CAMBRIDGE

Cambridge University Press

978-0-521-87776-3 - Constraint Handling Rules
Thom Fruhwirth

Excerpt

More information

Part 1
CHR tutorial

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521877763
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-87776-3 - Constraint Handling Rules
Thom Fruhwirth

Excerpt

More information

We present the essentials of the Constraint Handling Rules (CHR) program-
ming language by the use of examples in this Tutorial part.

The first chapter Getting started is a step-by-step introduction to CHR
based on simple examples.

The second chapter My first CHR programs introduces some simple,
but concise and effective, CHR programs. We discuss basic properties of
CHR programs in an informal way: anytime and online algorithm property,
correctness, confluence, concurrency, and complexity. The formal analysis
of these programs is deferred to Part III.

Exercises and selected solutions are given for the practical programming
chapters in Parts I and III. More exercises can be found online.

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521877763
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-87776-3 - Constraint Handling Rules
Thom Fruhwirth

Excerpt

More information

1
Getting started

This chapter is a basic introduction to CHR using simple examples. They
introduce the types of rules used in CHR, their behavior and basic ingredi-
ents of the language such as logical variables and built-in constraints. Last
but not least, we define the concrete syntax of CHR and we informally
describe how CHR executes its rules.

In this book, we will use the concrete syntaxr of CHR with Prolog as the
host language in the practical programming parts and mathematical abstract
syntaz in the formal Part II.

1.1 How CHR works

For programming, we recommend using a CHR implementation from K.U.
Leuven, since they are currently the most recent and advanced. The CHR
rules themselves will also be executable in other Prolog implementations of
CHR and with minor modifications in K.U. Leuven JCHR, an implementa-
tion of CHR in Java and in the K.U. Leuven CHR library for C.

When we write a CHR program, we can mix host language statements and
CHR code. The CHR-specific part of the program consists of declarations
and rules.

1.1.1 Propositional rules

We start programming in CHR with rules that only involve propositions,
i.e. constraints without arguments. Syntactically, constraints are similar to
procedure calls.

Example 1.1.1 (Weather) Everybody talks about the weather, and we
do as well.

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521877763
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-87776-3 - Constraint Handling Rules
Thom Fruhwirth

Excerpt

More information

4 Getting started

Declarations. They introduce the CHR constraints we are going to define
by the rules. They are specific to the implementation and the host language.
Later in this book, we will usually skip the declarations and concentrate on
the rules.

We introduce three CHR constraints named rain, wet, and umbrella
with the following declaration:

:— module(weather, [rain/0]).
:— use_module(library(chr)).

:— chr_constraint rain/0, wet/0, umbrella/O.

In the first line, the optional Prolog module declaration puts the CHR pro-
gram into a module named weather, which exports only the mentioned con-
straint rain/0. The functor notation c¢/n defines the name (c) and number
of arguments (n) of a constraint c(tq,...,t,). In the host language Pro-
log and its CHR libraries, function symbols (including constants) start with
lower-case letters.

The second line of the declaration makes sure that the CHR library is
loaded before any CHR-specific code. CHR constraints must be declared
using the chr_constraint keyword before they are defined and used by
rules. In the declaration, for each CHR constraint, at least its name and
arity (number of arguments taken) are given, optional specifications are the
input/output mode and the type of the arguments.

Rules. Any kind of constraint-handling rule has an optional name, a left-
hand side (Lh.s.) called the head together with an optional guard, and a
right-hand side (r.h.s.) called the body. There are three kinds of rules. The
head, guard, and body of a rule consist of constraints.

The following two CHR rules encode statements about rain:

rain ==> wet.
rain ==> umbrella.

The first rule says “Ifit rains, then it is wet”. The second rule can beread as “If
it rains, then we need an umbrella”. Both rules have a head consisting of the
constraint rain. The bodies are wet and umbrella, respectively. There are
no guards. These rules are so-called propagation rules, recognizable by ==>.
These kind of rules do not remove any constraints, they just add new ones.
Queries. Computation of a CHR program is initiated by posing a query.
The rules of the program will be applied to the query until exhaustion, i.e.
until no more change happens. The rule applications will manipulate the
query by removing CHR constraints and by adding constraints. The result

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521877763
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-87776-3 - Constraint Handling Rules
Thom Fruhwirth

Excerpt

More information

1.1 How CHR works 5

of the computation is called the answer, it simply consists of the remaining
constraints.

If we pose the query rain, the answer will be rain, wet, umbrella (not
necessarily in that order).

In Prolog CHR implementations, the query is typically entered at the
command line prompt followed by a dot. After the computation has finished,
the answer is displayed.

Top-down execution. If we write instead the two simplification rules

rain <=> wet.
rain <=> umbrella.

then the answer to rain will be just wet. The first rule is applied and
removes rain.

Rules are tried in textual order, in a top-down fashion, and so only the
first rule will ever be applied in our example. In general, whenever more
than one rule application is possible, one rule application is chosen. A rule
application cannot be undone (unlike Prolog). We thus say that CHR is a
committed-choice language.

With propagation rules, we can draw conclusions from existing informa-
tion. With simplification rules, we can simplify things, as we will see. Sim-
plification rules can also express state change, i.e. dynamic behavior through
updates.

Example 1.1.2 (Walk) Assume we describe a walk (a sequence of steps)
by giving directions, left, right, forward, backward. A description of a
walk is just a sequence of these CHR constraints, and of course, multiplicities
matter. Note that the order in which the steps are made is not important
to determine the position reached. With simplification rules, we can model
the fact that certain steps (like left and right) cancel each other out, and
thus we can simplify a given walk to one with a minimal number of steps
that reaches the same position.

left, right <=> true.
forward, backward <=> true.

So the walk left, forward, right, right, forward, forward, back-
ward, left, left posed as a query yields as answer the simplified and
shorter walk left, forward, forward.

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521877763
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-87776-3 - Constraint Handling Rules
Thom Fruhwirth

Excerpt

More information

6 Getting started

1.1.2 Logical variables

Declarative programming languages such as CHR feature a special kind
of variables. These so-called logical variables are similar to mathematical
unknowns and variables in logic. A logical variable can be either unbound
or bound. A bound variable is indistinguishable from the value it is bound
to. A bound logical variable cannot be overwritten with another value (but
it can be bound to the same value again). We call languages with such
variables single-assignment languages, while more traditional languages like
Java and C feature destructive (multiple) assignment where the value of a
variable can be overwritten.

In Prolog CHR implementations, variable names start with an upper-case
letter. The underscore symbol denotes an unnamed variable.

Example 1.1.3 (Men and women) Computer science textbooks always
have an example involving people of the two sexes. In our case, we have
several men, e.g. male(joe), ..., and several women female(sue),... at
a dancing lesson. So we have the CHR constraints male and female. The
two constraints have one argument, the name of the person of that sex. We
want to assign men and women for dancing. This can be accomplished by
a simplification rule with two head constraints:

male(X), female(Y) <=> pair(X,Y).

The variables of the rule are X and Y, they are placeholders for the actual
values from the constraints that match the rule head. The scope of a variable
is the rule it occurs in. Given a query with several men and women, the rule
will pair them until only persons of one sex remain. Clearly the number of
pairs is less than the number of men and women.

Types of rules. If we replace the simplification rule by a propagation rule,
we can compute all possible pairings, since the male and female constraints
are kept.

male(X), female(Y) ==> pair(X,Y).

Now the number of pairs is quadratic in the number of people. Propagation
rules can be expensive, because no constraints are removed and thus every
combination of constraints that match the rule head may lead to a rule
application.

There may also be a dance where a single man dances with several women,
and this can be expressed by a simpagation rule:

male(X) \ female(Y) <=> pair(X,Y).

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521877763
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-87776-3 - Constraint Handling Rules
Thom Fruhwirth

Excerpt

More information

1.1 How CHR works 7

In this type of CHR rule, the constraints left of the backslash \ are kept but
the remaining constraints of the head, right of the backslash, are removed.

It is worth experimenting with queries where men and women are in dif-
ferent orders to understand how CHR rules execute.

Example 1.1.4 (Family relationships I) The following propagation rule
named mm expresses that the mother of a mother is a grandmother. The con-
straint grandmother (joe,sue) reads as “The grandmother of Joe is Sue”.
The use of variables in the rule mm should be obvious.

mm @ mother (X,Y), mother(Y,Z) ==> grandmother (X,Z).

The rule allows us to derive the grandmother relationship from the mother
relationship. For example, the query mother (joe,ann), mother (ann,sue)
will propagate grandmother (joe,sue) using rule mm.

1.1.3 Built-in constraints

In CHR, we distinguish two kinds of constraints: CHR constraints, which
are declared in the current program and defined by CHR rules, and built-in
constraints (short: built-ins), which are predefined in the host language or
imported CHR constraints from some other module.

On the left-hand side of a rule, CHR and built-in constraints are separated
into head and guard, respectively, while on the right-hand side, the body,
they can be freely mixed. The reason is that the head and guard constraints
are treated differently when the rule is executed, as we will see soon.

Example 1.1.5 (Family relationships II) The mother of a person is
unique, she or he has only one mother.

Syntactic equality. In mathematical terms, the mother relation is a func-
tion, the first argument determines the second argument. We can write a
simpagation rule that enforces this functional dependency:

dm @ mother(X,Y) \ mother(X,Z) <=> Y=Z.

The rule makes sure that each person has only one mother by equating the
variables standing for the mothers. We use the built-in syntactic equality =.
The constraint Y=Z makes sure that both variables have the same value,
even if it is yet unknown. We may actually safely and correctly assume
that, in the remainder of the computation, the occurrences of one variable
are replaced by (the value of) the other variable in the equation.

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521877763
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-87776-3 - Constraint Handling Rules
Thom Fruhwirth

Excerpt

More information

8 Getting started

For example, the query mother(joe,ann), mother(joe,ann) will lead
to mother (joe,ann) (the built-in constraint ann=ann is simplified away,
because it is always true).

Fuailure. The query mother(joe,ann), mother(joe,sue) will fail,
because then Joe would have two different mothers, and the rule dm for
mother will lead to the syntactic equality ann=sue. This built-in equality
cannot be satisfied, it fails. The built-in has acted as a test now. Failure
aborts the computation (it leads to the answer no in most Prolog systems).

Variables in queries and head matching. In CHR, the current constraints
must match the rule head that serves as a pattern (unlike Prolog). The
query constraints may contain variables and the matching is successful as
long as these variables are not bound by the matching.

In the query mother (A,B), mother(B,C) we will see in the answer also
grandmother (A,C) by rule mm. On the other hand, no rule is applicable
to the query mother (A,B), mother(C,D). We may, however, add a built-in
equality constraint to the query, i.e. mother (A,B), mother(C,D), B=C. Then
we also get grandmother (A,D). If we add A=D instead, the mother relations
are matched the other way round by the head of the mm propagation rule
and we get grandmother (C,B).

If we add A=C, the rule dm will apply and add B=D, so the complete answer
will be mother(A,B), mother(C,D), A=C, B=D.

We now give a CHR programming example that involves simple arithmetic
built-ins.

Example 1.1.6 (Mergers and acquisitions) Let us move to the com-
mercial world of companies. A large company will buy any smaller company.
We use a CHR constraint company (Name, Value), where Value is the market
value of the company.

Guards. 'This rule describes the merge—acquisition cycle that we can
observe in the real world:

company (Namel,Valuel), company(Name2,Value2) <=> Valuel>Value2 |
company (Namel,Valuel+Value2) .

The meaning of the arithmetic comparison Valuel>Value2 in the guard
should be obvious. A guard basically acts as a test or precondition on the
applicability of a rule. Only built-in constraints are allowed in a guard.
These built-ins should be simple tests, i.e. the same constructs that occur
in conditions of the host language.

For readability of the rule, we have used an in-lined arithmetic expression,
Valuel+Value2, inside a CHR constraint. This works in a similar notation

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521877763
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-87776-3 - Constraint Handling Rules
Thom Fruhwirth

Excerpt

More information

1.2 CHR programs and their execution 9

for the host language Java, for the host language Prolog we would have to
use the built-in is to evaluate the arithmetic expression:

company (Namel,Valuel), company(Name2,Value2) <=> Valuel>Value?2 |
Value is Valuel+Value2, company(Namel:Name2,Value).

After exhaustive application of these rules to some companies, only a few
big companies will remain, because the rule is applicable in one way or
another to any two companies with different market value. If one company
remains, we have a monopoly, otherwise we have an oligopoly. All remaining
companies will have the same value.

1.2 CHR programs and their execution

We formally introduce the concrete syntax of CHR and we informally intro-
duce the operational semantics of the language.

1.2.1 Concrete syntax

The CHR-specific part of a CHR program consists of declarations and rules.
Declarations are implementation-specific, for details consult your manual.

Rules. There are three kinds of constraint-handling rules, which can be
seen from the following EBNF grammar. Terminal symbols are in single
quotes. Expressions in square brackets are optional. The symbol | (without
quotes) separates alternatives.

Rule --> [Name ’@’]
(SimplificationRule | PropagationRule | SimpagationRule) ’.°

SimplificationRule --> Head ’<=>’ [Guard ’|’] Body
PropagationRule --> Head ’==>’ [Guard ’|’] Body
SimpagationRule --> Head ’\’ Head ’<=>’ [Guard ’|’] Body

Head --> CHRConstraints

Guard -=> BuiltInConstraints

Body --> Goal

CHRConstraints —--> CHRConstraint | CHRConstraint ’,’ CHRConstraints
BuiltInConstraints ——> BuiltIn | BuiltIn ’,’ BuiltInConstraints
Goal --> CHRConstraint | BuiltIn | Goal ’,’ Goal

Query --> Goal

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521877763
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-87776-3 - Constraint Handling Rules
Thom Fruhwirth

Excerpt

More information

10 Getting started

A Head is a comma-separated sequence of CHRConstraints. The Guard
consists of BuiltInConstraints. The symbol ’ |’ separates the guard (if
present) from the body of a rule. (The symbol is inherited from early concur-
rent languages and should not be confused with the ’ |’ used in the EBNF
grammar.) The Body of a rule is a Goal. A Goal is a comma-separated
sequence of built-in and CHR constraints. In simpagation rules, the back-
slash symbol ’\’ separates the head of the rule into two parts. A Query is
simply a goal.

Basic built-in constraints. With Prolog as the host language, we use
the following minimal set of predefined predicates as built-in constraints.
Some of them we have already discussed in the introductory examples of
this chapter. Built-in constraints may be used for auxiliary computations in
the body of a rule, such as arithmetic calculations. Built-in constraints that
are tests are typically used in the guard of rules. They can either succeed or
fail. We give the name of the built-in and, preceded by ’/’, the number of
its arguments.

e The most basic built-in constraints:
true/0 always succeeds.
fail/0 never succeeds, i.e. always fails.

e Testing if variables are bound:
var/1 tests if its argument is an unbound variable.
nonvar/1 tests if its argument is a bound variable.

e Syntactical identity of expressions (infix notation used):
=/2 makes its arguments syntactically identical by binding variables if
necessary. If this is not possible it fails.
==/2 tests if its two arguments are syntactically identical.
\==/2 tests if its two arguments are syntactically different.

e Computing and comparing arithmetic expressions (infix notation used):
is/2 binds the first argument to the numeric value of the arithmetic
expression in the second argument. If this is not possible it fails.
</2,=<%/2,>/2,>=/2,=:=/2,=\=/2 test if both arguments are arithmetic
expressions whose values satisfy the comparison.

Because =/2 and is/2 bind their first arguments, they should never be used
in guards. The built-ins ==/2 and =:=/2 should be used instead. (However,

© in this web service Cambridge University Press www.cambridge.org

http://www.cambridge.org/9780521877763
http://www.cambridge.org
http://www.cambridge.org

