There is widespread acceptance that much of the developed world faces a potential pensions and welfare crisis as a result of declining birth rates and an ageing population. However, there is considerable uncertainty about the specifics of demographic forecasting and this has significant implications for public finances. *Uncertain Demographics and Fiscal Sustainability* addresses the economic consequences of uncertainty and, with particular reference to European economies, explores the impact of demographic risks on public finances, including pension systems, health care and old-age care expenditures. Covering a spectrum of theoretical and empirical approaches, different types of computational models are used to demonstrate not only the magnitudes of the uncertainties involved but also how these can be addressed through policy initiatives. The book is divided into four parts covering demographic, measurement, policy and methodological issues. Each part is followed by a discussion essay that draws out key elements and identifies common themes.

Juha M. Alho is Professor of Statistics at the University of Joensuu, Finland. He is the author (with Bruce D. Spencer) of *Statistical Demography and Forecasting* (2005) and a former president of the Finnish Society of Biostatistics.

Svend E. Hougaard Jensen is Managing Director of the Copenhagen-based Centre for Economic and Business Research (CEBR), Professor of Economics at Copenhagen Business School and a member of the Danish Council for Research Policy.

Jukka Lassila is Research Director at the Research Institute of the Finnish Economy (ETLA) in Helsinki. He has co-ordinated several international research projects concerning population ageing and was scientific co-ordinator in the EU Fifth Framework research project ‘Demographic Uncertainty and the Sustainability of Social Welfare Systems’.
Uncertain Demographics and Fiscal Sustainability

Edited by

Juha M. Alho, Svend E. Hougaard Jensen and Jukka Lassila
Contents

List of figures vii
List of tables xi
List of contributors xiv
Preface xvi

1 Introduction 1
JUHA M. ALHO, SVEND E. HOUGAARD JENSEN AND JUKKA LASSILA

Part I Uncertain demographics

2 Changing views of future demographic trends 11
NICO KEILMAN, HARRI CRUIJSEN AND JUHA M. ALHO

3 Empirically based specification of forecast uncertainty 34
JUHA M. ALHO, HARRI CRUIJSEN AND NICO KEILMAN
Comment: The UPE forecasts: strengths, innovations, developments 55
SHRIPAD TULJAPURKAR

Part II Measuring sustainability in a stochastic environment

4 Fiscal implications of demographic uncertainty: comparisons across the European Union 65
MARTIN WEALE

5 Demographic uncertainty and pension projections 82
JUKKA LASSILA AND TARMO VALKONEN
vi Contents

6 Demographic uncertainty and health care expenditure 94
 namkee ahn

Comment: Assessing the uncertainty in long-term fiscal projections 109
 pablo antolin

Part III Enhancing sustainability

7 Evaluating pension reforms in the German context 117
 hans fehr and christian habermann

8 Longevity adjustment of pension benefits 137
 jukka lassila and tarmo valkonen

9 Ageing, demographic uncertainty and optimal fiscal policy 161
 alex armstrong, nick draper, andre nibbelink and ed westervot

Comment: Computable equilibrium models in policy analysis: future directions 184
 d. peter broer

Part IV Extensions

10 Macro-economic consequences of demographic uncertainty in world regions 195
 vladimir borgy and juha m. alho

11 Informational assumptions, aggregate mortality risk and life-cycle saving 219
 juha m. alho and nikku maattanen

12 Uncertain demographics, longevity adjustment of the retirement age and intergenerational risk-sharing 239
 svend e. hougaard jensen and ole hagen jorgensen

13 A general equilibrium analysis of annuity rates in the presence of aggregate mortality risk 258
 justin van de ven and martin weale

Comment: The economics of demographic uncertainty 270
 martin floden

Index 275
Figures

2.1 Forecasts of average annual rate of population growth in EEA+ countries to 2050. Averages across eighteen EEA+ countries (UN, UPE) and fifteen EU-15 countries (Eurostat) page 15

2.2 Total fertility rate assumptions in EEA+ countries, 2045–2049. Averages across eighteen EEA+ countries (UN, UPE) and fifteen EU-15 countries (Eurostat) 16

2.3 Total fertility rate in eighteen EEA+ countries, 1900–2000 18

2.4 Life expectancy assumptions in EEA+ countries, 2045–2049. Averages across eighteen EEA+ countries (UN, UPE) and fifteen EU-15 countries (Eurostat) 22

2.5 Life expectancy at birth in eighteen EEA+ countries, 1900–2000 23

2.6 Net migration assumptions in EEA+ countries, 2045–2049. Averages across eighteen EEA+ countries (UN, UPE) and fifteen EU-15 countries (Eurostat) 26

3.1 Scales for age-specific mortality in forecast year 1 and forecast year 47 46

3.2 Relative standard deviation of age-specific mortality for ages 40+ 47

3.3 Distribution of gross migration by age: males and females 49

IC.1 Volatility of birth cohorts: Sweden, 1900–2005 57
IC.3 Growth of 1–5 cohort: Sweden, 2040–2050 59
IC.4 UPE assumptions for distribution of age at death: Sweden, 2002 and 2048 60

4.1 Frequency distribution of the tax increase needed to restore long-term fiscal balance: Belgium 76

4.2 Frequency distribution of the tax increase needed to restore long-term fiscal balance: Finland 76
List of figures

4.3 Frequency distribution of the tax increase needed to restore long-term fiscal balance: in Germany 77
4.4 Frequency distribution of the tax increase needed to restore long-term fiscal balance: The Netherlands 78
4.5 Frequency distribution of the tax increase needed to restore long-term fiscal balance: Spain 78
4.6 Frequency distribution of the tax increase needed to restore long-term fiscal balance: United Kingdom 79
6.1 Per-capita public health expenditure (as % of GDP/capita) by age 96
6.2 Forecast of old-age dependency ratio in Spain 98
6.3 Forecasted public health expenditure (2004=1) in Spain 99
6.4 Effect of distinguishing survival status on health expenditure: 50% prediction interval of public hospital expenditure (2004=1) 103
6.5 Importance of cost pressure in health expenditure (2004=1): effect of additional 1% annual increase in age-specific health expenditure (+) 105
IIC.1 Histogram: increase in age-related spending in 2050 (percentage points of GDP) 111
7.1 Total population 121
7.2 Old-age dependency ratio (population aged 65–100/ population aged 20–64), 2004–2050 122
7.3 Pension contribution rates, 2004–2050 127
7.4 Health care contribution rates, 2004–2050 128
7.5 Consumption tax rates, 2004–2050 129
7.6 Replacement rates of reform options, 2004–2050 130
7.7 Contribution rates of reform options, 2004–2050 131
7.8 Expected welfare effects of the pension reforms (as percentage of remaining lifetime resources) 132
7.9 Intergenerational risk-sharing implications (normalized ratio of standard deviation) 134
8.1 Pension contribution and replacement rates in Finland in 2030 and 2050 151
8.2 Sustainability and adequacy 153
8.3 The effect of longevity adjustment on the actuarial rates of three cohorts 155
9.1 Optimal tax policy curve in the deterministic scenario 170
9.2 Stochastic distribution of the total dependency ratio 172
9.3 Distribution of required labour income tax increases 173
List of figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4</td>
<td>Optimal tax policy curves in the deterministic and stochastic scenarios</td>
</tr>
<tr>
<td>9.5</td>
<td>Demographic uncertainty and household risk aversion</td>
</tr>
<tr>
<td>9.6</td>
<td>Optimal fiscal policy and the long-run budget constraint under certainty and uncertainty</td>
</tr>
<tr>
<td>10.1</td>
<td>Point forecast of the dependency ratio (retired persons divided by total working-age population), 2000–2050</td>
</tr>
<tr>
<td>10.2</td>
<td>Point forecast of the high saver population (age-group 45–69 years) as percentage of the total population, 1960–2050</td>
</tr>
<tr>
<td>10.3</td>
<td>Stochastic forecasts of the world population, 2000–2050: independence of interregional forecast errors</td>
</tr>
<tr>
<td>10.4</td>
<td>World interest rate as a function of the G3 dependency ratio in 2030 under the assumption that interregional forecast errors are independent</td>
</tr>
<tr>
<td>10.5</td>
<td>World interest rate as a function of the G3 dependency ratio in 2030 under the assumption that interregional forecast errors have a correlation of 0.2</td>
</tr>
<tr>
<td>10.6</td>
<td>Working-age population annual growth rate, 1995–2050: difference from baseline scenario</td>
</tr>
<tr>
<td>10.7</td>
<td>Evolution of net saving (as percentage of GDP), 1995–2045: difference from baseline scenario</td>
</tr>
<tr>
<td>10.8</td>
<td>Evolution of current account balance in the INGENUE 2 model (percentage of world GDP), 2000–2050</td>
</tr>
<tr>
<td>10.9</td>
<td>Current account as a function of saving in Western Europe in 2025 under the assumption that interregional forecast errors are independent</td>
</tr>
<tr>
<td>10.10</td>
<td>Current account as a function of saving in Western Europe in 2025 under the assumption that interregional forecast errors are perfectly correlated</td>
</tr>
<tr>
<td>10.11</td>
<td>Current accounts as a function of saving in the Indian region in 2025 under the assumption that interregional forecast errors are independent</td>
</tr>
<tr>
<td>10.12</td>
<td>Current account as a function of saving in the Indian region in 2025 under the assumption that interregional forecast errors are perfectly correlated</td>
</tr>
<tr>
<td>11.1</td>
<td>Histogram of average lifetimes in 10,000 simulations</td>
</tr>
<tr>
<td>11.2</td>
<td>Welfare costs of using period 1 point forecast vs rational expectations</td>
</tr>
<tr>
<td>11.3</td>
<td>Welfare costs of constant expectations vs rational expectations as a function of average lifetime</td>
</tr>
</tbody>
</table>
List of figures

<table>
<thead>
<tr>
<th>Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.4</td>
<td>Welfare costs of updated point forecasts vs rational expectations</td>
<td>231</td>
</tr>
<tr>
<td>11.5</td>
<td>Welfare costs of updated point forecasts vs rational expectations as a function of average lifetime</td>
<td>231</td>
</tr>
<tr>
<td>11.6</td>
<td>Welfare gains of perfect foresight vs rational expectations</td>
<td>233</td>
</tr>
<tr>
<td>11.7</td>
<td>Welfare gains of perfect foresight vs rational expectations as a function of average lifetime</td>
<td>233</td>
</tr>
<tr>
<td>11.8</td>
<td>Average welfare gains of perfect foresight vs rational expectations (upper curve), and average welfare gains of using updated point forecasts vs rational expectations (lower curve) as a function of average lifetime</td>
<td>235</td>
</tr>
<tr>
<td>12.1</td>
<td>Adult lifetime, work and retirement</td>
<td>242</td>
</tr>
<tr>
<td>13.1</td>
<td>Supply and demand for annuities ($\gamma = 0.3; \sigma^2 = 0.01, 0.04$)</td>
<td>264</td>
</tr>
</tbody>
</table>
Tables

2.1 Predictions of the old-age dependency ratio in 2050: selected countries

2.2 Country-specific predictions for the total fertility rate in 2050: UN, Eurostat and UPE forecasts

2.3 Country-specific predictions for life expectancy in 2050: UN, Eurostat and UPE forecasts

2.4 Country-specific predictions for net migration (per thousand of the population in 2000) in 2050: UN, Eurostat and UPE forecasts

3.1 Relative uncertainty as expressed by high and low forecasts of the United Nations (2004) and Eurostat (2005), the relative standard deviation derived by the UPE project (UPE) and as estimated from the empirical errors of the UN forecasts in the period 1970–1990 (EMP), for the total population in 2050

3.2 The standard deviation of the relative error of total fertility during first and last forecast years as specified by the UPE project, and relative uncertainty as expressed by high and low forecasts of the United Nations (2004) and Eurostat (2005)

3.3 The half-width of one-sigma intervals for life expectancy at birth as specified by the UPE project for the year 2049, and the half-width of the high–low interval of Eurostat (2005) for the year 2050

3.4 Scale of total net migration in 2003 and 2049 per thousand of population in year 2000, the estimated autocorrelation \(\kappa \) as specified by the UPE project and the half-width of the high–low interval of Eurostat (2005), per population in year 2005

3.5 Comparison of properties of conventional and stochastic population forecasts
List of tables

4.1 Summary statistics for tax increases needed to restore fiscal balance 79
5.1 Pension expenditure as percentage of GDP in 2003 and 2050 83
5.2 80% predictive ranges of pension expenditure and old-age ratio, as percentage of the median in 2050 84
5.3 Pension expenditure as percentage of GDP in 2050: the EPC’s central projection and its sensitivity range 88
6.1 Summary statistics of uncertainty in old-age dependency ratio and health expenditure in 2050 100
7.1 Parameter values of the model 125
7.2 The initial year 2004 126
7.3 Sustainable consumption tax rate (per cent) 129
8.1 Contribution and replacement rates and longevity adjustment 149
8.2 Sustainability and adequacy gaps and longevity adjustment 154
8.3 Actuarity rates and generational equality 157
9.1 Parameters in the GAMMA model 164
9.2 Key indicators under the baseline scenario with unchanged policies 166
9.3 Fiscal and macro-economic development under labour income tax smoothing 168
9.4 Labour income tax rate increases in the deterministic policy scenarios 169
9.5 Labour income tax rate increases in the stochastic policy scenarios 173
10.1 Coefficients of variation used for the calibration of the uncertainty scale parameters 200
10.2 Quantiles of the predictive distribution of world population in 2050 (billions) 201
10.3 Quantiles of the predictive distribution of the dependency ratio in Western Europe in 2010, 2030 and 2050 202
10.4 Quantiles of the predictive distribution of the dependency ratio in the Russian region in 2010, 2030 and 2050 202
10.5 Quantiles of the predictive distribution of GDP growth in Western Europe in 2010, 2030 and 2050 205
10.6 Quantiles of the predictive distribution of GDP growth in the Russian region in 2010, 2030 and 2050 205
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.7</td>
<td>Quantiles of the predictive distribution of the world interest rate, 2010–2050</td>
<td>206</td>
</tr>
<tr>
<td>10.8</td>
<td>Dependence of standard deviation of world interest rate on interregional correlation of population uncertainty</td>
<td>207</td>
</tr>
<tr>
<td>11.1</td>
<td>Parameter values for the mortality process and the median survival probabilities</td>
<td>223</td>
</tr>
<tr>
<td>11.2</td>
<td>The welfare cost of not taking aggregate mortality risk into account under low information alternatives</td>
<td>228</td>
</tr>
<tr>
<td>11.3</td>
<td>The welfare gain of having perfect foresight vs rational expectations</td>
<td>232</td>
</tr>
<tr>
<td>12.1</td>
<td>Calibration of the model</td>
<td>246</td>
</tr>
<tr>
<td>12.2</td>
<td>Economic effects of a fertility shock</td>
<td>247</td>
</tr>
<tr>
<td>12.3</td>
<td>Economic effects of a longevity shock</td>
<td>248</td>
</tr>
<tr>
<td>12.4</td>
<td>Economic effects of delayed retirement</td>
<td>249</td>
</tr>
<tr>
<td>13.1</td>
<td>Effects of aggregate mortality risk on the annuity market</td>
<td>266</td>
</tr>
</tbody>
</table>
Contributors

NAMKEE AHN Fundacion de Estudios de Economia Aplicada (FEDEA), Spain

JUHA M. ALHO University of Joensuu, Finland

PABLO ANTOLIN OECD

ALEX ARMSTRONG Netherlands Bureau for Economic Policy Analysis (CPB), The Netherlands

VLADIMIR BORGY Centre d’Etudes Prospectives et d’Informations Internationales (CEPII), France

D. PETER BROER Netherlands Bureau for Economic Policy Analysis (CPB), The Netherlands

HARRI CRUIJSEN Democast, The Netherlands

NICK DRAPER Netherlands Bureau for Economic Policy Analysis (CPB), The Netherlands

HANS FEHR University of Würzburg, Germany

MARTIN FLODÉN Stockholm School of Economics, Sweden

CHRISTIAN HABERMANN University of Würzburg, Germany

SVEND E. HOUGAARD JENSEN Centre for Economic and Business Research (CEBR), Denmark

OLE HAGEN JØRGENSEN Centre for Economic and Business Research (CEBR), Denmark

NICO KEILMAN University of Oslo, Norway

JUKKA LASILIA Research Institute of the Finnish Economy (ETLA), Finland
List of contributors

NIKKI MÄTTÄNEN Research Institute of the Finnish Economy (ETLA), Finland

ANDRÉ NIBBELINK Netherlands Bureau for Economic Policy Analysis (CPB), The Netherlands

SHRIPAD TULJAPURKAR Stanford University, USA

TARMO VALKONEN Research Institute of the Finnish Economy (ETLA), Finland

JUSTIN VAN DE VEN National Institute of Economic and Social Research (NIESR), UK

MARTIN WEALE National Institute of Economic and Social Research (NIESR), UK

ED WESTERHOUT Netherlands Bureau for Economic Policy Analysis (CPB), The Netherlands
Preface

This book arose from two research projects, ‘Demographic Uncertainty and the Sustainability of Social Welfare Systems’ (DEMWEL) and ‘Uncertain Population of Europe’ (UPE).

DEMWEL was carried out between January 2003 and March 2006 by research teams from the following nine institutes: CEBR, the Centre for Economic and Business Research, Copenhagen, Denmark; CEPII, Centre d’Etudes Prospectives et d’Informations Internationales, Paris, France; CEPS, the Centre for European Policy Studies, Brussels, Belgium; CPB, the Netherlands Bureau for Economic Policy Analysis, The Hague, The Netherlands; ETLA, the Research Institute of the Finnish Economy, Helsinki, Finland; FEDEA, Fundacion de Estudios de Economia Aplicada, Madrid, Spain; FPB, the Belgian Federal Planning Bureau, Brussels, Belgium; NIESR, the National Institute for Economic and Social Research, London, UK; and the University of Würzburg, Germany.

DEMWEL utilized results produced in UPE. The latter ran from September 2001 to August 2004 and was carried out by researchers from the Central Bureau of Statistics, The Netherlands; the Central Bureau of Statistics, Norway; NIDI, The Netherlands; Statistics Finland; and the University of Joensuu, Finland.

Both DEMWEL and UPE were funded by the EU’s Fifth Framework Programme. A grant from the Yrjö Jahnsson Foundation for editing this book is also gratefully acknowledged.