SANDSTONE LANDFORMS

Sandstones form the backdrop to some of the world's most spectacular scenery – forming high mountain ranges, bold cliffs, extensive plateaus, impressive caverns and magnificent towers. They are found all over the planet and in all climates, from hot deserts to the polar region, and provide the construction material for iconic buildings in numerous countries.

Following on from the authors' successful 1992 book, this is the only volume that considers sandstone landforms from a truly global perspective. It describes the wide variety of landforms that are found in sandstone, and discusses the role of lithological variation, chemical weathering and erosional processes in creating these features, with examples drawn from around the world. Climatic and tectonic constraints on the development of sandstone landscapes are also considered.

This volume provides a comprehensive assessment of the literature from publications in a range of languages, and is illustrated with over 130 photographs of sandstone features from every continent. It presents a holistic account of sandstone terrain for researchers and graduate students in a variety of fields including geography, geomorphology, sedimentology and geomechanics.

ROBERT W. YOUNG received a Ph.D. from the University of Sydney in 1975, and was based for over 20 years in the Earth and Environmental Sciences department at the University of Wollongong, Australia.

ROBERT A. L. WRAY received a Ph.D. from the University of Wollongong in 1996, and is an Honorary Fellow in the Earth and Environmental Sciences department at the same university.

ANN R. M. YOUNG received a Ph.D. from the University of Wollongong in 1983, and was based for 20 years in the Earth and Environmental Sciences department at the same university.

Collectively, the authors have over 70 years' experience in the subject.

SANDSTONE LANDFORMS

ROBERT. W. YOUNG

formerly University of Wollongong, Australia

ROBERT. A. L. WRAY University of Wollongong, Australia

ANN. R. M. YOUNG formerly University of Wollongong, Australia

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521877336

© R. Young, R. Wray and A. Young 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2009

Printed in the United Kingdom at the University Press, Cambridge

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-87733-6 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

	Preface	page ix
1	Introduction	1
	Research methodology	3
	A study of variations in sandstone landforms - the	
	East Kimberley region, Western Australia	5
	Conclusions	14
2	Variations within sandstones	16
	Sedimentation of sand	16
	Classification of sandstones	20
	The effects on landforms of variations in sandstones	24
	Basin characteristics	36
	The influence of vertical sequences within basins	39
	Lateral changes across basins	43
	Conclusions	49
3	Cliffs	51
	Strength-stress relationships in cliffs	51
	Undercutting	58
	Fatigue and weathering effects	60
	Mechanisms of brittle fracture	62
	Block failure	65
	Rock mass strength	78
	Evolution of cliffs	80
	Amphitheatres	83
4	Curved slopes	88
	Cross-bedding	88
	Jointing	90
	Critical partings	94
	Weathering and erosion	95

CAMBRIDGE

Cambridge University Press 978-0-521-87733-6 - Sandstone Landforms Robert. W. Young, Robert. A. L. Wray and Ann. R. M. Young Frontmatter More information

	Contents	vi
	The complex origins of curved forms	99
	Apses, arches and natural bridges	100
	Polygonal cracking	108
5	Chemical weathering	113
	Arenization and the formation of karst in quartzose sandstones	115
	Silica solubility and chemical kinetics	117
	The forms and solubility of naturally occurring pure silica	118
	Bioweathering	124
	Silica transport in streams and groundwater	128
	The locus of chemical attack	130
	Speleothems	133
	Conclusion	141
6	Solutional landforms	142
	Cavernous weathering	143
	Small surface features	155
	Caves	161
	Dolines and shafts	170
	Ruiniform landscapes	172
7	Erosional forms	181
	Bare rock surfaces	181
	Hillslopes and valleysides	184
	Sediment accumulation in upland valleys and the	
	development of dells	187
	Erosion along fractures	190
	Canyons	193
	Channel cutting	199
	Scarp retreat and canyon growth	208
8	Climatic zonation of sandstone terrain	210
	The tropics	213
	Arid and semi-arid lands	218
	Sub-tropical lands	223
	Temperate zones	226
	Polar lands	237
	Conclusions	242
9	Tectonic constraints on landforms	244
	Syn-depositional deformation	244
	Post-depositional deformation at the micro- and mesoscale	246
	Regions of simple post-depositional deformation	247
	An area of simple deformation adjacent to an alpine zone	255
	i J i	-

CAMBRIDGE

Cambridge University Press 978-0-521-87733-6 - Sandstone Landforms Robert. W. Young, Robert. A. L. Wray and Ann. R. M. Young Frontmatter More information

vii Contents	
Complex deformation	256
The effects of earthquakes	264
Erosion as a cause of deformation	266
Planation	268
Conclusions	272
References	273
Index	299

Preface

Sandstones are found worldwide – from Greenland to Antarctica, and on all continents. The Old Red Sandstone forms the spine of Britain, extending from Wales to the Orkney Islands. Its stratigraphy and fossils were studied by the doyen of geology, James Hutton, and were the core of the 'map that changed the world' by the pioneering geologist, William Smith. The world's tallest waterfall, Angel Falls, tumbles over the sandstones of the Roraima in Venezuela. Iconic buildings in many parts of the world are made of sandstone. Movie-goers will recognize the sandstone terrain of Utah in many Westerns and the sandstone spires in the Czech Republic in the film *The Lion, The Witch and The Wardrobe*. Sandstone and its landforms are therefore of interest not only academically but generally.

The Youngs' earlier book, *Sandstone Landforms*, was published by Springer in 1992 (copyright reverted to Robert and Ann Young in 1997). Their aim then was to draw together the main explanations of sandstone geomorphology from accounts scattered throughout the literature, and to add their own field observations. This was written as a high-level academic book, and is now out of print. To our knowledge, its only predecessor was a 1972 treatise in French by Monique Mainguet. Since 1992, the focus of research on sandstones has shifted to what was then a new field – the widespread and significant impacts of silica solution on sandstone landscapes. A major review of European sandstones is due for publication (Hartel *et al.*, in press). Still however, much information remains scattered within a plethora of scientific journals.

Our aim here is to bring together not just an overview of research on sandstone landforms, but a global perspective that includes assessment of the underlying principles used in interpreting the landscapes. We have updated and revised the previous work, and the section on solutional landforms and processes has been greatly expanded. As with the earlier edition, we hope that we can convey some of the fascination and interest – some may even say, absorbtion – that sandstone landscapes have provided for all of us.

Preface

We are grateful to colleagues who have provided photographs (as acknowledged in the captions) and assistance – Piotr Migon, Stefan Doerr, Rowl Twidale, Dennis Netoff, Andy Spate and John Dixon. We acknowledge also the use of photographs from Mr Hong Kaidi, Jan Galloway and the estate of the late J. N. Jennings. At Cambridge University Press, London, we thank Matt Lloyd for arranging the publication, and Diya Gupta, Anna-Marie Lovett and Sarah Lewis for editorial assistance.