Index

absorption bound states/scattering 464–6
perturbation theory 318–23
phase shifts 403–4
three dimension scattering 369–71
adiabatic perturbations 310–12
Aharonov–Bohm effects 129–31
ammonia 148–50, 244–6
amplitudes composite systems/Green’s function 430–1
partial waves 386–406
scattering 386–92, 430–1
three dimension scattering 372–4
angles 120–32, 479–501
addition of 518–28
angles/Gauge invariance/spin 125–6
appendices 524–7
classical physics 96–7
Clebsch–Gordon coefficients 522–4
eigenfunctions 495–6
eigenstates 518–21
free particles 94–8
matrices 487–9
operators 495–6
problems 131–2, 501, 528
quantum mechanics/symmetry groups 510
recursion relations 522–4
scalar functions 483–5
spherical harmonics 495–501
spin ½ systems 254, 524–7
state vectors 1–2
superposition principles 7–8
three dimension scattering 374–7
time-dependent perturbations 293–6
time-independent bound state perturbations
277–81, 303–10
two-body problems 255, 293, 294, 295
unitary operators 9–11, 17–18
atomic excitation 561–3
atom excitations, relativity theory 561–3
atom excitations, perturbation theory 325–8
barriers 137–45, 161–3, 344–7, 455–8
basic formalism 1–23
completeness relations 8–9
density operators 18–20
diagonalization 16–18
Dirac equations 597–600
eigenstates 4–5, 6–7, 16–18
eigenvalues 6–7
Hermitian conjugation 5–6
Hermitian operators 5–6
matrix diagonalization 16–18
matrix formalism 12–15
measurement 20–1
operators 3–4, 5–7, 9–11, 17–20
oscillation/regeneration 265–7
physical observables 3–4
problems 21–3
state vectors 1–2
vertex functions 497–501
spin ½ systems 254, 524–7
wavefunctions 814–16
antisymmetric cases 667–70
approximation methods 450–69, 586–7
arbitrary directions, particles with spin ½ 109–10
arbitrary matrices, particles with spin ½ 111–12
arbitrary tensors, relativity theory 561–3
atom excitations, perturbation theory 325–8
appendices 821–4
derivation 822–4
divergent integrals 806
δZ_4 derivative calculations 822–4
photons 811–12, 813–16, 821–2
propagators 811–12, 813–16, 821–2
radiative corrections 811–12, 817–21
renormalization 816
vertex functions 806–11
wavefunctions 814–16
www.cambridge.org
bilinear covariant terms 643–4
Bohr radii 35–6
Born approximations 363, 399
Bose–Einstein condensation 736–42
 ground states 736–40
 integer spins 736–40
 many-body systems 736–40
 problems 742
 quasiparticles 736–40
bound states 137–73
 absorption 464–6
 ammonia molecules 148–50
 approximation methods 450–69
 basic formalism 277–81
 Cartesian coordinates 156–7
 degenerate states 287–9
 delta-function potentials 145–7
 Eikonal approximations 461–6
 energy levels 454–5
 finite barriers 140–5, 161–3
 harmonic oscillators 281–4
 hydrogen-like atoms 164–9
 linear Stark effects 289–90
 matrices 140, 144–5
 perfect absorption 465–6
 periodic potentials 151–6
 problems 290–2, 466–8
 relative distances 157–9
 second-order Stark effects 284–7
 separable potentials 156–7
 simple systems 137–45, 160–4
 S-matrices 407–9, 410–12, 417
 spherically symmetric potentials 159–60
 spherical walls 160–1
 square-well potentials 163–4
 symmetric potentials 147–8, 159–60
 three dimensions 156–60
 time-independent perturbations 277–92
 variational methods 458–61

canonical commutators 26–8
canonical momenta 123–4
canonical quantization 690–3
 Cartesian coordinates 84–7, 156–7
 Casimir effects 693–7
 charge-current conservation 633–5
 charged particles
 absorption cross-sections 318–23
 Coulomb excitations 325–8
 Dirac equations 647–50
 electromagnetic fields 318–23
 ionization 328–31
 perturbation theory 318–41
 photoelectric effects 323–5
 problems 339–41
 Raman scattering 331–9

Rayleigh scattering 331–9
second-order perturbations 331–9
Thomson scattering 331–9
three dimension scattering 366
Clebsch–Gordon coefficients 522–4, 527–8
 coefficients 342–4, 522–4, 527–8
 coherent states 187–202
 appendices 199–200
 eigenstates 187–92
 operators 187–92, 199–200
 problems 200–2
 semiclassical descriptions 192–4
 commutators
 appendices 44–52
 Dirac equations 626–8
 free particles 98–9
 operators/state vectors 24–54
 problems 52–4
 completeness condition 636–40
 completeness relations 8–9
 complex φ values 746–7
 complex poles 431
 complex potentials 267–9
 complex scalar fields 678–80
 composite systems 427–49
 appendices 447–9
 complex poles 431
 dispersion relations 447–9
 reaction matrices 432–41
 resonances 430–2
 stable states 429
 unstable states 429
Compton scattering 790–1
condensed matter 699–718
constant magnetic fields 251–4
constant perturbations 236–7
continuous symmetry 760–2
continuous variables 24–6, 672–4
continuum limits 471–3
contravariant vectors 557–60
coordinate axes 479–83
Coulomb excitations 325–8
Coulomb potentials 587–8
covariant equations 575, 631–2
 covariance forms 633–5, 687
 covariant terms 643–4
 covariant vectors 557–61
creation operators 666–70
cross-sections 299–303, 318–23, 783–6
current
 Dirac equations 633–5
 Dirac particles 651–3
 Klein–Gordon equations 576–8
 Lagrangian formulation 748, 749
decay 265–9, 303–10
decomposition 640–1, 651–3
degeneracy question 210–12

degenerate states 287–9
delta-function potentials 145–7
density matrices 114–15
density operators 18–20, 66
derivation
anomalous magnetic moment/Lamb shifts 822–4
commutator/time evolution 29–30
Dirac equations 628–30, 634–5
Dirac particles 650
spin orbit terms 628–30
destruction operators 666–70
diagonalization 16–18
dimensional regularization 802–5
Dimac equations 597–610
appendices 626–30, 644–6
basic formalism 597–600
bilinear covariant terms 643–4
charge-current conservation 633–5
commutators [KH] 626–8
completeness condition 636–40
covariant equations 631–2
derivation 634–5
EM fields 653–5
γ-matrices 632–3, 644–6
γµ 633
Gordon decomposition 640–1
Hermitian conjugates 633
hydrogen atoms 616–18
hydrogen atoms states 623–4
hydrogen atom wavefunctions 624–6
Klein–Gordon equations 653–5
K-operators 613–16
Lorentz transformations 642–4
negative-energy solutions 604–5
nonrelativistic limits 615–16
normalization 636–40
positive-energy solutions 602–4
probability conservation 605–6
projection operators 639–40
relativistically invariant forms 631–46
spherically symmetric potentials 611–30
spin ½ systems 607–10
spin-orbit coupling 611–13
spinor solutions 600–1
w(p) components 601–5
Dirac fields 680–3, 689–90, 749
Dirac particles
appendices 661–2
electromagnetic current 651–3
electromagnetic fields 647–62
Gordon decomposition 651–3
Hamiltonian 647–50
Lagrangian formulation 753–4
matrices 661–2
propagators 655–7
scattering 657–61
spins 661–2
trace properties 661–2
discrete symmetry 758–60
dispersion relations 447–9
dynamical equations 55–72
density operators 66
Ehrenfest's theorem 68–9
energy-time uncertainty relations/time-dependent states 63–6
Heisenberg pictures 57–9
Interaction pictures 59–63
probability conservation 67–8
problems 69–72
Schrödinger pictures 55–7
uncertainty relations 63–6
Ehrenfest's theorem 68–9
eigenfunctions 77–8, 495–6
eigenstates
angular momenta 518–21
basic formalism 4–5, 6–7, 16–18
coherent states 187–92
infinitesimal rotations 489–94
isotropic harmonic oscillators 203–7
particles with spin ½ 105, 108–10
two-level problems 231–4
eigenvalues 6–7, 176–7, 233–4, 489–94
Eikonal approximations 461–6
electric fields 194–9
electromagnetic fields
appendices 661–2
Dirac equations 651–3
Dirac particles 647–62
electromagnetic current 651–3
EM fields 653–5
Gordon decomposition 651–3
Hamiltonian 647–50
Klein–Gordon equations 653–5
perturbation theory 318–23
relativity theory 564–6
electrons
basic quantum electrodynamics/Feynman diagrams 786–92
composite systems 445–7
Fermi energy 699–703
interacting electron gases 704–8
perturbation theory 318–23
phonon interactions 699–718
radiative corrections 794–9
Stern–Gerlach experiments 133–4
EM fields 653–5
energy
bound states/scattering 454–5
Σ/ 398–9
Dirac equations 602–5
electron-phonon interactions 699–703
Index

Klein–Gordon equations 576–8
radiative corrections 794–9
time-independent bound state perturbations 281–3
time uncertainty relations 63–6
two-level problems 233–4
ensemble averages 114–15
entangled states 549–55
Bell’s inequality 553–5
definition 549–50
problems 555
singlet states 551–2
Euler-Lagrange equations 469–71
exactly solvable bound-state problems 137–73
ammonia molecules 148–50
cartesian coordinates 156–7
delta-function potentials 145–7
finite barriers 140–5, 161–3
hydrogen-like atoms 164–9
matrices 140, 144–5
periodic potentials 151–6
problems 170–3
relative distances 157–9
separable potentials 156–7
simple systems 137–45, 160–4
spherically symmetric potentials 159–60
spherical walls 160–1
square-well potentials 163–4
symmetric potential 147–8
three dimensions 156–60
excited states 726–7
exclusion principles 116–18
exponentials 199–200
Fermi energy 116–18, 699–703
Fermi’s golden rule 296–9
Fermi systems 220–1
ferromagnetism 756–7
Feynman diagrams 770–92
cross-sections 783–6
electron-electron systems 786–9
electron-photon systems 789–92
perturbation theory 770–3
two-body scattering 786
Wick’s theorem 777–83
Feynman integration 801–2
Feynman path integrals 469–78
continuum limits 471–3
Euler-Lagrange equations 469–71
Green’s function 473–6
N–intervals 476–8
N oscillators 471–3
problems 478
time evolution operators 473–6
finite barriers 140–5, 161–3, 345–7
formalism
exactly solvable bound-state problems 159–60

jost functions 413–20
superconductivity 727–31
time-dependent perturbations 293–6
two-level problems 223–5, 226–9, 234–6
formal theories 358–85
Fourier transforms 77–8
free fields 672–4
free particles 73–102
angular momentum 94–7
angular variables 97–8
cartesian coordinates 84–7
commutators 98–9
Feynman transforms 77–8
group velocity 83–4
Klein–Gordon equations 576–8
L^2 value determination 97–8
ladder operators 100–2
minimum uncertainty wave packets 78–83
momentum eigenfunctions 77–8
normalization 75–7
one dimension systems 73–5
plane waves 83–4
problems 102
radial wave equations 91–2
spherical coordinates 87–90
three-dimensions 84–90
time-dependent perturbations 301–3
$Y_{lm} (\theta, \phi)$ properties 92–4
gap functions 726–7
gases 704–8
gauge invariance 120–32, 579–81, 750–4
gauge theory 754
Ginzburg–Landau equations 733–4
G–matrices 436–8
Gordon decomposition 640–1, 651–3
Green’s function
appendices 447–9
complex poles 431
dispersion relations 447–9
Feynman path integrals 473–6
poles 427–49
reaction matrices 432–41
resonances 430–2
stable states 429
superconductivity 727–31
time dimension scattering 358–60, 383–4
time-evolution operators 427–9
unstable states 429
ground states 35–6, 725–6, 736–40
group states 299–303
half-integer spins 719–24
Hall effect 208–22
Hamiltonian 203–7, 647–50
harmonic oscillators 174–86
coherent states 194–9
harmonic oscillators (Cont.)
eigenvalues 176–7
Heisenberg representations 174–81
matrices 178
one dimension systems 174–84
operators 175–6
time dependence 178–9
time-independent bound state perturbations 281–4
two-dimensions 203–7
wavefunctions 179–81
harmonic perturbations 281–4, 296–301
harmonics, spherical 495–501
harmonic time dependence 240–4
heavy nuclei 703
Heisenberg pictures 57–9
Heisenberg representations 174–81
helium atoms 459–61
Hermitian conjugates 5–6, 633
Hermitian operators 5–7, 30–1
Higgs mechanism 765–9
high-energy behavior, δ 399
hydrogen atoms
Bohr radii/ground-state energies 35–6
Dirac equations 616–18, 623–6
Klein–Gordon/Maxwell’s equations 593–6
hydrogen-like atoms 164–9
inelastic amplitudes 403–4
infinite barriers 137–40, 344–5
infinitesimal Lorentz transformations 569–72
infinitesimal rotations 489–94
infinitesimal transformations 481–3
integer spins 736–40
Interaction pictures 59–63
interaction potentials 587–9
intrinsic magnetic moment 126–8
invariance
Dirac equations 631–46
Lagrangian formulation 750–4
Maxwell’s equations 579–81
relativity theory 563–9
irreducible tensors 529–48
appendices 541–8
construction 541–4
\(D(\chi)\) 533–6
higher systems 547–8
problems 548
\(SO(3)\) groups 541–8
spheres 529–33
\(SU(2)\) groups 541–8
two spin \(\frac{1}{2}\) particles 545–7
\(Y_{lm}(\theta, \phi)\) 533–6
Young’s tableau 541–8
isotropic harmonic oscillators 203–7
jost functions 413–20, 421–4
kinematic momenta 123–4
Klein–Gordon equations 575–96
appendices 593–6
Dirac equations 653–5
free particles 576–8
multiparticle systems/second quantization 674–8
propagators 583–5
relativity theory 556–74
static approximations 586–7
Klein–Gordon fields 746–8
ladder operators 100–2, 495–6, 664–5
Lagrangian formulation
basic structure 743–4
classical fields 743–54
complex \(\phi\) values 746–7
conserved current 748, 749
Dirac fields 749
Dirac particles 753–4
gauge invariance 750–4
gauge theory 754
Klein–Gordon fields 746–8
Maxwell’s equations 750–4
Noether’s theorem 744–5
real \(\phi\) values 746
scalar particles 753–4
Lagrangian methods 469–78
continuum limits 471–3
Euler-Lagrange equations 469–71
\(N\) oscillators 471–3
problems 478
Lamb shifts 806–24
appendices 821–4
derivation 822–4
divergent integrals 806
d\(\Omega\)\(2\) derivative calculations 822–4
photons 811–12, 813–16, 821–2
propagators 811–12, 813–16, 821–2
radiative corrections 811–12, 817–21
renormalization 816
vertex functions 806–11
wavefunctions 814–16
Landau levels 208–22
basic equations 208–10
degeneracy question 210–12
Fermi systems 220–1
problems 221–2
symmetric gauge 208–12
wavefunctions 212–14, 220–1
level crossings 231–3
Levinson’s theorem 420–1
lie algebra 513–14
linear Stark effects 289–90
Lippmann–Schwinger equations 360–3
Lorentz covariance 687
Lorentz transformations 556–7, 569–72, 642–4
lowering operators 175–6, 187–92
magnetism 806–24
relativity theory 564–6
spin ½ systems 251–9
Stern–Gerlach experiments 133–4
time-dependent perturbations 314–15
many-body systems 719–24, 736–40
matrices
analytical structure 407–26
angular momentum/rotations 487–9
basic formalism 12–15, 16–18
composite systems/Green’s function 432–41
diagonalization 16–18
Dirac equations 632–3, 644–6
Dirac particles 661–2
exactly solvable bound-state problems 140, 144–5
harmonic oscillators 178
multiparticle systems/second quantization 671–2
normalization 578–9
particles with spin ½ 104, 106–7, 111–12, 114–15
three dimension scattering 372–4, 378–82
Maxwell fields 683–7, 689
Maxwell’s equations 575–96
appendices 593–6
Lagrangian formulation 750–4
propagators 581–3
relativity theory 556–74
static approximations 587
Meissner effects 732–4
mesons 260–76
minimum uncertainty wave packets 78–83
mixed angles 226–9, 237–40
Møller scattering 788–9
Mott scattering 787–8
multiparticle systems 663–98
canonical quantization 690–3
Casimir effects 693–7
complex scalar fields 678–80
continuous variables 672–4
creation operators 666–70
destruction operators 666–70
Dirac fields 860–3, 869–90
free fields 672–4
identical particle wave functions 663–4
Klein–Gordon equations 674–8
ladder operators 664–5
Lorentz covariance 687
matrices 671–2
Maxwell fields 683–7, 689
occupation number space 664–5
operators 664–5, 666–71
problems 697–8
propagators 688–90
scalar fields 674–80, 688–9
single-particle relations 670–1
time-ordered products 688–90
Nambu-Goldstone bosons 762–5
negative energies 576–8, 604–5
neutral K-mesons 260–76
neutrinos 260–76
Noether’s theorem 744–5
nonrelativistic limits 615–16, 786–92
nonrelativistic processes 587–9
normalization
anomalous magnetic moment/Lamb shifts 816
Dirac equations 636–40
free particles 75–7
matrices 578–9
radiative corrections 793–4
normal states 724–5
occupation number space 664–5
one-dimensional systems
electron-phonon interactions 699–701
exactly solvable bound-state problems 137–45
free particles 73–5
harmonic oscillators 174–84
scattering 342–57
operators
angular momentum/rotations 495–6
appendices 44–52
basic formalism 3–4, 5–7, 9–11, 17–20
coherent states 187–92, 199–200
commutator/time evolution 24–54
Dirac equations 613–16, 639–40
dynamical equations 66
Feynman path integrals 473–6
free particles 100–2
Green’s function 427–9
harmonic oscillators 175–6
multiparticle systems/second quantization 664–5,
666–71
particles with spin ½ 112–14
problems 52–4
rotations 487–9
optical theorem 367–9, 382
orbital angular momentum
angular momentum/Gauge invariance/spin 125–6
quantum mechanics/symmetry groups 510
scalar functions 483–5
spin ½ systems 524–7
orbit coupling 611–13
oscillation/oscillators
coherent states 194–9
complex potentials 267–9
Feynman path integrals/Lagrangian methods 471–3
harmonics 174–86
problems 276
oscillation/oscillators (Cont.)
solar neutrino puzzle 260–3
stable systems 269–73
time-independent bound state perturbations 281–4
two-dimensions 203–7
two-level systems 260–76
unstable systems 269–73

pair production 791
parity transformations 505–6
partial waves 386–406
Born approximations 399
\(\chi_l \) values 392–4
\(\delta_l \) 396–9
energy 398–9
integral relations 393–4
\(K_l \) values 392–4
potentials 395, 396
problems 405–6
Ramsauer-Townsend effects 397
scattering amplitudes 386–92
\(S \)-matrices 412–13
\(T_l \) values 392–4
Wronskians 395–9

particles with spin \(\frac{1}{2} \) 103–19
arbitrary directions 109–10
arbitrary matrices 111–12
complete wavefunctions 116
density matrices 114–15
eigenstates 105, 108–10
ensemble averages 114–15
Fermi energy 116–18
matrices 104, 106–7, 111–12, 114–15
Pauli exclusive principles 116–18
Pauli matrices 104, 111–12
problems 118–19
projection operators 112–14
\(\sigma_i \) 110–11
\(\sigma_x \) 106–8
\(\sigma_y \) 106–8
Pauli exclusive principles 116–18
Pauli matrices 104, 111–12
perfect absorption 465–6
periodic potentials 151–6
perturbations
absorption cross-sections 318–23
basic quantum electrodynamics/Feynman
diagrams 789–92
bound states 277–92
charged particles 318–41
Coulomb excitations 325–8
electromagnetic fields 318–23
ionization 328–31
photoelectric effects 323–5
problems 339–41

radiation 318–41
Raman scattering 331–9
Rayleigh scattering 331–9
second-order perturbations 331–9
Thomson scattering 331–9
time-dependent 293–317
two-level problems 236–7
phase shifts 386–406
absorption 403–4
Born approximations 399
calculation examples 400–4
\(\chi_l \) values 392–4
\(\delta_l \) 396–9
energy 398–9
inelastic amplitudes 403–4
integral relations 393–4
\(K_l \) values 392–4
potentials 395, 396
problems 405–6
Ramsauer-Townsend effects 397
scattering amplitudes 386–92
\(S \)-matrices 419–20
square wells 400
\(T_l \) values 392–4
Wronskians 395–9

photons 699–718
photoelectric effects 323–5

anomalous magnetic moment/Lamb shifts 811–12, 813–16, 821–2
basic quantum electrodynamics/Feynman
diagrams 789–92
composite systems 442–4
electron-phonon interactions 714–16
radiative corrections 800–1
Rutherford scattering 590–1
plane waves 83–4
polar angles 254
positive-energy solutions 602–4
positrons 791–2
potential wells 348–51
probability conservation 67–8, 124–5, 367–9, 605–6
projection operators 112–14, 639–40
propagators
anomalous magnetic moment/Lamb shifts 811–12, 813–16, 821–2
Dirac particles 655–7
Klein–Gordon equations 583–5
Maxwell’s equations 581–3
multiparticle systems/second quantization 688–90
radiative corrections 800–1
“pure” Lorentz transformations 569–72
quantization 663–98
quantum electrodynamics 770–92
quantum Hall effect 208–22
Fermi systems 220–1
problems 221–2
wavefunctions 212–14, 220–1
quasiparticles 736–40
Rabi’s formula 237–40
radial Dirac equations 618–23
radial wave equations 91–2
radiation
absorption cross-sections 318–23
Coulomb excitations 325–8
electromagnetic fields 318–23
ionization 328–31
perturbation theory 318–41
photoelectric effects 323–5
problems 339–41
Raman scattering 331–9
Rayleigh scattering 331–9
second-order perturbations 331–9
Thomson scattering 331–9
radiative corrections 793–805
anomalous magnetic moment/Lamb shifts 811–12, 817–21
appendices 799–805
dimensional regularization 802–5
electrons 794–9
Feynman integration 801–2
propagators 800–1
renormalization 793–4
self-energy 794–9
vertex functions 800–1
Ward identities 799–801
raising operators 175–6
Raman scattering 331–9
Ramsauer-Townsend effects 397
Rayleigh scattering 331–9
reaction matrices 432–41
real ϕ values 746
recursion relations 522–4
regeneration
complex potentials 267–9
problems 276
solar neutrino puzzle 260–3
stable systems 269–73
two-level systems 260–76
unstable systems 269–73
relativistically invariant equations 563–9
relativistically invariant forms 631–46
relativity theory 556–74
appendices 569–72
arbitrary tensors 561–3
classical mechanics 566–9
contravariant vectors 557–60
covariant vectors 557–61
electromagnetism 564–6
infinitesimal Lorentz transformations 569–72
Lorentz transformations 556–7, 569–72
problems 572–4
“pure” Lorentz transformations 569–72
relativistically invariant equations 563–9
rotations 569–72
renormalization 793–4, 816
resonances
composite systems/Green’s function 430–2
one dimension scattering 351–3
S-matrices 409–13, 418
spin $\frac{1}{2}$ systems 255–8
time-dependent perturbations 303–10
resonant electron-atom scattering 445–7
resonant photon-atom scattering 442–4
grid spheres 402–3
grid walls 348–51
rotations 479–501
coordinate axes 479–83
eigenfunctions 495–6
eigenstates/eigenvalues 489–94
matrices 487–9
operators 487–9, 495–6
problems 501
quantum mechanics/symmetry groups 502–4
relativity theory 569–72
spherical harmonics 495–501
state vectors 485–7
$Y_{lm}(\theta, \phi)$ 497–501
Rutherford scattering
basic quantum electrodynamics/Feynman diagrams 786–7
Dirac particles 657–61
dimension three scattering 365
virtual particles 590–1
scalar fields 674–80, 688–9
scalar functions 483–5
scalar particles 753–4
scattering
absorption 369–71, 464–6
amplitudes 372–4, 386–92, 430–1
appendices 383–4
approximation methods 450–69
basic quantum electrodynamics/Feynman diagrams 786–92
Bhabha scattering 792
Born approximations 363
charge distributions 366
composite systems/Green’s function 430–1, 442–7
Compton scattering 790–1
Dirac particles 657–61
Eikonal approximations 461–6
energy levels 454–5
finite barriers 345–7
Green’s function 358–60, 383–4

scattering (Cont.)

infinite barriers 344–5
infinite ranges 345–7
integrals 383–4
Lippmann–Schwinger equations 360–3
Moller scattering 788–9
Mott scattering 787–8
one dimension systems 342–57
optical theorem 367–9, 382
perfect absorption 465–6
perturbation theory 331–9
phase shifts 386–92
potential wells 348–51
probability conservation 367–9
problems 356–7, 384–5, 466–8
reflection 342–4
resonances 351–3
rigid walls 348–51
Rutherford scattering 365, 590–1, 657–61, 786–7
S-matrices 374–81
square-wells 351–3
Thompson scattering 789–90
three dimensions 358–85
time-dependent perturbations 399–303
T-matrices 372–4, 378–82
transmission coefficients 342–4
tunneling 354–6
unitarity 378–81
variational methods 458–61
virtual particles 589–92
Yukawa potentials 364–5
Yukawa scattering 592
Schrödinger pictures 55–7, 181–4
second-order perturbations 331–9
second-order Stark effects 284–7
second quantization 663–98
canonical quantization 690–3
Casimir effects 693–7
complex scalar fields 678–80
continuous variables 672–4
creation operators 666–70
destruction operators 666–70
Dirac fields 680–3, 689–90
free fields 672–4
identical particle wave functions 663–4
Klein–Gordon equations 674–8
ladder operators 664–5
Lorentz covariance 687
matrices 671–2
Maxwell fields 683–7, 689
occupation number space 664–5
problems 697–8
propagators 688–90
scalar fields 674–80, 688–9
time-ordered products 688–90
self-energy 794–9
single-particle relations 670–1
singlet states 551–2
S-matrices
analytical structure 407–26
bound states 407–9, 410–12, 417
complex poles 412–13
δ0(k) phase shift 419–20
F0(k) 424–5
F(k) zero values 416
integral representations 424–5
jost functions 413–20, 421–4
Levinson’s theorem 420–1
partial waves 412–13
phase shifts 419–20
poles 407–13, 417–19
problems 426
residues 418–19
resonances 409–13, 418
three dimension scattering 374–81
solar neutrino puzzle 260–3
space displacement operators 36–41
spheres
angular momentum/rotations 495–501
Dirac equations 611–30
exactly solvable bound-state problems 159–61
free particles 87–90
phase shifts 402–3
tensor properties 529–33
spinor solutions 600–1, 635–6
spin systems 103–19, 120–32, 254–8
angular momentum/Gauge invariance/spin 128–9
appendices 626–30
Bose–Einstein condensation/superfluidity 736–40
constant magnetic fields 251–4
derivation 628–30
Dirac equations 607–10, 611–13
Dirac particles 661–2
irreducible tensors/Wigner–Eckart theorem 545–7
magnetic fields 251–9
magnetic resonance 255–8
orbital angular momentum 524–7
polar angle α 254
problems 131–2, 258–9
quantum mechanics/symmetry groups 510–11, 514–16
superconductivity 719–24
time dependent magnetic fields 255–8
time-dependent perturbations 314–15
z-directions 252–3, 256–7
see also particles with spin ½
spontaneous symmetry breaking 755–69
BCS mechanisms 755–6
classical field theory 758–60
continuous symmetry 760–2
discrete symmetry 758–60
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ferromagnetism</td>
<td>756–7</td>
</tr>
<tr>
<td>Higgs mechanism</td>
<td>765–9</td>
</tr>
<tr>
<td>Nambu-Goldstone bosons</td>
<td>762–5</td>
</tr>
<tr>
<td>SSB</td>
<td>758–2</td>
</tr>
<tr>
<td>square-wells</td>
<td>163–4, 351–3, 400</td>
</tr>
<tr>
<td>stable systems</td>
<td>269–73, 429</td>
</tr>
<tr>
<td>Stark effects</td>
<td>284–7, 289–90</td>
</tr>
<tr>
<td>state vectors</td>
<td></td>
</tr>
<tr>
<td>angular momentum/rotations</td>
<td>485–7</td>
</tr>
<tr>
<td>appendices</td>
<td>44–52</td>
</tr>
<tr>
<td>basic formalism</td>
<td>1–2</td>
</tr>
<tr>
<td>commutator/time evolution</td>
<td>24–54</td>
</tr>
<tr>
<td>problems</td>
<td>52–4</td>
</tr>
<tr>
<td>static approximations</td>
<td>586–7</td>
</tr>
<tr>
<td>Stern–Gerlach experiments</td>
<td>133–6</td>
</tr>
<tr>
<td>electrons</td>
<td>133–4</td>
</tr>
<tr>
<td>magnetic moment</td>
<td>133–4</td>
</tr>
<tr>
<td>problems</td>
<td>136</td>
</tr>
<tr>
<td>results discussion</td>
<td>134–6</td>
</tr>
<tr>
<td>set-up</td>
<td>133–4</td>
</tr>
<tr>
<td>superconductivity</td>
<td>719–35</td>
</tr>
<tr>
<td>BCS condensates</td>
<td>727–31</td>
</tr>
<tr>
<td>BCS states</td>
<td>725–7</td>
</tr>
<tr>
<td>excited states</td>
<td>726–7</td>
</tr>
<tr>
<td>gap functions</td>
<td>726–7</td>
</tr>
<tr>
<td>Ginzburg–Landau equations</td>
<td>733–4</td>
</tr>
<tr>
<td>Green’s function</td>
<td>727–31</td>
</tr>
<tr>
<td>ground states</td>
<td>725–6</td>
</tr>
<tr>
<td>half-integer spins</td>
<td>719–24</td>
</tr>
<tr>
<td>many-body systems</td>
<td>719–24</td>
</tr>
<tr>
<td>Meissner effects</td>
<td>732–4</td>
</tr>
<tr>
<td>normal states</td>
<td>724–5</td>
</tr>
<tr>
<td>problems</td>
<td>735</td>
</tr>
<tr>
<td>superfluidity</td>
<td>736–42</td>
</tr>
<tr>
<td>ground states</td>
<td>736–40</td>
</tr>
<tr>
<td>integer spins</td>
<td>736–40</td>
</tr>
<tr>
<td>many-body systems</td>
<td>736–40</td>
</tr>
<tr>
<td>problems</td>
<td>742</td>
</tr>
<tr>
<td>quasiparticles</td>
<td>736–40</td>
</tr>
<tr>
<td>superposition</td>
<td>7–8, 63–6, 83–4</td>
</tr>
<tr>
<td>symmetry</td>
<td>502–17</td>
</tr>
<tr>
<td>bound-state problems</td>
<td>147–8, 159–60</td>
</tr>
<tr>
<td>breaking</td>
<td>755–69</td>
</tr>
<tr>
<td>creation/destruction operators</td>
<td>666–7</td>
</tr>
<tr>
<td>definition</td>
<td>511–12</td>
</tr>
<tr>
<td>Dirac equations</td>
<td>611–30</td>
</tr>
<tr>
<td>examples</td>
<td>512–13</td>
</tr>
<tr>
<td>Landau levels</td>
<td>208–12</td>
</tr>
<tr>
<td>lie algebra</td>
<td>513–14</td>
</tr>
<tr>
<td>orbital angular momentum</td>
<td>510</td>
</tr>
<tr>
<td>parity transformations</td>
<td>505–6</td>
</tr>
<tr>
<td>problems</td>
<td>516–17</td>
</tr>
<tr>
<td>quantum mechanics/symmetry groups</td>
<td>502–17</td>
</tr>
<tr>
<td>rotational symmetry</td>
<td>502–4</td>
</tr>
<tr>
<td>spin systems</td>
<td>510–11, 514–16</td>
</tr>
<tr>
<td>time reversals</td>
<td>507–11</td>
</tr>
<tr>
<td>tensors</td>
<td>529–48</td>
</tr>
<tr>
<td>appendices</td>
<td>541–8</td>
</tr>
<tr>
<td>construction</td>
<td>541–4</td>
</tr>
<tr>
<td>(D^{(\chi)})</td>
<td>533–6</td>
</tr>
<tr>
<td>higher systems</td>
<td>547–8</td>
</tr>
<tr>
<td>problems</td>
<td>548</td>
</tr>
<tr>
<td>relativity theory</td>
<td>561–3</td>
</tr>
<tr>
<td>SO(3) groups</td>
<td>541–8</td>
</tr>
<tr>
<td>spheres</td>
<td>529–33</td>
</tr>
<tr>
<td>SU(2) groups</td>
<td>541–8</td>
</tr>
<tr>
<td>two spin (\frac{1}{2}) particles</td>
<td>545–7</td>
</tr>
<tr>
<td>(Y_{lm}(\theta, \phi))</td>
<td>533–6</td>
</tr>
<tr>
<td>Young’s tableau</td>
<td>541–8</td>
</tr>
<tr>
<td>Thomson scattering</td>
<td>331–7, 789–90</td>
</tr>
<tr>
<td>time dependence</td>
<td>293–317</td>
</tr>
<tr>
<td>adiabatic perturbations</td>
<td>310–12</td>
</tr>
<tr>
<td>appendices</td>
<td>310–15</td>
</tr>
<tr>
<td>basic formalism</td>
<td>293–6</td>
</tr>
<tr>
<td>Berry’s phase</td>
<td>312–15</td>
</tr>
<tr>
<td>decay</td>
<td>303–10</td>
</tr>
<tr>
<td>dynamical equations</td>
<td>63–6</td>
</tr>
<tr>
<td>Fermi’s golden rule</td>
<td>296–9</td>
</tr>
<tr>
<td>free particle scattering</td>
<td>301–3</td>
</tr>
<tr>
<td>group states</td>
<td>299–303</td>
</tr>
<tr>
<td>harmonic oscillators</td>
<td>178–9</td>
</tr>
<tr>
<td>harmonic perturbations</td>
<td>296–301</td>
</tr>
<tr>
<td>magnetic fields</td>
<td>314–15</td>
</tr>
<tr>
<td>problems</td>
<td>315–17</td>
</tr>
<tr>
<td>resonance</td>
<td>303–10</td>
</tr>
<tr>
<td>scattering cross-sections</td>
<td>299–303</td>
</tr>
<tr>
<td>spin (\frac{1}{2}) systems</td>
<td>255–8</td>
</tr>
<tr>
<td>spin alignment</td>
<td>314–15</td>
</tr>
<tr>
<td>two-level problems</td>
<td>234–46</td>
</tr>
<tr>
<td>time evolution</td>
<td></td>
</tr>
<tr>
<td>appendices</td>
<td>44–52</td>
</tr>
<tr>
<td>Feynman path integrals</td>
<td>473–6</td>
</tr>
<tr>
<td>Green’s function</td>
<td>427–9</td>
</tr>
<tr>
<td>operators/state vectors</td>
<td>24–54</td>
</tr>
<tr>
<td>problems</td>
<td>52–4</td>
</tr>
<tr>
<td>time independence</td>
<td></td>
</tr>
<tr>
<td>basic formalism</td>
<td>277–81</td>
</tr>
<tr>
<td>bound states</td>
<td>277–92</td>
</tr>
<tr>
<td>degenerate states</td>
<td>287–9</td>
</tr>
<tr>
<td>harmonic oscillators</td>
<td>281–4</td>
</tr>
<tr>
<td>linear Stark effects</td>
<td>289–90</td>
</tr>
<tr>
<td>problems</td>
<td>290–2</td>
</tr>
<tr>
<td>second-order Stark effects</td>
<td>284–7</td>
</tr>
<tr>
<td>two-level problems</td>
<td>223–34</td>
</tr>
<tr>
<td>time-ordered products</td>
<td>688–90</td>
</tr>
<tr>
<td>time reversals</td>
<td>507–11</td>
</tr>
</tbody>
</table>
Index

T-matrices 372–4, 378–82, 435–6
transformation operators 10–11
transmission coefficients 342–4
tunneling 354–6, 455–8
two-body scattering 786
two-dimensions systems 203–7
two-level systems 223–50
ammonia maser 244–6
constant perturbations 236–7
eigenstates 231–4
eigenvalues 233–4
energy eigenstates 233–4
harmonic time dependence 240–4
level crossing 231–3
mixed angles 237–40
neutral K-mesons/neutrinos 260–76
oscillation/regeneration 260–76
problems 246–30, 276
Rabi’s formula 237–40
solar neutrino puzzle 260–3
switching eigenstates 231–3
time-dependent problems 234–46
time-independent problems 223–34
two spin ½ particles 545–7

uncertainty

dynamical equations 63–6
free particles 78–83
operators/state vectors 32–6
unitarity 9–11, 17–18, 378–81
unstable systems 269–73, 429

vertex functions 800–1, 806–11
virtual particles 65–6, 586, 589–92
Ward identities 799–801
wavefunctions/waves
anomalous magnetic moment/Lamb shifts 814–16
Dirac equations 624–6
free particles 78–84, 91–2
harmonic oscillators 179–81
identical particles 663–4
Landau levels/quantum Hall effect 212–14, 220–1
partial amplitudes 386–406
particles with spin $\frac{1}{2}$ 116
time-independent bound state perturbations 283–4
white dwarfs 703
Wick’s theorem 777–83
Wigner–Eckart theorem 529–48
appendices 541–8
applications 538–40
higher systems 547–8
problems 548
SO(3) groups 541–8
SU(2) groups 541–8
two spin $\frac{1}{2}$ particles 545–7
Young’s tableau 541–8
Wronskians 395–9, 416

Young’s tableau 541–8
Yukawa potentials 364–5, 588–9
Yukawa scattering 592
zero mass 579–81, 590–1
zero values 416, 417–18, 421–4