SANDSTONE LANDFORMS

Sandstones form the backdrop to some of the world’s most spectacular scenery – forming high mountain ranges, bold cliffs, extensive plateaus, impressive caverns and magnificent towers. They are found all over the planet and in all climates, from hot deserts to the polar region, and provide the construction material for iconic buildings in numerous countries.

Following on from the authors’ successful 1992 book, this is the only volume that considers sandstone landforms from a truly global perspective. It describes the wide variety of landforms that are found in sandstone, and discusses the role of lithological variation, chemical weathering and erosional processes in creating these features, with examples drawn from around the world. Climatic and tectonic constraints on the development of sandstone landscapes are also considered.

This volume provides a comprehensive assessment of the literature from publications in a range of languages, and is illustrated with over 130 photographs of sandstone features from every continent. It presents a holistic account of sandstone terrain for researchers and graduate students in a variety of fields including geography, geomorphology, sedimentology and geomechanics.

ROBERT W. YOUNG received a Ph.D. from the University of Sydney in 1975, and was based for over 20 years in the Earth and Environmental Sciences department at the University of Wollongong, Australia.

ROBERT A. L. WRAY received a Ph.D. from the University of Wollongong in 1996, and is an Honorary Fellow in the Earth and Environmental Sciences department at the same university.

ANN R. M. YOUNG received a Ph.D. from the University of Wollongong in 1983, and was based for 20 years in the Earth and Environmental Sciences department at the same university.

Collectively, the authors have over 70 years’ experience in the subject.
SANDSTONE LANDFORMS

ROBERT. W. YOUNG
formerly University of Wollongong, Australia

ROBERT. A. L. WRAY
University of Wollongong, Australia

ANN. R. M. YOUNG
formerly University of Wollongong, Australia
Contents

Preface

1 Introduction

Research methodology

A study of variations in sandstone landforms – the East Kimberley region, Western Australia

Conclusions

2 Variations within sandstones

Sedimentation of sand

Classification of sandstones

The effects on landforms of variations in sandstones

Basin characteristics

The influence of vertical sequences within basins

Lateral changes across basins

Conclusions

3 Cliffs

Strength–stress relationships in cliffs

Undercutting

Fatigue and weathering effects

Mechanisms of brittle fracture

Block failure

Rock mass strength

Evolution of cliffs

Amphitheatres

4 Curved slopes

Cross-bedding

Jointing

Critical partings

Weathering and erosion
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The complex origins of curved forms</td>
<td>99</td>
</tr>
<tr>
<td>Apses, arches and natural bridges</td>
<td>100</td>
</tr>
<tr>
<td>Polygonal cracking</td>
<td>108</td>
</tr>
<tr>
<td>5 Chemical weathering</td>
<td>113</td>
</tr>
<tr>
<td>Arenization and the formation of karst in quartzose sandstones</td>
<td>115</td>
</tr>
<tr>
<td>Silica solubility and chemical kinetics</td>
<td>117</td>
</tr>
<tr>
<td>The forms and solubility of naturally occurring pure silica</td>
<td>118</td>
</tr>
<tr>
<td>Bioweathering</td>
<td>124</td>
</tr>
<tr>
<td>Silica transport in streams and groundwater</td>
<td>128</td>
</tr>
<tr>
<td>The locus of chemical attack</td>
<td>130</td>
</tr>
<tr>
<td>Speleothems</td>
<td>133</td>
</tr>
<tr>
<td>Conclusion</td>
<td>141</td>
</tr>
<tr>
<td>6 Solutional landforms</td>
<td>142</td>
</tr>
<tr>
<td>Cavernous weathering</td>
<td>143</td>
</tr>
<tr>
<td>Small surface features</td>
<td>155</td>
</tr>
<tr>
<td>Caves</td>
<td>161</td>
</tr>
<tr>
<td>Dolines and shafts</td>
<td>170</td>
</tr>
<tr>
<td>Ruiniform landscapes</td>
<td>172</td>
</tr>
<tr>
<td>7 Erosional forms</td>
<td>181</td>
</tr>
<tr>
<td>Bare rock surfaces</td>
<td>181</td>
</tr>
<tr>
<td>Hillslopes and valleysides</td>
<td>184</td>
</tr>
<tr>
<td>Sediment accumulation in upland valleys and the development of dells</td>
<td>187</td>
</tr>
<tr>
<td>Erosion along fractures</td>
<td>190</td>
</tr>
<tr>
<td>Canyons</td>
<td>193</td>
</tr>
<tr>
<td>Channel cutting</td>
<td>199</td>
</tr>
<tr>
<td>Scarp retreat and canyon growth</td>
<td>208</td>
</tr>
<tr>
<td>8 Climatic zonation of sandstone terrain</td>
<td>210</td>
</tr>
<tr>
<td>The tropics</td>
<td>213</td>
</tr>
<tr>
<td>Arid and semi-arid lands</td>
<td>218</td>
</tr>
<tr>
<td>Sub-tropical lands</td>
<td>223</td>
</tr>
<tr>
<td>Temperate zones</td>
<td>226</td>
</tr>
<tr>
<td>Polar lands</td>
<td>237</td>
</tr>
<tr>
<td>Conclusions</td>
<td>242</td>
</tr>
<tr>
<td>9 Tectonic constraints on landforms</td>
<td>244</td>
</tr>
<tr>
<td>Syn-depositional deformation</td>
<td>244</td>
</tr>
<tr>
<td>Post-depositional deformation at the micro- and mesoscale</td>
<td>246</td>
</tr>
<tr>
<td>Regions of simple post-depositional deformation</td>
<td>247</td>
</tr>
<tr>
<td>An area of simple deformation adjacent to an alpine zone</td>
<td>255</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complex deformation</td>
<td>256</td>
</tr>
<tr>
<td>The effects of earthquakes</td>
<td>264</td>
</tr>
<tr>
<td>Erosion as a cause of deformation</td>
<td>266</td>
</tr>
<tr>
<td>Planation</td>
<td>268</td>
</tr>
<tr>
<td>Conclusions</td>
<td>272</td>
</tr>
<tr>
<td>References</td>
<td>273</td>
</tr>
<tr>
<td>Index</td>
<td>299</td>
</tr>
</tbody>
</table>
Sandstones are found worldwide – from Greenland to Antarctica, and on all
continents. The Old Red Sandstone forms the spine of Britain, extending from
Wales to the Orkney Islands. Its stratigraphy and fossils were studied by the doyen
of geology, James Hutton, and were the core of the ‘map that changed the world’
by the pioneering geologist, William Smith. The world’s tallest waterfall, Angel
Falls, tumbles over the sandstones of the Roraima in Venezuela. Iconic buildings in
many parts of the world are made of sandstone. Movie-goers will recognize the
sandstone terrain of Utah in many Westerns and the sandstone spires in the Czech
Republic in the film *The Lion, The Witch and The Wardrobe*. Sandstone and its
landforms are therefore of interest not only academically but generally.

The Youngs’ earlier book, *Sandstone Landforms*, was published by Springer in
1992 (copyright reverted to Robert and Ann Young in 1997). Their aim then was
to draw together the main explanations of sandstone geomorphology from
accounts scattered throughout the literature, and to add their own field
observations. This was written as a high-level academic book, and is now out
of print. To our knowledge, its only predecessor was a 1972 treatise in French by
Monique Mainguet. Since 1992, the focus of research on sandstones has shifted to
what was then a new field – the widespread and significant impacts of silica
solution on sandstone landscapes. A major review of European sandstones is due
for publication (Hartel et al., in press). Still however, much information remains
scattered within a plethora of scientific journals.

Our aim here is to bring together not just an overview of research on sandstone
landforms, but a global perspective that includes assessment of the underlying
principles used in interpreting the landscapes. We have updated and revised the
previous work, and the section on solutional landforms and processes has been
greatly expanded. As with the earlier edition, we hope that we can convey some
of the fascination and interest – some may even say, absorption – that sandstone
landscapes have provided for all of us.
Preface

We are grateful to colleagues who have provided photographs (as acknowledged in the captions) and assistance – Piotr Migon, Stefan Doerr, Rowl Twidale, Dennis Netoff, Andy Spate and John Dixon. We acknowledge also the use of photographs from Mr Hong Kaidi, Jan Galloway and the estate of the late J. N. Jennings. At Cambridge University Press, London, we thank Matt Lloyd for arranging the publication, and Diya Gupta, Anna-Marie Lovett and Sarah Lewis for editorial assistance.