Introduction to the Physical and Biological Oceanography of Shelf Seas

In this exciting and innovative textbook, two leading oceanographers bring together the fundamental physics and biology of the coastal ocean in a quantitative but accessible way for undergraduate and graduate students. Shelf sea processes are comprehensively explained from first principles using an integrated approach to oceanography – helping to build a clear understanding of how shelf sea physics underpins key biological processes in these environmentally sensitive and economically important regions. Using many observational and model examples, worked problems, and software tools, they explain the range of physical controls on primary biological production and shelf sea ecosystems.

Key features

- Opens with background chapters on the fundamentals of biology and physics needed to provide all students with a common, base-level understanding
- Develops the physical theory of each particular process in parallel with numerous data examples that describe the real-world impacts of physics on shelf sea biology
- Illustrates the success and failure of different model approaches to demonstrate their value as investigative research tools
- Boxes present extra detail and alternative explanations demonstrating the broader relevance of each topic
- Highlighted asides and anecdotes bring the reality and human aspects of ocean research work to life
- Physics sections include a set of non-mathematical summary points to help readers develop a qualitative understanding of the underlying processes
- Chapters end with summaries recapping key points to aid exam revision and problem sets that enable students to test their understanding

"This comprehensive and up-to-date book will be an ideal resource for both undergraduate and postgraduate students in pursuit of an all-round appreciation and understanding of the shelf seas. It really bridges a gap in the literature and the authors themselves pioneered much of the multidisciplinary research that has revealed a delicate interplay between the physical environment and life in the shelf seas." **Dr Robert Marsh** (University of Southampton)

"Simpson and Sharples have combined courses in coastal physical dynamics and coastal biological oceanography to produce a textbook that is much greater than the sum of the individual disciplinary parts. Students and scientists alike will find the discussions of sampling gear and deployment techniques an unusual and particularly useful aspect of this book. The authors are leaders in the study of the physics and biology of shelf seas and their experience and expertise are abundantly clear." **Professor Peter J.S. Franks** (*Scripps Institution of Oceanography*)

"This text is a straightforward one-stop shop for students and professionals with a biological background who want to understand the basics of physical oceanography. It is very interesting and readable, and a great introduction the theoretical background a biologist needs to understand the large-scale physical dynamics of the world their organisms are inhabiting."

Professor Katherine Richardson (Copenhagen University)

"This book will prove to be a masterpiece with enduring value and fills a significant gap in physical oceanography textbooks by focusing on shallow seas. It reads well, is accessible to the intelligent, scientifically trained-non specialist and provides a solid foundation by which ecologists can learn much about the physical control of many ecological processes on shelf seas."

Distinguished Professor Malcolm Bowman (*State University of New York at Stony Brook*)

John Simpson leads a research group in the School of Ocean Sciences at Bangor University in Wales, which is developing new methods to observe and model turbulence and the mixing that plays a crucial role in biological production. He is a seagoing physical oceanographer with a broad interest in shelf seas and estuaries, and his research has focused on the physical mechanisms which control the environment of the shelf seas. He has taught Physics of the Ocean at Bangor and other universities worldwide for more than 40 years and was responsible for establishing the first Masters-level course in Physical Oceanography within the UK. In 2008, Professor Simpson was awarded the Fridtjof Nansen Medal of the European Geosciences Union for his outstanding contribution to understanding the physical processes of the shelf seas, and the Challenger Medal of the Challenger Society for his exceptional contribution to Marine Science.

Jonathan Sharples holds a joint chair at the University of Liverpool and the UK Natural Environment Research Council's National Oceanography Centre, and has taught courses in coastal and shelf oceanography at the universities of Southampton and Liverpool. He is an oceanographer whose research concentrates on the interface between shelf sea physics and biology. His work is primarily based upon observational studies at sea, combined with development of simple numerical models of coupled physics and biology. Professor Sharples has extensive seagoing experience off the NW European shelf and off New Zealand, having led several major interdisciplinary research cruises. His research has pioneered the use of fundamental measurements of turbulence in understanding limits to phytoplankton growth and controls on phytoplankton communities.

Introduction to the Physical and Biological Oceanography of Shelf Seas

JOHN H. SIMPSON

School of Ocean Sciences, Bangor University

JONATHAN SHARPLES

School of Environmental Sciences, University of Liverpool and NERC National Oceanography Centre

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521877626

© John H. Simpson and Jonathan Sharples 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication Data

Simpson, John (John H.)
Introduction to the physical and biological oceanography of shelf seas / John H. Simpson, Jonathan Sharples.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-521-87762-6 (Hardback) – ISBN 978-0-521-70148-8 (Paperback)
1. Oceanography. 2. Coasts. 3. Continental shelf. I. Sharples, Jonathan. II. Title.
GC28.S54 2012
551.46'18-dc23 2011030490

ISBN 978-0-521-87762-6 Hardback

ISBN 978-0-521-70148-8 Paperback

Additional resources for this publication at www.cambridge.org/shelfseas.

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience.

Albert Einstein, 1933

I try not to think with my gut. If I'm serious about understanding the world, thinking with anything besides my brain, as tempting as that might be, is likely to get me into trouble.

Carl Sagan, 1995

1				
1.2.11				
2		Star and	Nee!	
783	CONTENTS	A Carlos Con		
			Second P	and the second

	Pref	ace	<i>page</i> xiji
	Ack	nowledgements	XV
	Gui	de to the book and how to make the best use of it	xvii
	List	of symbols	XX
	2150		7171
1	Inti	roduction to the shelf seas	
	1.1	Definition and relation to the global ocean	1
	1.2	Economic value versus environmental health	4
	1.3	The scientific challenge of the shelf seas	5
	1.4	A brief history of scientific research of the shelf seas to 1960	6
	1.5	Instrumentation: 'Tools of the trade'	9
		1.5.1 The measurement of temperature, salinity and pressure (the CTD)	10
		1.5.2 Sensors for biogeochemistry and beyond	12
		1.5.3 The measurement of the currents: the ADCP	15
		1.5.4 Drifters, gliders and AUVs	17
		1.5.5 Research vessels	19
	16	The role of models a philosophy of modelling	20
	1.0	The fotone of models – a philosophy of modelling	21
	1./	The future challenge and rewards of interdisciplinary studies	22
	Chap	oter summary	23
	Furth	ner reading	24
2	Ph	vsical forcing of the shelf seas: what drives the	
	mo	tion of ocean?	
	2.1	Energy sources	25
	2.2	The seasonal cycle of heating and cooling	26
		2.2.1 Solar heating, Q_s	26
		2.2.2 Back radiation from the sea surface, Q_b	29
		2.2.3 Heat exchange by evaporation and conduction, Q_e and Q_c	30
		2.2.4 Seasonal progression of heat fluxes and the heat budget	31
		2.2.5 Variation of heat fluxes with latitude	34
	2.2	2.2.0 Thermal expansion and buoyancy changes	35
	2.3	2 3 1 Freshwater buoyancy inputs	30 36
		2.3.1 Preshwater buoyancy inputs 2.3.2 Seasonal cycles of freshwater input	37
		2.3.3 Global distribution of freshwater input	37
		2.3.4 Surface fluxes of freshwater	38
	2.4	Forcing by wind stress and pressure gradients	39
	2.5	Tidal forcing	40

viii

3

Contents

2.5.1 Tidal constituents	44			
2.5.2 Fidal energy supply to the shell seas	40			
2.3.5 Source of energy dissipated by the tides				
	40			
Further reading	49			
Response to forcing: the governing equations and some basic solutions				
3.1 Kinematics: the rules of continuity	50			
3.2 Dynamics: applying Newton's Laws	52			
3.2.1 Coriolis Force ($F = ma$ on a rotating Earth)	54			
3.2.2 The acceleration term: Eulerian versus Lagrangian velocities	56			
3.2.3 Internal forces: how do we include pressure and frictional fo	rces? 57			
3.2.4 The equations of motion (and hydrostatics)	59			
3.3 Geostrophic flow	60			
3.3.1 The dynamical balance	61			
3.3.2 The gradient equation	62			
3.3.3 Thermal wind	65			
3.4 Fundamental oscillatory motions: what a water particle doe	s			
if you give it a push	66			
3.4.1 Inertial oscillations	66			
3.4.2 Water column stability and vertical oscillations	67			
3.5 Turbulent stresses and Ekman dynamics	68			
3.5.1 Current structure and transport in the Ekman layer	68			
3.5.2 The bottom Ekman layer	70			
3.5.3 Response to the Ekman transport at a coastal boundary	72			
3.6 Long waves and tidal motions	75			
3.6.1 Long waves without rotation	75			
3.6.2 Long waves with rotation (Kelvin waves)	77			
3.6.3 Amplification and reflection of the tide	79			
3.6.4 Amphidromic systems	80			
3.6.5 Tidal resonance	84			
3.7 Tidally averaged residual circulation	86			
Chapter summary	87			
Further reading	88			
Chapter problems	89			
Wayor, turbulant motions and mixing				

4 Waves, turbulent motions and mixing

4.1	Surface waves	90
	4.1.1 The first order velocity potential	90
	4.1.2 Orbital motions	93
	4.1.3 Waves of finite amplitude	93
	4.1.4 Energy propagation	95
	4.1.5 Wave breaking and near-surface processes	96
4.2	Internal waves	99
	4.2.1 Velocity potential for waves on the interface between two layers	99
	4.2.2 Particle motions in internal waves	100
	4.2.3 Energy and the group velocity of internal waves	103

ix

Contents

	4.2.4 Continuous stratification and rotation	103
	4.2.5 The importance of internal waves	104
4.3	Turbulence and mixing	105
	4.3.1 The nature of turbulence and its relation to mixing	105
	4.3.2 Turbulent fluxes of scalars	107
	4.3.3 The advection-diffusion equation	108
	4.3.4 Diffusion of momentum	109
	4.3.5 Fickian diffusion	110
	4.3.6 When is diffusion in the ocean Fickian?	113
4.4	The energetics of turbulence	115
	4.4.1 Buoyancy versus shear production of turbulence: the Richardson number	115
	4.4.2 The turbulent kinetic energy equation and dissipation	120
	4.4.3 Scales of turbulence: the Kolmogorov microscales	121
	4.4.4 Turbulence closure	125
Chap	iter summary	126
Further reading		
Chap	ter problems	127

5 Life in the shelf seas

5.1	Primary production in the sea: photosynthesis and nutrients	130		
	5.1.1 Photosynthesis: light, pigments and carbon fixation	131		
	5.1.2 Cell respiration: net and gross primary production	133		
	5.1.3 Techniques for measuring primary production and respiration	134		
	5.1.4 Measuring water column production and the photosynthesis-radiation curve	137		
	5.1.5 Photosynthesis in a turbulent environment: triggering blooms	140		
	5.1.6 Nutrient requirements and nutrient sources	143		
	5.1.7 Nutrient uptake by phytoplankton cells	148		
	5.1.8 Phytoplankton species	150		
5.2	The fate of organic matter: recycling, carbon export or food for			
	heterotrophs	155		
	5.2.1 Carbon export	155		
	5.2.2 Food for the heterotrophs	158		
	5.2.3 Finding prey in a viscous environment	164		
	5.2.4 The role of grazing in the structure of phytoplankton communities	167		
Chap	oter summary	169		
Furth	ner reading	171		
Chap	oter problems	171		
Sea	Seasonal stratification and the spring bloom			

	• •		
6.1	Buoyancy inputs versus vertical mixing: the heating-stirring competition	173	
	6.1.1 Mixing and the development of mixed layers	174	
	6.1.2 Criterion for water column stratification (the energetics of mixing		
	by the tide alone)	176	
	6.1.3 Testing the stratification criterion using tidal mixing front positions	181	
	6.1.4 Adding the effect of wind stress	183	
6.2	Seasonal cycles in mixed and stratifying regimes	185	
	6.2.1 The Two Mixed Layer (TML) model	185	
Phys	Physics summary box 1		

6

x

7

8

Contents

6.3	Primary production in seasonally stratifying shelf seas	191
	6.3.1 The spring bloom	191
	6.3.2 Phytoplankton species during the spring bloom	193
	6.3.3 Variability in the timing of the spring bloom	195
	6.3.4 Surface layer phytoplankton after the spring bloom	197
6.4	Primary production in mixed water	198
	6.4.1 Surface phytoplankton blooms in the absence of stratification	198
	6.4.2 Phytoplankton growth in turbulent water	199
Chap	oter summary	202
Furth	ner reading	203
Chap	oter problems	203
Inte	erior mixing and phytoplankton survival in	
stra	atified environments	
7.1	A 1D model of vertical mixing with turbulence closure (the TC model)	205
7.2	Comparison with observations of turbulence	209
	7.2.1 Observing and modelling turbulent dissipation	210
	7.2.2 Physical mechanisms responsible for mixing at pycnoclines	214
Phys	ics summary box	216
7.3	Phytoplankton growth, distribution and survival in pycnoclines	217
	7.3.1 The subsurface chlorophyll maximum (SCM)	218
	7.3.2 Nutrient supply and primary production within the SCM	218
	7.3.3 Phytoplankton motility and phytoplankton thin layers	225
	7.3.4 Phytoplankton species in the SCM	226
7.4	Zooplankton and larger animals at the SCM	228
Chap	oter summary	229
Furth	ner reading	231
Chap	oter problems	231
Tid	al mixing fronts: their location, dynamics and	
bio	logical significance	
8.1	Frontal positions from satellite I-R imagery	233
8.2	Fortnightly and seasonal adjustment in the position of fronts	235
	8.2.1 The equilibrium adjustment	235

	8.2.2 Reasons for non-equilibrium: stored buoyancy and inhibited mixing	237	
8.3	The density field and the baroclinic jet	239	
	8.3.1 Expected flow from geostrophy	239	
	8.3.2 Observed frontal jets	242	
8.4	Baroclinic instability	245	
8.5	Transverse circulation	247	
Physics summary box			
8.6	Frontal structure and biology	249	
	8.6.1 Enhancement of primary production at fronts	251	
	8.6.2 Zooplankton and tidal mixing fronts	254	
	8.6.3 Fronts and larger marine animals	256	
	8.6.4 Fronts and fisheries	257	
Chapter summary			

xi

Contents

	Furthe	er reading	263
	Chapt	er problems	263
9	Rea	ions of freshwater influence (ROEIs)	
5	91	Freshwater buoyancy and estuarine circulation	266
	7.1	9.1.1 The estuarine exchange flow	267
	9.2	Density-driven circulation in a ROFI: rotation and coastal currents	269
		9.2.1 Coastal buoyancy currents	270
		9.2.2 Residual flows in a ROFI	272
	9.3	Stratification control: circulation versus stirring in estuaries	
		and ROFIs	275
		9.3.1 The buoyancy-stirring competition in an estuary	275
		9.3.2 Observations of stratification in ROFIs	277
	9.4	Tidal straining	281
		9.4.1 The straining mechanism	281
		9.4.2 Tidal straining in Liverpool Bay	283
	0.5	Medulated non-tidal transports in POFI s	203
	9.5	The influence of wind stress	207
	9.0	I ne initiacité of wind stress	288
	9./	Modelling the physics of ROFIS	290
	Physic	s summary box	291
	9.8	Biological responses in estuaries and ROFIs	291
		9.8.1 Density-driven nows: export and return 9.8.2 Responses to cycles in stratification	292
		9.8.3 Impacts of riverine material in ROFIs	298
	Chapt	er summarv	301
	Furthe	er reading	302
	Chapt	er problems	302
	chap		502
10	The	shelf edge system	
	10.1	Contrasting regimes	304
	10.2	Bathymetric steering and slope currents	306
		10.2.1 The Taylor–Proudman theorem	306
		10.2.2 Slope currents	307
	10.2	Cross slope transport mechanisms	212
	10.5	10.3.1 Wind stress in the surface boundary layer	313
		10.3.2 The bottom boundary layer	316
		10.3.3 Cascading	317
		10.3.4 Meandering and eddies	320
	10.4	The internal tide	321
		10.4.1 Generation of internal motions	321
		10.4.2 Propagation and evolution of the waves	322
	Dk'	10.4.5 Ennanced mixing at the shell edge	326
	Physic	The bis constantiant and contacted in the second state of the seco	329
	10.5	I ne biogeocnemical and ecological importance of the shelf edge	330
	10.6	Upwelling, nutrient supply and enhanced biological production	330

xii

11

	10.6.1 Wind-driven upwelling and biological response	331
	10.6.2 Biological response to upwelling under along-slope flow	337
10.7	Shelf edge ecosystems driven by downwelling slope currents	338
10.8	Internal tides mixing and shelf edge ecosystems: the Celtic Sea	
10.0	shelf edge	330
	10.8.1 Nutrient supply and primary production at the shelf edge	339
	10.8.2 Phytoplankton community gradients across the shelf edge	341
	10.8.3 A possible link to the fish at the Celtic Sea shelf edge	343
10.9	Exporting carbon from continental shelves	344
	10.9.1 Exporting carbon from upwelling systems: coastal filaments	
	and canyons	345
	10.9.2 Seasonal downwelling and a role for the shelf thermocline	345
	10.9.3 Ekman drain and winter cascading	347
Chap	ter summary	348
Furth	er reading	350
Chap	ter problems	350
Futi	ure challenges in shelf seas	
11.1	Remaining puzzles in the temperate shelf seas	352
	11.1.1 Mixing in the pycnocline	353
	11.1.2 Towards the fundamentals of biogeochemistry and	
	phytoplankton ecosystems	354
	11.1.3 Organism size and the scales of fluid motion	356
	11.1.4 Observations and numerical models	357
11.2	Regional questions	357
	11.2.1 Arctic shelf seas	358
	11.2.2 Tropical ROFIs	360
11.3	Managing shelf sea resources	363
11.4	Shelf seas in the Earth system	363
	11.4.1 Shelf sources and sinks of CO ₂	363
	11.4.2 Cross-slope fluxes at the shelf edge	364
11.5	Past perspectives on the shell seas	366
	11.5.1 Changes in the role of the shelf sees in the earbon such	366
11.0	D some men a fathe a half areas to fortune allowers a harmonic vere	200
11.6	Response of the shelf seas to future climate change	368
Conc	lusion .	369
Furth	er reading	370
Glas	50 F V	271
	sary	202
Ansv	vers to enapter problems	382
Refe	rences	385
Inde	X	413

PREFACE

The seas of the continental shelf where the depth is less than a few hundred metres experience a physical regime which is distinct from that of the abyssal ocean where depths are measured in kilometres. While the shelf seas make up only about 7% by area of the world ocean, they have a disproportionate importance, both for the functioning of the global ocean system and for the social and economic value which we derive from them. Approximately 40% of the human population lives within 100 km of the sea, and the coastal zones of the continents are host to much of our industrial activity. Biologically, the shelf seas are much more productive than the deep ocean; phytoplankton production is typically 3-5 times that of the open ocean, and globally, shelf seas provide more than 90% of the fish we eat. They also supply us with many other benefits ranging from aggregates for building to energy sources in the form of hydrocarbons and we use our coastal seas extensively for recreation and transport. The high biological production of the shelf seas also means that these areas are important sources of fixed carbon which may be carried to the shelf edge and form a significant component of the drawdown of atmospheric CO2 into the deep ocean.

Understanding of the processes operating in shelf seas and their role in the global ocean has advanced rapidly in the last few decades. In particular, the principal processes involved in the workings of the physical system have been elucidated, and this new knowledge has been used to show how many features of shelf sea biological systems are underpinned and even controlled by physical processes. It is the aim of this book to present the essentials of current understanding in this interdisciplinary area and to explain to students from a variety of scientific backgrounds the ways in which the physics and biology relate in the shelf seas. Our motivation to write such a book came from our extensive experience of teaching undergraduate and post-graduate courses in physical oceanography and biological oceanography to students from diverse disciplinary backgrounds and the realisation that there was an unfulfilled need for a textbook to present the maturing subject of shelf sea oceanography combining the physical and biological aspects.

As far as possible, we have endeavoured to give the book an interdisciplinary structure and to make it accessible to a wide range of students from different disciplinary backgrounds. Some of the early chapters deal separately with the fundamental principles of physics and biology necessary to understand the later material. The later chapters are arranged along interdisciplinary lines to illustrate the impact of physical processes on the biological response from primary production up to higher trophic levels. A full understanding of the physics inevitably requires some use of mathematical notation and we have included this for students from physical science

xiv

Preface

disciplines. At the same time, we have provided summaries of the 'essential physics' which allow shortcuts through the mathematical development and should help students coming from biological backgrounds with limited experience of physics and mathematics to grasp the key physical ideas and appreciate how they affect the biology. Understanding of new concepts and their application is facilitated by supporting material in the form of problem sets and numerical exercises, within the book text and also hosted on the book website at Cambridge University Press. The book should form a suitable course text for advanced undergraduate and post-graduate oceanography students, but we anticipate that it will also be appropriate to courses introducing physical and biological science students to oceanography.

Both of us are seagoing oceanographers who have studied diverse shelf sea systems in different parts of the world. Much of our understanding and insight into the way the shelf seas work, however, has come from extensive observational work during national and international campaigns in the tidally energetic shelf seas of northwestern Europe. Where possible we have used results from other shelf sea systems to illustrate parallels and differences between shelf sea systems but, inevitably, many of the examples we use are drawn from the European shelf which is now arguably the most intensively studied of all shelf systems in the global ocean. In this respect, we have not sought to produce a definitive volume on everything in shelf sea physical and biological oceanography. Rather, we have aimed to write a book that contains what we have found to be the key components of shelf sea physics and the way in which that physics impacts the biology in the European and other shelf sea systems. In doing so we have made extensive use of a variety of models, ranging from basic analytical constructs through to 1D turbulence closure models of vertical exchange to test simple and compound hypotheses about how the system works. By contrast, we have made rather little reference to large-scale 3D models which, while they are vital in applying understanding to the task of properly managing the shelf seas, have not yet contributed greatly to fundamental understanding of shelf sea processes.

Although shelf sea science has advanced rapidly in recent years, there are still many open questions about the processes involved, especially at the interfaces between physics, biochemistry and ecology. While a textbook is conventionally about established facts and well-supported theory, we have included some elements of conjecture and speculation in relation to the more interesting questions that remain, in the hope that they will stimulate further study and further refine our understanding of the shelf sea systems.

ACKNOWLEDGEMENTS

We would like to record our gratitude to the many individuals who have provided inspiration, advice and practical help in the preparation of this book. In particular we owe a debt to those (Joe Hatton, Ken Bowden) who inspired our interest in physics and physical processes in the ocean, and to those (Paul Tett, Patrick Holligan, Robin Pingree) who steered us towards interdisciplinary studies in shelf seas and whose work has helped to motivate us to write the book. Captain John Sharples and Eileen Ansbro Sharples had the courage to take their two kids on extended voyages aboard UK merchant vessels, which doubtless influenced the career path of one of us. Both of us have benefited greatly over the years from interacting with many able research students, too numerous to list, who have challenged our ideas and helped to refine them.

In the process of writing the book, we have received generous help and advice from many individuals, including Dave Bowers, Malcolm Bowman, Peter Franks, Mattias Green, Anna Hickman, Claire Mahaffey, Bob Marsh, Mark Moore, Kath Richardson, Tom Rippeth, Steve Thrope and Ric Williams. In several cases, their input has helped us to avoid mistakes in the text. However, the responsibility for any residual shortcomings rests squarely with us and we welcome notification by readers of any remaining errors.

We are also grateful to many colleagues and co-workers, including Gerben de Boer, Juan Brown, Byung Ho Choi, Mark Inall, Kevin Horsburgh, Jonah Steinbuck, David Townsend, Mike Behrenfeld, Clare Postlethwaite, Yueng-Djern Lenn, Flo Verspecht, Pat Hyder, Matthew Palmer, John Milliman, David Roberts, Oliver Ross and Alex Souza, for help in the acquisition and drawing of many of the figures, and Kay Lancaster for timely help in re-drafting and providing important finishing touches. Much of our use of satellite imagery comes courtesy of the UK Natural Environment Research Council's Earth Observation Data Acquisition and Analysis Service (NEODAAS) at the University of Dundee and at the Plymouth Marine Laboratory, with particular thanks to Peter Miller and Stelios Christodoulou.

Finally, we are pleased to acknowledge that all of our work is dependent on the ability to go to sea and make observations in often challenging conditions. This book would not have been possible without the professionalism and skills of the research vessel crews and technicians, on which we continue to rely.

GUIDE TO THE BOOK AND HOW TO MAKE THE BEST USE OF IT

We anticipate that readers of this interdisciplinary book will be a mixture of students and researchers who come to the subject of the shelf seas from a wide range of scientific backgrounds. At one extreme will be students of mathematics and physics who know little of biology and, at the other, students of biological subjects who have not pursued physical sciences beyond high school level. In between will be a broad group of students, including many who have already embarked on courses in marine science, who have some background in both physical and biological sciences.

In writing the book, we have endeavoured to cater to individuals from these diverse backgrounds without compromising the presentation of the science. In particular, we have structured the chapters to allow readers from a mainly biological background to appreciate the essence of the physical processes without having to follow the detail of the sometimes intricate mathematical arguments. Key processes are explained in more intuitive ways in box sections, many with illustrative diagrams. At the end of each chapter, the essential points are recapitulated in a chapter summary. There is also a selection of problems, of varying difficulty, and suggestions for further reading at the end of each chapter. In order to help students of all backgrounds familiarise themselves with key terminology, a full glossary is given at the back of the book.

The first chapter is a general introduction to the shelf seas, explaining their relation to the global ocean, their socioeconomic importance, the history of shelf sea investigations and the observational techniques now used in studying them. In Chapter 2 we explore the various physical forcing mechanisms which drive the shelf seas, determine their structure and supply the vital radiation input to drive photosynthesis. There follow three chapters concerned with the fundamental science which underpins our subsequent exploration of shelf sea processes: Chapters 3 and 4 focus on the basic physics of fluid motion, while Chapter 5 is concerned with the aspects of biogeochemistry and plankton survival involved in the shelf seas.

The book then moves to explore the main domains/regimes of the shelf seas in a series of five chapters. The cross-shelf schematic illustration in Fig. G1 provides us with a guide to where each chapter is focused. In Chapter 6 we consider the processes controlling thermal stratification, the partitioning of the shelf in stratified and mixed regimes and the controls exerted by stratification on the growth of plankton. The crucial role of low levels of internal mixing in supporting phytoplankton growth in the interior of the stratified regions is explored in Chapter 7, while Chapter 8 focuses on the physical nature and biological implications of the fronts produced by variations in tidal mixing. In Chapter 9, we consider the regions of the shelf where freshwater inputs from rivers play a major role, and in Chapter 10 we look at the

Figure G1 Schematic illustration of the shelf sea regimes. The dashed squares show the regions covered by individual chapters, with the relevant chapter number circled. xix

Guide to the book and how to make the best use of it

special physical processes of the shelf edge regime and their important biological consequences. The book concludes with an overview of progress and the remaining challenges in shelf seas, notably those in the Arctic and the tropics, and considers recent studies on the role of the shelf seas in relation to changes in the global ocean since the Pleistocene.

To help readers coming to the book from different disciplinary backgrounds, we offer a few suggestions on how best to approach it: Chapters 1 and 2 provide essential introductory background and should be readily accessible to all science students. For students who have already taken courses in physical oceanography, Chapters 3 and 4 may be largely revision but they will also be useful in applying knowledge of fluid physics to the shelf regime. Students without strong maths and physics may bypass some of the detailed argument here, certainly on a first reading, and make use of the boxes and summaries to pick up the essentials. Similarly, while much of Chapter 5 will already be familiar to students of biological oceanography, physics students will have a lot to learn here and may want to bypass some of the detail and, at least initially, rely on the summary. To help students identify the main points of the developing narrative, we have also put boxes around equations which are significant results to be applied in later sections or represent key stages in derivations. Students with previous training in both physical and biological marine science may want to bypass some of the tougher physics on first reading, returning later to follow the detail of the mathematics.

In addition to the problems for each chapter, many topics in the text are illustrated by visualisations and numerical models which are available on the book's website (http:www.cambridge.org/shelfseas). Much of the software is based on MATLAB and the programme scripts are available at the website for readers to copy, amend and use to explore their own ideas and understanding. The icon in the margin here is used throughout the book to indicate when there is relevant software on the book website.

SYMBOLS

Symbol	Name	Units
a	acceleration	${\rm m~s^{-2}}$
a_e	Radius of the Earth	m
a_p	Phytoplankton cell radius	m
A	Albedo	none
A_0	Amplitude of oscillatory function	
A_n	Amplitude of tidal constituent	m
b	Buoyancy force per unit volume	$ m N~m^{-3}$
B	Buoyancy production of TKE	$W kg^{-1}$
B_G	Breadth of gulf	m
с	Phase velocity of waves	$m s^{-1}$
c_a	Specific heat of air	$\mathrm{J}~\mathrm{kg}^{-1}~\mathrm{^{\circ}C}^{-1}$
c_p	Specific heat of seawater	$\mathrm{J}~\mathrm{kg}^{-1}~\mathrm{^{\circ}C}^{-1}$
C	Conductivity	${ m mS}~{ m m}^{-1}$
C_d	Drag coefficient for wind stress	none
C_g	Geostrophic current speed	${ m m~s}^{-1}$
D	Ekman depth	m
<i>e</i> , <i>e</i> _s	Efficiency of mixing by tide and wind	none
Ε	Mass of the Earth	kg
E_d	Downward energy flux	$\mathrm{W}~\mathrm{m}^{-2}$
E_k	Downward flux of PAR	$W m^{-2}$
Ek	Ekman number	
$E_s(k)$	Scalar spectrum for TKE	$m^{3} s^{-2}$
E_T	Turbulent kinetic energy density	$\mathrm{J}~\mathrm{kg}^{-1}$
E_{v}	Rate of evaporation	$kg m^{-2} s^{-1}$
E_w	Energy density of waves	$\mathrm{J}~\mathrm{m}^{-2}$
f	Coriolis parameter	s^{-1}
F	Force	Ν
F(y)	Function of variable <i>y</i>	
g	Acceleration due to gravity on Earth	$m s^{-2}$
g'	Reduced gravity	$m s^{-2}$
G	Gravitational constant	$ m N~m^2~kg^{-2}$
$\mathop{G}\limits_{\sim}$	Scalar flux vector	various
g_n	Phase lag of tidal constituent	degrees
g_p^b	Specific grazing rate	g C (g Chl) $^{-1}$
		$time^{-1}$

ххі

List of symbols

Symbol	Name	Units
h	Water column depth	m
H_a	Attenuation factor for waves	none
H_n	Amplitude of a tidal constituent	m
H_T	Heat stored in water column	$\mathrm{J}~\mathrm{m}^{-2}$
Ι	Total radiation energy flux	$\mathrm{W}~\mathrm{m}^{-2}$
I_0	PAR flux incident at surface	$\mu E m^{-2} s^{-1} or$
		$W m^{-2}$
I_K	Saturation light level in photosynthesis	$\mu E m^{-2} s^{-1} or$
$I_{2}(\lambda)$	Spectral power density of radiation	$W m^{-2} m^{-1}$
I_{RAP}	PAR flux at depth z	$\mu E m^{-2} s^{-1} or$
PAR		$W m^{-2}$
J	Flux of a scalar property	various
k	Wave number	m^{-1}
k_b	Bottom drag coefficient	none
k_{b}^{\prime}	Constant in a linear bottom drag law	${ m m~s}^{-1}$
k _m	Molecular diffusivity	$m^2 s^{-1}$
k_{NUT}	Half saturation concentration for nutrient uptake	$mmol m^{-3}$
k_s	Modified surface drag coefficient = $\gamma_s C_d$	none
Κ	Eddy diffusivity	$m^2 s^{-1}$
K_{av}	Spectral average of K_d	m^{-1}
K_d	Diffuse attenuation coefficient	m^{-1}
K_{PAR}	Attenuation coefficient for PAR	m^{-1}
K_q	Eddy diffusivity for TKE	$m^2 s^{-1}$
K_x, K_y	Horizontal Eddy diffusivity	$m^2 s^{-1}$
K_z	Vertical eddy diffusivity	$m^2 s^{-1}$
L	Turbulence length scale	m
L_H	Latent heat of evaporation	$J kg^{-1}$
L_O	Ozmidov length	m
L_S	Length scale for swimming plankton	m
m	Mass	kg
M	Mass of the moon	Kg
M _s	Mass of a scalar substance	kg
IV N	Eddy viscosity	$s^{2} e^{-1}$
IV _Z	Proseuro	III S Do
p n.	Atmospheric pressure	
Р0 Р	Shear production of TKF	$W k \sigma^{-1}$
r P	Power available to produce TKE	$W m^{-3}$
\mathbf{P}_{CU}	Phytoplankton Chl biomass concentration	σ Chl m ⁻³
\mathbf{P}_{i}^{b}	Specific growth rate in the dark	$g C (g Chl)^{-1} s^{-1}$

xxii

List of symbols

Symbol	Name	Units
Pe	Peclet number	none
P_p	Rate of primary production	$g C m^{-3} s^{-1}$
P_p^{b}	P_p normalised by Chl biomass = P_p/P_{Chl}	$g C (g Chl)^{-1} s^{-1}$
P_{max}^{b}	Maximum value of P _p ^b	$g C (g Chl)^{-1} s^{-1}$
P_r	Ratio of N_z/K_z	none
P_S, P_N	Stirring power at springs/neaps position of a TM front	$W m^{-3}$
P_T, P_W	Stirring power of tidal flow and wind	$\mathrm{W}~\mathrm{m}^{-2}$
P_w	Energy flux in waves	$W m^{-1}$
q	Turbulent eddy speed	$m s^{-1}$
q_a	Specific humidity of air	none
q_s	Specific humidity at saturation	none
Q_b	Back radiation from sea surface	$W m^{-2}$
Q_c	Heat loss by conduction	$\mathrm{W}~\mathrm{m}^{-2}$
Q_e	Evaporative heat loss	$W m^{-2}$
Q_i	$Q_s (1-A) - Q_u$	$\mathrm{W}~\mathrm{m}^{-2}$
Q^N	Phytoplankton cell nutrient quota	mmol N $(mg C)^{-1}$
Q^{N}_{max}	Maximum cell nutrient quota	mmol N (mg C) $^{-1}$
Q^{N}_{min}	Minimum cell nutrient quota (subsistence quota)	mmol N (mg C) $^{-1}$
Q_s	Solar energy input to sea surface	$W m^{-2}$
Q_{sed}	Heat exchange with sediments	$\mathrm{W}~\mathrm{m}^{-2}$
Q_u	$Q_b + Q_b + Q_c = \text{total heat loss through sea surface}$	$W m^{-2}$
Q_v	Heat gain from horizontal advection	$W m^{-2}$
ΔQ	Quantity of heat input per unit area	$\mathrm{J}~\mathrm{m}^{-2}$
r_p^b	Phytoplankton-specific respiration rate	C (g Chl) $^{-1}$
		time ⁻¹
r _{SM}	Ratio of constituents S_2 to M_2	none
R R'	Moon and Earth orbital radii about centre of gravity	m
	of Earth – Moon system	
R_d	River discharge	$m^3 s^{-1}$
Re	Reynolds number	none
Rf	Flux form of the Richardson number	none
Ri	Richardson number	none
RN	Rossby number	none
Ro, Ro'	Rossby radius (external and internal)	m
R_w	Freshwater inflow per unit width	$m^2 s^{-1}$
\$	Concentration of a scalar	various
S	Salinity (or generic scalar)	none
SH	Simpson-Hunter stratification parameter	$\log_{10}(m^{-2}s^3)$
S_M, S_H	Stability functions	none
S_v	Velocity shear	s^{-1}

xxiii

List of symbols

_

Symbol	Name	Units
t	Time	S
Т	Temperature in Centigrade	°C
T_a	Air temperature	°C
T_b	Transport in bottom Ekman layer	$m^2 s^{-1}$
T_c	Period of a tidal constituent	S
T_E	Period of Earth's rotation	8
T_I	Inertial period	S
T_K	Kelvin temperature	°K
T_m	Vertical mixing time	S
T_p	Wave period	S
T_{res}	Residence time	S
T_s	Temperature of the sea surface	°C
T_w	Kinetic energy density of waves	$\mathrm{J}~\mathrm{m}^{-2}$
\hat{u}, \hat{v}	Depth-mean velocity components in x , y	$m s^{-1}$
u,v,w	Velocity components in x, y, z	$m s^{-1}$
u' ,v' ,w'	Turbulent velocity components	$m s^{-1}$
u_b, v_b	Velocity at bottom boundary	$m s^{-1}$
u_g	Geostrophic velocity	$m s^{-1}$
u _{max}	Maximum nutrient uptake rate	nmol l^{-1} h^{-1}
u^{v}_{max}	Cell volume-specific uptake rate	mmol $m^{-3} s^{-1}$
u_{NUT}	Uptake rate of nutrient during incubation	nmol l^{-1} h^{-1}
u_s	Surface current speed	$m s^{-1}$
U, V	Depth-integrated transports in x , y	${ m m~s^{-1}}$
U,V,W	Time average velocity components (Chapter 4)	${ m m~s^{-1}}$
U_g	Group velocity of waves	${ m m~s}^{-1}$
V_w	Potential energy density of waves	$\mathrm{J}~\mathrm{m}^{-2}$
V _c	Phytoplankton swimming speed	${ m m~s}^{-1}$
<i>x,y,z</i>	Cartesian coordinates	m
W	Wind speed	${ m m~s^{-1}}$
<i>z</i> ′	Fractional depth z/h	none
Z _{cr}	Critical depth	m
α	Thermal volume expansion coefficient	$^{\circ}\mathrm{C}^{-1}$
α_n	Phase of tidal constituent in TGF	radians
α_q	Maximum light utilisation coefficient	$g C (g Chl)^{-1}m^2 s$
		$\mu { m E}^{-1} { m s}^{-1}$
β	Salinity coefficient of density	none
γ	Compressibility of seawater	Pa^{-1}
γ_s	Ratio of surface current to wind speed	none
Г	$R_{f}/(R_{f}+1)$	none
δ	Angle	radians
3	Rate of energy dissipation to heat	W kg ^{-1} or W m ^{-3}

xxiv

List of symbols

Symbol	Name	Units
\mathcal{E}_{s}	Emissivity	none
ζ	Vertical displacement	m
η	Surface elevation	m
η_v	Kolmogorov microscale	m
θ	Angle	radians
κ	von Kármán constant	none
λ	Wavelength	m
μ	molecular viscosity	$N m^{-2} S$
μ^N	Nutrient-dependent specific growth rate	$time^{-1}$
μ^{N}_{max}	Maximum nutrient-dependent specific growth rate	time ⁻¹
v	Kinematic viscosity	$m^2 s^{-1}$
ξ	Density gradient = $(1 / \rho_0) \partial \rho / \partial x$	m^{-1}
ρ	Density of seawater	$kg m^{-3}$
$\hat{ ho}$	Depth-averaged density	$kg m^{-3}$
$ ho_0$	Reference density	$\mathrm{kg}~\mathrm{m}^{-3}$
ρ_a	Density of air	$\mathrm{kg}~\mathrm{m}^{-3}$
$ ho_s$	Surface density	$kg m^{-3}$
σ	Standard deviation of dispersion	m
σ_s	Stefan's constant	$W m^{-2} K^{-4}$
σ_{STP}	Density as ρ -1000	$kg m^{-3}$
σ_t	Density as ρ -1000 at zero pressure	$kg m^{-3}$
τ	Tangential stress	Ра
τ_b	Bottom stress	Ра
τ_W	Wind stress on sea surface	Ра
τ_x, τ_y	Horizontal stress components	Ра
ϕ	Velocity potential function	$m^2 s^{-1}$
ϕ_L	Latitude	degrees
Φ	Potential energy anomaly	$\mathrm{J}~\mathrm{m}^{-3}$
χ	Surface slope = $\partial \eta / \partial x$	none
ψ	Angle	radians
$\Psi(\omega)$	Frequency spectrum of kinetic energy	$m^2 s^{-1}$
ω	Angular frequency	s^{-1}
ω_a	Annual cycle angular frequency	s^{-1}
ω_n	Tidal constituent angular frequency	s^{-1}
Ω	Earth's angular speed of rotation	s^{-1}

Note: This list includes the principal symbols used in the book. You will find a number of additional symbols, which are used only locally and are defined at the point of use.