
1 Basic formalism

We summarize below some of the postulates and definitions basic to our formalism, and
present some important results based on these postulates. The formalism is purely mathe-
matical in nature with very little physics input, but it provides the structure within which
the physical concepts that will be discussed in the later chapters will be framed.

1.1 State vectors

It is important to realize that the Quantum Theory is a linear theory in which the physical
state of a system is described by a vector in a complex, linear vector space. This vector
may represent a free particle or a particle bound in an atom or a particle interacting with
other particles or with external fields. It is much like a vector in ordinary three-dimensional
space, following many of the same rules, except that it describes a very complicated physical
system. We will be elaborating further on this in the following.

The mathematical structure of a quantum mechanical system will be presented in terms
of the notations developed by Dirac.

A physical state in this notation is described by a “ket” vector, |〉, designated variously
as |α〉 or |ψ〉 or a ket with other appropriate symbols depending on the specific problem at
hand. The kets can be complex. Their complex conjugates, |〉∗, are designated by 〈| which
are called “bra” vectors. Thus, corresponding to every ket vector there is a bra vector.
These vectors are abstract quantities whose physical interpretation is derived through their
so-called “representatives” in the coordinate or momentum space or in a space appropriate
to the problem under consideration.

The dimensionality of the vector space is left open for the moment. It can be finite, as
will be the case when we encounter spin, which has a finite number of components along
a preferred direction, or it can be infinite, as is the case of the discrete bound states of the
hydrogen atom. Or, the dimensionality could be continuous (indenumerable) infinity, as for
a free particle with momentum that takes continuous values. A complex vector space with
these properties is called a Hilbert space.

The kets have the same properties as a vector in a linear vector space. Some of the most
important of these properties are given below:

(i) |α〉 and c |α〉, where c is a complex number, describe the same state.
(ii) The bra vector corresponding to c |α〉 will be c∗ 〈α|.
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2 Basic formalism

(iii) The kets follow a linear superposition principle

a |α〉 + b |β〉 = c |γ 〉 (1.1)

where a, b, and c are complex numbers. That is, a linear combination of states in a
vector space is also a state in the same space.

(iv) The “scalar product” or “inner product” of two states |α〉 and |β〉 is defined as

〈β| α〉. (1.2)

It is a complex number and not a vector. Its complex conjugate is given by

〈β| α〉∗ = 〈α| β〉. (1.3)

Hence 〈α| α〉 is a real number.
(v) Two states |α〉 and |β〉 are orthogonal if

〈β| α〉 = 0. (1.4)

(vi) It is postulated that 〈α| α〉 ≥ 0. One calls
√〈α| α〉 the “norm” of the state |α〉 . If a

state vector is normalized to unity then

〈α| α〉 = 1. (1.5)

If the norm vanishes, then |α〉 = 0, in which case |α〉 is called a null vector.
(vii) The states |αn〉 with n = 1, 2, . . . , depending on the dimensionality, are called a set

of basis kets or basis states if they span the linear vector space. That is, any arbitrary
state in this space can be expressed as a linear combination (superposition) of them.
The basis states are often taken to be of unit norm and orthogonal, in which case they
are called orthonormal states. Hence an arbitrary state |φ〉 can be expressed in terms
of the basis states |αn〉 as

|φ〉 =
∑

n

an |αn〉 (1.6)

where, as stated earlier, the values taken by the index n depends on whether the space
is finite- or infinite-dimensional or continuous. In the latter case the summation is
replaced by an integral. If the |αn〉’s are orthonormal then an = 〈αn |φ〉. It is then
postulated that |an|2 is the probability that the state |φ〉 will be in state |αn〉.

(viii) A state vector may depend on time, in which case one writes it as |α(t)〉, |ψ(t)〉, etc.
In the following, except when necessary, we will suppress the possible dependence
on time.

(ix) The product |α〉 |β〉, has no meaning unless it refers to two different vector spaces,
e.g., one corresponding to spin, the other to momentum; or, if a state consists of two
particles described by |α〉 and |β〉 respectively.

(x) Since bra vectors are obtained through complex conjugation of the ket vectors, the
above properties can be easily carried over to the bra vectors.
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3 1.2 Operators and physical observables

1.2 Operators and physical observables

A physical observable, like energy or momentum, is described by a linear operator that has
the following properties:

(i) If A is an operator and |α〉 is a ket vector then

A |α〉 = another ket vector. (1.7)

Similarly, for an operator B,

〈α| B = another bra vector (1.8)

where B operates to the left
(ii) An operator A is linear if, for example,

A [λ |α〉 + µ |β〉] = λA |α〉 + µA |β〉 (1.9)

where λ and µ are complex numbers. Typical examples of linear operators are deriva-
tives, matrices, etc. There is one exception to this rule, which we will come across in
Chapter 27 which involves the so called time reversal operator where the coefficients
on the right-hand side are replaced by their complex conjugates. In this case it is called
an antilinear operator.

If an operator acting on a function gives rise to the square of that function, for
example, then it is called a nonlinear operator. In this book we will be not be dealing
with such operators.

(iii) A is a called a unit operator if, for any |α〉,

A |α〉 = |α〉, (1.10)

in which case one writes

A = 1. (1.11)

(iv) A product of two operators is also an operator. In other words, if A and B are operators
then AB as well as BA are operators. However, they do not necessarily commute under
multiplication, that is,

AB �= BA (1.12)

in general. The operators commute under addition, i.e., if A and B are two
operators then

A + B = B + A. (1.13)
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4 Basic formalism

They also exhibit associativity, i.e., if A, B, and C are three operators then

A + (B + C) = (A + B) + C. (1.14)

Similarly A (BC) = (AB) C.
(v) B is called an inverse of the operator A if

AB = BA = 1, (1.15)

in which case one writes

B = A−1. (1.16)

(vi) The quantity |α〉 〈β| is called the “outer product” between states |α〉 and |β〉. By
multiplying it with a state |γ 〉 one obtains

[|α〉 〈β|] γ 〉 = [〈β| γ 〉] |α〉 (1.17)

where on the right-hand side the order of the terms is reversed since 〈β| γ 〉 is a number.
The above relation implies that when |α〉 〈β| multiplies with a state vector it gives
another state vector. A similar result holds for the bra vectors:

〈γ [|α〉 〈β|] = [〈γ |α〉] 〈β| . (1.18)

Thus |α〉 〈β| acts as an operator.
(vii) The “expectation” value, 〈A〉 , of an operator A in the state |α〉 is defined as

〈A〉 = 〈α| A |α〉 . (1.19)

1.3 Eigenstates

(i) If the operation A |α〉 gives rise to the same state vector, i.e., if

A |α〉 = (constant) × |α〉 (1.20)

then we call |α〉 an “eigenstate” of the operator A, and the constant is called the “eigen-
value” of A. If |α〉’s are eigenstates of A with eigenvalues an, assumed for convenience to
be discrete, then these states are generally designated as |an〉. They satisfy the equation

A |an〉 = an |an〉 (1.21)

with n = 1, 2, . . . depending on the dimensionality of the system. In this case one may
also call A an eigenoperator.

(ii) If |αn〉 is an eigenstate of both operators A and B, such that

A |αn〉 = an |αn〉 , and B |αn〉 = bn |αn〉 (1.22)
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5 1.4 Hermitian conjugation and Hermitian operators

then we have the results

AB |αn〉 = bnA |αn〉 = bnan |αn〉 , (1.23)

BA |αn〉 = anB |αn〉 = anbn |αn〉 . (1.24)

If the above two relations hold for all values of n then

AB = BA. (1.25)

Thus under the special conditions just outlined the two operators will commute.

1.4 Hermitian conjugation and Hermitian operators

We now define the “Hermitian conjugate” A†, of an operator A and discuss a particular class
of operators called “Hermitian” operators which play a central role in quantum mechanics.

(i) In the same manner as we defined the complex conjugate operation for the state vectors,
we define A† through the following complex conjugation

[A |α〉]∗ = 〈α| A† (1.26)

and

〈β| A |α〉∗ = 〈α| A† |β〉 . (1.27)

If on the left-hand side of (1.26), |α〉 is replaced by c |α〉 where c is a complex
constant, then on the right-hand side one must include a factor c∗.

(ii) From (1.26) and (1.27) it follows that if

A = |α〉 〈β| (1.28)

then

A† = |β〉 〈α| . (1.29)

At this stage it is important to emphasize that |α〉, 〈β| α〉, |α〉 〈β|, and |α〉 |β〉 are
four totally different mathematical quantities which should not be mixed up: the first
is a state vector, the second is an ordinary number, the third is an operator, and the
fourth describes a product of two states.

(iii) The Hermitian conjugate of the product operator AB is found to be

(AB)† = B†A†. (1.30)

This can be proved by first noting from (1.27) that for an arbitrary state |α〉
[(AB) |α〉]∗ = 〈α| (AB)† . (1.31)
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6 Basic formalism

If we take

B |α〉 = |β〉 (1.32)

where |β〉 is another state vector, then the left-hand side of (1.31) can be written as

[(AB) |α〉]∗ = [A |β〉]∗ . (1.33)

From the definition given in (1.26) we obtain

[A |β〉]∗ = 〈β| A† =
[
〈α| B†

]
A† = 〈α| B†A† (1.34)

where we have used the fact that 〈β| = [B |α〉]∗ = 〈α| B†. Since |α〉 is an arbitrary
vector, comparing (1.31) and (1.34), we obtain (1.30).

(iv) Finally, if

A = A† (1.35)

then the operator A is called “Hermitian.”

1.5 Hermitian operators: their eigenstates and
eigenvalues

Hermitian operators play a central role in quantum mechanics. We show below that the
eigenstates of Hermitian operators are orthogonal and have real eigenvalues.

Consider the eigenstates |an〉 of an operator A,

A |an〉 = an |an〉 (1.36)

where |an〉’s have a unit norm. By multiplying both sides of (1.36) by 〈an| we obtain

an = 〈an| A |an〉 . (1.37)

Taking the complex conjugate of both sides we find

a∗
n = 〈an| A |an〉∗ = 〈an| A† |an〉 = 〈an| A |an〉 . (1.38)

The last equality follows from the fact that A is Hermitian (A† = A). Equating (1.37) and
(1.38) we conclude that a∗

n = an. Therefore, the eigenvalues of a Hermitian operator must
be real.

An important postulate based on this result says that since physically observable quantities
are expected to be real, the operators representing these observables must be Hermitian.
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7 1.6 Superposition principle

We now show that the eigenstates are orthogonal. We consider two eigenstates |an〉 and
|am〉 of A,

A |an〉 = an |an〉 , (1.39)

A |am〉 = am |am〉 . (1.40)

Taking the complex conjugate of the second equation we have

〈am| A = am 〈am| (1.41)

where we have used the Hermitian property of A, and the fact that the eigenvalue am is real.
Multiplying (1.39) on the left by 〈am| and (1.41) on the right by |an〉 and subtracting, we
obtain

(am − an) 〈am| an〉 = 0. (1.42)

Thus, if the eigenvalues αm and αn are different we have

〈am| an〉 = 0, (1.43)

which shows that the two eigenstates are orthogonal. Using the fact that the ket vectors are
normalized, we can write the general orthonormality relation between them as

〈am| an〉 = δmn (1.44)

where δmn is called the Kronecker delta, which has the property

δmn = 1 for m = n (1.45)

= 0 for m �= n.

For those cases where there is a degeneracy in the eigenvalues, i.e., if two different states
have the same eigenvalue, the treatment is slightly different and will be deferred until later
chapters.

We note that the operators need not be Hermitian in order to have eigenvalues. However,
in these cases none of the above results will hold. For example, the eigenvalues will not
necessarily be real. Unless otherwise stated, we will assume the eigenvalues to be real.

1.6 Superposition principle

A basic theorem in quantum mechanics based on linear vector algebra is that an arbitrary
vector in a given vector space can be expressed as a linear combination – a superposition –
of a complete set of eigenstates of any operator in that space. A complete set is defined to
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8 Basic formalism

be the set of all possible eigenstates of an operator. Expressing this result for an arbitrary
state vector |φ〉 in terms of the eigenstates |an〉 of the operator A, we have

|φ〉 =
∑

n

cn |an〉 (1.46)

where the summation index n goes over all the eigenstates with n = 1, 2, . . . . If we multiply
(1.46) by 〈am| then the orthonormality relation (1.44) between the |an〉’s yields

cm = 〈am| φ〉. (1.47)

It is then postulated that |cm|2 is the probability that |φ〉 contains |am〉. That is, |cm|2 is the
probability that |φ〉 has the eigenvalue am. If |φ〉 is normalized to unity, 〈φ| φ〉 = 1, then∑

n

|cn|2 = 1. (1.48)

That is, the probability of finding |φ〉 in state |an〉, summed over all possible values of n,
is one.

Since (1.46) is true for any arbitrary state we can express another state |ψ〉 as

|ψ〉 =
∑

n

c′
n |an〉 . (1.49)

The scalar product 〈ψ |φ〉 can then be written, using the orthonormality property of the
eigenstates, as

〈ψ |φ〉 =
∑

m

c′∗
mcm (1.50)

with c′
m = 〈am| ψ〉 and cm = 〈am| φ〉.

The above relations express the fact that the state vectors can be expanded in terms of
the eigenstates of an operator A. The eigenstates |an〉 are then natural candidates to form a
set of basis states.

1.7 Completeness relation

We consider now the operators |an〉 〈an| , where the |an〉’s are the eigenstates of an operator
A, with eigenvalues an. A very important result in quantum mechanics involving the sum
of the operators |an〉 〈an| over the possibly infinite number of eigenvalues states that∑

n

|an〉 〈an| = 1 (1.51)

where the 1 on the right-hand side is a unit operator. This is the so called “completeness
relation”.
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9 1.8 Unitary operators

To prove this relation we first multiply the sum on the left hand of the above equality by
an arbitrary eigenvector |am〉 to obtain[∑

n

|an〉 〈an|
]

|am〉 =
∑

n

|an〉 〈an| am〉 =
∑

n

|an〉 δnm = |am〉 (1.52)

where we have used the orthonormality of the eigenvectors. Since this relation holds for
any arbitrary state |am〉, the operator in the square bracket on the left-hand side acts as a
unit operator, thus reproducing the completeness relation.

If we designate

Pn = |an〉 〈an| (1.53)

then

Pn |am〉 = δnm |am〉 . (1.54)

Thus Pn projects out the state |an〉 whenever it operates on an arbitrary state. For this reason
Pn is called the projection operator, in terms of which one can write the completeness
relation as ∑

n

Pn = 1. (1.55)

One can utilize the completeness relation to simplify the scalar product 〈ψ | φ〉, where
|φ〉 and |ψ〉 are given above, if we write, using (1.51)

〈ψ | φ〉 = 〈ψ | 1 |φ〉 = 〈ψ |
[∑

n

|an〉 〈an|
]

|φ〉 =
∑

n

〈ψ | an〉 〈an| φ〉 =
∑

n

c′∗
n cn. (1.56)

This is the same result as the one we derived previously as (1.50).

1.8 Unitary operators

If two state vectors |α〉 and
∣∣α′〉 have the same norm then

〈α| α〉 = 〈
α′∣∣ α′〉. (1.57)

Expressing each of these states in terms of a complete set of eigenstates |an〉 we obtain

|α〉 =
∑

n

cn |an〉 and
∣∣α′〉 =

∑
n

c′
n |an〉 . (1.58)

The equality in (1.57) leads to the relation∑
n

|cn|2 =
∑

n

∣∣c′
n

∣∣2 , (1.59)

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87760-2 - Quantum Mechanics with Basic Field Theory
Bipin R. Desai
Excerpt
More information

http://www.cambridge.org/9780521877602
http://www.cambridge.org
http://www.cambridge.org


10 Basic formalism

which signifies that, even though cn may be different from c′
n, the total sum of the

probabilities remains the same.
Consider now an operator A such that

A |α〉 = ∣∣α′〉 . (1.60)

If |α〉 and
∣∣α′〉 have the same norm, then

〈α| α〉 = 〈
α′∣∣ α′〉 = 〈α| A†A |α〉 . (1.61)

This implies that

A†A = 1. (1.62)

The operator A is then said to be “unitary.” From relation (1.60) it is clear that A can change
the basis from one set to another. Unitary operators play a fundamental role in quantum
mechanics.

1.9 Unitary operators as transformation operators

Let us define the following operator in term of the eigenstates |an〉 of operator A and
eigenstates |bn〉 of operator B,

U =
∑

n

|bn〉 〈an| . (1.63)

This is a classic example of a unitary operator as we show below. We first obtain the
Hermitian conjugate of U ,

U † =
∑

n

|an〉 〈bn| . (1.64)

Therefore,

UU † =
[∑

n

|bn〉 〈an|
] ∑

m

|am〉 〈bm| =
∑ ∑

|bn〉 〈an| am〉 〈bm| =
∑

|bn〉 〈bn| = 1

(1.65)

where we have used the orthonormality relation 〈an| am〉 = δnm and the completeness
relation for the state vectors |bn〉 discussed in the previous section. Hence U is unitary.

We note in passing that ∑
n

|an〉 〈an| (1.66)

is a unit operator which is a special case of a unitary operator when 〈bn| = 〈an|.
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