence, as through an interaction with an external field. The time evolution
may be described in several physically equivalent ways, known as “pictures.”

In the Schrödinger picture, the fundamental observables q and p do not change
with time. Rather, the dynamical evolution of measurable quantities, such as
expectation values of observables, is expressed through the time dependence of the
ket describing the state of the system at each time. The fundamental dynamical
equation is that of Schrödinger,

i
d

dt
|ψ(t) >= H(q, p, t)|ψ(t) >. (1.6)

Because H may have explicitly time-dependent terms involving p and q, in general
H(t′) and H(t′′) may not commute. (For brevity, we suppress the dependence of
H on q and p.)
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4 Quantum fields in Minkowski spacetime

We note in passing that in the Schrödinger representation, the Schrödinger
equation (1.6) becomes (using the completeness of the |q′ >)

i < q′| d

dt
|ψ(t) >=

∫
< q′|H(q, p, t)|q′′ > dq′′ < q′′|ψ(t) >

or

i
∂

∂t
ψ(q′, t) = H

(
q′,−i

∂

∂q′
, t

)
ψ(q′, t), (1.7)

where ψ(q′, t) =< q′|ψ(t) >.
The solution of (1.6) is

|ψ(t) >= U(t, t0)|ψ(t0) >,

with U(t, t0) satisfying

i
d

dt
U(t, t0) = H(t)U(t, t0), (1.8)

with the boundary condition

U(t0, t0) = 1.

The evolution operator U(t, t0) preserves the norm of the state vector and is thus
unitary, satisfying

UU† = U†U.

From U(t0, t)U(t, t0) = U(t0, t0) = 1, it then follows that U(t, t0)† = U(t0, t).
In the Heisenberg picture, the ket describing the state of the system does

not change with time, while the dynamical evolution of the system is expressed
through the time dependence of the fundamental observables q(t) and p(t). By
applying U(t, t0)† to the Schrödinger picture ket describing the state of the sys-
tem, we obtain a time-independent ket, which can be taken as the ket describing
the state of the system in the Heisenberg picture. Thus, denoting quantities in
the Schrödinger picture by subscript S and those in the Heisenberg picture by
subscript H, we have

|ψH >= U(t, t0)†|ψS(t) >= |ψS(t0) >. (1.9)

In order that measurable expectation values remain the same as in the
Schrödinger picture, the Heisenberg picture operator FH(t) corresponding to a
Schrödinger picture operator FS must be related by

FH(t) = U(t, t0)†FSU(t, t0). (1.10)

Note that the Hamiltonian H in (1.8) is HS . When HS has no explicit time
dependence, the solution of (1.8) is

U(t, t0) = exp[−i(t − t0)H],
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1.1 Canonical formulation 5

and it follows that H commutes with U so that HH = HS . When HS does
have an explicit time dependence, HH �= HS , and we must use (1.10) to define
HH in terms of HS . In general, FH will depend on time through qH(t), pH(t),
and through further explicit appearance of t. Denoting by ∂FH/∂t the derivative
only with respect to this further explicit appearance of t, it follows from (1.8)
and (1.10) that

i
d

dt
FH = [FH , HH ] + i

∂

∂t
FH . (1.11)

This resembles the classical equation of motion with the Poisson bracket replaced
by −i times the commutator. Of course, we do not need to define the Schrödinger
picture before the Heisenberg picture. The latter is fully defined by stating that
the ket describing the state of the system is independent of time and that oper-
ators F , constructed from the qi, pi (dropping subscript H), and t obey the
Heisenberg equation of motion (1.11).

When two systems interact through a term in the Hamiltonian, which can be
regarded as a perturbative interaction, it is useful to introduce another picture
of the dynamical evolution, known as the “interaction picture.” In this picture,
the ket describing the state of the system evolves as in the Schrödinger picture,
but only under the influence of the interaction term in the Hamiltonian, while
operators evolve as in the Heisenberg representation, but only under the influence
of the unperturbed term in the Hamiltonian.

Let us now turn to the canonical quantization of a system of independent real
fields φa(x), where x refers to the Minkowski space and time coordinates xµ, and
the index a includes tensor or spinor indices and internal quantum numbers of the
field multiplet. We will deal here with bosons and discuss later the modification of
canonical quantization required with fermions. For brevity, the index a will often
be suppressed; we can usually think of φ as a column or row matrix, depending
on where it appears in an expression. Canonical quantization proceeds as in the
previously discussed quantization of a particle. One thinks of the classical field
φ(x) as analogous to the classical qi(t), with the spatial coordinates �x regarded
as labels like i. Because we are now dealing with a continuous label, Dirac δ-
functions involving �x will appear where Kronecker deltas involving the label i

previously appeared. As before, we assume that the system is described by an
action

S =
∫ t2

t1

dt L[φ, ∂φ]t, (1.12)

where the Lagrangian L is now a functional of the field φ and its first derivatives
∂φ/∂xµ ≡ ∂µφ, which are denoted collectively by ∂φ. The subscript t indicates
that L is a function of t. The Lagrangian L can be expressed in terms of a
Lagrangian density L as

L[φ, ∂φ]t =
∫

dVx L
(
φ(�x, t), ∂φ(�x, t)

)
,
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6 Quantum fields in Minkowski spacetime

where dVx is the spatial volume element. Because L is now a functional, the
momentum π conjugate to the field φ(�x, t) is defined in analogy with (1.2) through
the following functional derivative (regarding ∂0φ as independent of φ at time t),

π(�x, t) = δL[φ, ∂φ]t/δ
(
∂0φ(�x, t)

)
= ∂L

(
φ(�x, t), ∂φ(�x, t)

)
/∂

(
∂0φ(�x, t)

)
. (1.13)

Here, we have used the definition of the functional derivative, which states that
if F [χ] is a functional of χ(�x), then under a variation δχ(�x) of χ, which vanishes
sufficiently fast at spatial infinity, we have

δF [χ] =
∫

dVx
δ

δχ(�x)
F [χ]δχ(�x). (1.14)

It follows that if the functional F has the form

F [χ] =
∫

dVx f
(
χ(�x), �∂χ(�x)

)
,

then
δ

δχ(�x)
F [χ] =

∂

∂χ
f
(
χ, �∂χ

)
− ∂i

(
∂

∂(∂iχ)
f
(
χ, �∂χ

))
,

where χ is evaluated at �x. The result in (1.13) follows from this with χ → ∂0φ.
Another consequence is that

δχ(�x′)
δχ(�x)

= δ(�x′ − �x).

One can regard the action in (1.12) as a functional depending on the space and
time dependence of φ. Then, the Euler–Lagrange field equation below will be re-
cognized as another application of the above result, but for a functional depending
on one more dimension.

The Hamiltonian is defined by

H[φ, π]t =
∫

dVx πa(�x, t)∂0φa(�x, t) − L[φ, ∂φ]t. (1.15)

(Although we write H[φ, π], dependence on spatial derivatives of φ (or π) is
permitted.) The principle of stationary action yields upon variation of the fields
in (1.12), the Euler–Lagrange field equations

∂µ

(
∂L

∂(∂µφ)

)
− ∂L

∂φ
= 0, (1.16)

where the repeated spacetime coordinate index µ is summed over its full range
of values, in accordance with the Einstein summation convention.

The field is quantized in analogy with the canonical commutators of (1.3).
Thus, we postulate that
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1.1 Canonical formulation 7

[φa(�x, t), φb(�x′, t)] = 0, [πa(�x, t), πb(�x′, t)] = 0,

[φa(�x, t), πb(�x′, t)] = iδa,bδ(�x − �x′), (1.17)

where, as noted earlier, δ(�x−�x′) is the Dirac δ-function. (In a theory of interacting
fields, if we deal directly with the renormalized fields, then (1.17) is somewhat
altered by a normalization factor. We are thus dealing here with the bare fields,
which by definition satisfy the field equations with unrenormalized masses and
coupling constants.) The t dependence is included in the commutation relations
to emphasize that in a dynamical picture like the Heisenberg picture, in which
the operators φ and π depend on time (as do the classical fields), the canonical
commutation relations must be imposed on the fields and conjugate momenta
evaluated at the same time. For it follows from (1.10) that qH(t) and pH(t)
evaluated at the same time do satisfy (1.3), while that is not true in general
if they are evaluated at different times. Of course, in the Schrödinger picture
the fields and conjugate momenta have no time dependence, and t would not
appear in (1.17).

The functional analogue of (1.4) follows from the above commutators:

[φa(�x), F [φ, π] ] = i
δ

δπa(�x)
F [φ, π], (1.18)

where we are suppressing the time dependence, taking all fields to be at a sin-
gle time t. One can now set up a Schrödinger or field representation using the
eigenstates of φ(�x) defined by

φ(�x)|φ′ >= φ′(�x)|φ′ >. (1.19)

The ket |φ′ > corresponds to a state of the system in which the field has con-
figuration φ′(�x), where φ′ is an ordinary or c-number function, unlike the field
operator φ. Thus, we are using the analogue of the Dirac notation in which “eigen-
values” of the operator φ(�x) are functions denoted by φ′(�x). (Here the prime does
not denote derivative, but instead distinguishes a c-number from an operator.)
In ordinary quantum mechanics, it follows from (1.5) that if |ψ > is an element
of the Hilbert space spanned by the eigenkets |q′ >, then

< q′|F (q, p)|ψ >= F

(
q′,−i

∂

∂q′

)
< q′|ψ >.

Similarly, we can show that if |Ψ > is a state in the space spanned by the
eigenstates |φ′ >, and F [φ, π] is a functional formed from the field operator and
conjugate momentum, then

< φ′|F [φ, π]|Ψ >= F

[
φ′,−i

δ

δφ′

]
< φ′|Ψ >. (1.20)

Here < φ′|Ψ >≡ Ψ[φ′] is a complex number which is a functional of φ′. It is
interpreted as the probability amplitude for finding the field observable φ to
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8 Quantum fields in Minkowski spacetime

have the configuration or set of values given by φ′(�x) when the system is in the
state described by the vector |Ψ >.

If we work in the Schrödinger picture, then (1.20) can be used to turn the
Schrödinger equation

i
d

dt
|Ψ(t) >= H[φ, π]|Ψ(t) >

into the functional differential equation

i
∂

∂t
Ψ[φ′, t] = H

[
φ′,−i

δ

δφ′

]
Ψ[φ′, t], (1.21)

where Ψ[φ′, t] ≡< φ′|Ψ(t) >, and φ, π depend on �x, but not on t.
On the other hand, in the Heisenberg picture the state describing the evolving

system is independent of time, while a general functional F of φ(�x, t) and π(�x, t)
will depend on time through its dependence on φ and π, as well as through
a possible further explicit dependence on t. Then, the Heisenberg equation of
motion is

i
d

dt
F [φ, π; t] =

[
F [φ, π; t], H[φ, π]

]
+ i

∂

∂t
F [φ, π; t]. (1.22)

The consistency of (1.22) with the Euler–Lagrange equations (1.16) can be
proved in Minkowski spacetime and in the more general curved spacetime context
(Parker, 1973, see Appendix B).

Finally, we expect that when there are no time- or space-dependent external
parameters in the Lagrangian, then there should exist a conserved vector observ-
able Pµ corresponding to the total energy and momentum of the system. For such
a Lagrangian, by multiplying the Euler–Lagrange equations by ∂µφ and using2

∂µL =
∂L

∂(∂νφ)
∂µ∂νφ +

∂L
∂φ

∂µφ,

we find immediately that

∂µTµ
ν = 0, (1.23)

where

Tµ
ν =

∂L
∂(∂µφa)

∂νφa − δµ
νL. (1.24)

Here, summation over internal indices a of φ and, when the fields are treated as
operators, symmetrization over fields and their conjugate momenta are under-
stood. The tensor Tµν is called the canonical energy-momentum or stress
tensor.

We mention in passing that in order to serve as the source in the Einstein grav-
itational field equations, Tµν should be symmetric under interchange of indices.

2 This assumes that the Lagrangian does not have any explicit dependence on the coordinates
xµ.
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1.1 Canonical formulation 9

(This symmetry is also required if we wish to define a conserved angular momen-
tum in terms of the energy-momentum tensor.) However, except in the case of
particular forms of L, the expression given in (1.24) (after lowering the index ν

with the Minkowski metric ηµν) is not a symmetric tensor. A general manifestly
symmetric expression for Tµν will be given later, when we deal with curved space-
time. (Since both of these expressions for Tµ

ν will satisfy (1.23) for any system
with no explicit time or space dependence, we expect on physical grounds that
they must each yield the same conserved energy and momentum Pµ to within a
constant.) Furthermore, a modification of the canonical Tµν that makes it sym-
metric, and yields the same Pµ and angular momentum as the original canonical
Tµν , has been given by Belinfante (1939, 1940).

From (1.23) we have ∫
dvx ∂µTµ

ν = 0,

where dvx denotes the spacetime volume element, and the integration is over a
spacetime volume bounded by spatial infinity and any two constant-time hyper-
surfaces. Assuming that matrix elements of physical interest will be between
states in which the physical field configuration is of finite spatial extent, we
obtain by the Gauss divergence theorem the conservation law

d

dt

∫
dVx T 0

ν = 0,

where dVx denotes the spatial volume element and the integration is over any
constant-time hypersurface. Hence,

P ν =
∫

dVxT 0
ν (1.25)

is the conserved energy-momentum vector. The sign in this definition is chosen
so that P0 = H, as can be verified by comparing (1.15) with (1.24).

As a special case of the Heisenberg field equation (1.22), suppose that the
functional F is an ordinary function f(φ(x), ∂iφ(x), π(x)) with no explicit time
dependence. Then, (1.22) can be written as

i∂0f = [f, P0], (1.26)

where the partial derivative symbol is used here in the conventional manner to
indicate that the xi are held fixed. In (1.22), the partial derivative symbol denoted
derivation only with respect to explicit t dependence not coming from φ and π.
The partial derivative in (1.26) includes all t dependence. The result in (1.26) is
the 0-component of the more general relation

i∂µf = [f, Pµ], (1.27)

The µ = 0 component, as noted above, follows from (1.22). For µ = i, we easily
verify (1.27) for powers of φ and π and thus for functions which can be expanded
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10 Quantum fields in Minkowski spacetime

in power series in φ and π. For example, suppressing the t-dependence, which is
the same in all arguments, we have

[π(�x)n, Pi] =
∫

dV ′
x π(�x′)[π(�x)n, ∂′

iφ(�x′)]

= −i

∫
dV ′

x π(�x′)nπ(�x)n−1∂′
iδ(�x − �x′)

= i∂i(π(�x)n).

Equation (1.27) also follows from a powerful generalization of the action princi-
ple and of Noether’s theorem, known as the Schwinger operator action principle
(Schwinger 1951b, 1953). (For textbook treatments see Roman (1969) or Toms
(2007).) The action of (1.12) is integrated over a spacetime volume v bounded by
two constant-time hypersurfaces at t1 and t2. (As originally stated, the princi-
ple deals with arbitrary spacelike hypersurfaces, but we work with constant-time
hypersurfaces for simplicity at this stage. See Section 6.2 for a discussion.) Con-
sider arbitrary infinitesimal variations, δxµ and δ0φ(x), of the coordinates and
field operators,

xµ → x′µ = xµ + δxµ, (1.28)

φ(x) → φ′(x) = φ(x) + δ0φ(x), (1.29)

where δ0φ(x) vanishes on the spatial boundary of integration at each time (i.e., it
vanishes everywhere on the boundary of v, except on the interior of the constant-
time hypersurfaces that bound v at t1 and t2). Then, the Schwinger action
principle states that the variation of the action S of (1.12) has the form

δS = G(t2) − G(t1), (1.30)

where the operator G(t) is the generator of the above variation of the coordinates
and fields at time t.

To say that G generates the variation means the following. For an operator
functional F [φ, π], we have

iδ0F = [F,G], (1.31)

where all quantities are evaluated at the same time, and δ0F is the infinitesimal
variation of F produced by (1.28) and (1.29). That is,

δ0F = F [φ + δ0φ, ∂(φ + δ0φ)] − F [φ, ∂φ].

One can show from (1.30) that the generator has the form

G(t) =
∫

dVx

[
πaδφa − T 0

νδxν
]
, (1.32)

where Tµ
ν is the energy-momentum tensor of (1.24), and

δφ(x) ≡ φ′(x′) − φ(x) (1.33)

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87787-9 - Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity
Leonard E. Parker and David J. Toms
Excerpt
More information

http://www.cambridge.org/9780521877879
http://www.cambridge.org
http://www.cambridge.org

