Index

Note: page numbers in italics refer to figures.


© in this web service Cambridge University Press

www.cambridge.org
Index

knockout models, 412
WRN protein interaction, 825
ATM (ataxia-telangiectasia mutated) protein synthetic lethal relationship, 939–40
ATP-binding cassette transporters, see ABC transporters
ATR protein, 405
WRN protein interaction, 425
ATRIP (ATR-interacting protein), 405
Atu027,896
Aurorokinases (AKs), see Aurorakinase inhibitors (AKIs)
Atu027,896
ATP-binding cassette transporters, see ABC transporters
AZD0530, 68, 232
azacytidine, 609
azacitidine, 909–10
avidin–biotin complex (ABC), 939–40
Aurorakinase B (AURKB), WRN protein interaction, 425
structural homology, 278
ovarian cancer, 613–14
histone deacetylase inhibitors, 915
oxantin–o-mealine complex (ABC), 77
AXIN gene mutations, 252
azacitidine, 909–10
azacytidine, 609
AZD0530, 68, 232
AZD1152, 285
AZD6244, 273, 699
B-cell development, 738
B-cell receptor (BCR), 787–9
Barrett’s esophagus, 526, 528
basal-cell carcinoma (BCC), 693–5
basal-cell nevus syndrome (BCNS), 693
base-excision repair (BER), 424, 466, 938, see also DNA damage response (DDR); DNA repair
bladder cancer, 584, see also urothelial-cell carcinoma (UCC)
B模块, 550
blood islands, 862
Bloom syndrome (BS), 438, 550
bone marrow (BM), 806, 806
bortezomib, 348, 475
oesophageal cancer treatment, 528
bouatinib, 68, 795
BRAF inhibitors, 552
BRAF mutations, 272
colorectal cancer, 550
melanoma, 297, 698, 701
testicular cancer, 625, 626
thyroid cancer, 795, 705–6, 708
brain tumors, 641–2
astrocytomas
high-grade, 642, 643
cancer stem-cell theory, 643–4, 647
cellular origin, 645
classification, 641
ependymomas, 643
high-grade astrocytomas, 641–2
mouse models, 646–8
low-grade astrocytomas, 643
medulloblastoma (MB), 643
meningiomas, 645–6
oligodendroglial tumors (OTs), 643–5
therapeutic possibilities, 648
BRCA1, 938
breast cancer, 601, 938–9
ovarian cancer, 607
BRCA2, 938
breast cancer, 601, 938–9
clastatin resistance association, 614
ovarian cancer, 607
pancreatic cancer, 559
Fanconi anemia protein interaction, 47
breast cancer, 598
14–3–3 protein expression, 298
androgen receptor mutations, 384
biomarkers, 46
BRCA1 deficiency, 601
candidate genes, 10
classification, 598
Erbb2 effects, 62, 85
mouse models, 238
Erbb4 effects, 92
Fox protein effects, 332–3
gene-expression profiles, 47–8
microarray analysis, 930
metastases, mouse models, 238
NFκB role, 346
PPAR role, 395
protein analysis, 53
therapeutics, see also fulvestrant; tamoxifen; trastuzumab
anti-estrogens, 885
aromatase inhibitors (AIs), 884–5
combination therapy, 602–3
Erbb2 targeting, 598–9, 846
PARP inhibitors, 601
resistance, 599–602, 886–8, 938–9
selective estrogen receptor modulators (SERMs), 884–6
toxicity, 600, 603
breast cancer, 10
protein expression (BCRP/ABCG2), 69
brentuximab vedotin, 858
brivanib, 574
Bruce, 370
BUV-377, 549
Burkitt lymphoma (BL), 741
chromosomal translocation, 32, 314, 741
MYC role, 32, 314, 741
CA-125 serum protein biomarker, 48
cabozantinib, 212–13, 214
cadherin, see E-cadherin;
N-cadherin; vascular endothelial cadherin
cag pathogenicity island (cag PAI), 333
CagA, 533–5
CALAA-01, 896
calcitriols, 716
calcimimetics, 716
calcitonin, 720
calcium homeostasis, 712
Calcium (CaM), 120
calcium signaling pathways, 874
Belkinostat, 609
beta-2-Spectrin, 121, 122, 123
beta-catenin, 149, 243, 245–7,
248, 249, 283, 548, see also WNT signaling
colorectal cancer, 545
gastric cancer, 537
melanoma, 700
mutations in cancer, 251
bevacizumab, 67, 348, 856
anti-angiogenic action, 866
colorectal cancer treatment, 552
combination therapy, 70
drug development process,
839–40
oesophageal cancer treatment, 528
mechanism of action, 838
ovarian cancer treatment, 614
renal-cell carcinoma treatment, 580
side effects, 838
BH4 gene, 582
BID protein, 358, 409
biomarkers, 46
clinical trial designs, 932
development strategy, 931, 931
diagnostic, 46
glycolytic proteins, 55
importance of, 46–7
methylation status, 41, 42
treatment response prediction, 41–2
multi-gene signature assessment, 932
prognostic, 46
BIRC3–MALT1 fusion, 743
bisulfite sequencing, 39, 41
Cancer Genome Atlas Pilot Project, 8
cancer stem cells, 447, 535,
645–6, 647, 753–4
telomerase inhibitor effects, 446
candidate genes, 10
breast cancer, 10
hepatocellular carcinoma, 570
parathyroid adenoma, 715
testicular cancer, 624
Capan1 pancreatic cancer cell line, 549
capecitabine, 552
carboplatin, 601
carcinoma-associated fibroblasts (CAFs), 866
Index

Aurora kinase functions, 278–81

cell-cycle phases, 452

centrosome maturation, 279

checkpoint regulation, 281, 295–6, 425, 456

therapeutic approach, 937

chromosomal modification, 281

chromosome alignment during metaphase, 280, 281

cytokinesis, 280, 297

Fox protein roles, 329–30

G1 phase control, 452–4

re-establishment, 458

G1/S and neoc, 329, 406

G2 phase control, 457, 457

cancer focus, 458–9

histone deacetylase inhibitor effects, 915

maxi-therapy, 279–80, 457–8

S-phase control, 455, 454–6

spindle assembly, 280, 458

cell senescence, 330, 442, 443

volume regulation, 281

and, 371

Cellular imaging, 80–1

central nervous system tumors of childhood, 827

centrosome abnormalities, 282, 549

maturation, 279

CEP-701, 154, 759

Cereblon (CRBN), 477

CE0651, 476

CCAA1 enhancer binding protein (C/EBP) over-expression, 579–80

C-caspase hyperplasia (CCH), 720, 721

CCND1 gene, 740

CCNE1 gene, 609

CCT12902, 287

CD133+ cells, 645–6

CD38, 789

CD49d, 789

Cdc25, 296, 407, 457

Cdc34, 476

Cdc42, 476

Cdc6, 456

CDDO, 759

Cdc6, 456

CDK1, neuroblastoma therapy, 674

DNA-damage response, 406–7, 409

CHFR (checkpoint with fork-head-associated and ring finger), 282

chromatin assembly factor 1 (CAF-1), 427

chromatin structure, 409–10, 912

DNA-damage response, 410

WRN protein role, 428

chromosome painting, 28, 29, 30

M-FISH technique, 29–32

spectral karyotyping (SKY), 29–32

chromosomes, see also chromosome painting; cytogenetic analysis aberrations, 28, 313, see also specific conditions

chronic lymphocytic leukemia, 786

lymphomas, 739, 740

alignment during metaphase, 280–1

banding, 281

modification, 281

chronophosphis, 1, 47

chronic lymphocytic leukemia, 786

chromosomal translocations, 786

extrinsic factors, 787–9

B-cell receptor, 789

CD38, 789

CD49d, 789

ZAP-70, 789

intrinsic factors, 786

chronic myeloid leukemia (CML), 786

germline targeting, 796

genomic heterogeneity, 793

treatment, 793

second-generation ABL inhibitors, 795

dasatinib, 68, 739–5, 873–6

imatinib, 739, 872–4

nilotinib, 876

resistance, 793

sequential vs. combination therapy, 795–6

chronic myelomonocytic leukemia (CMMML), 758

PDGFR mutations, 139

cigarette smoking, 506

CIMP, see CpG island methylator phenotype

Cinacalcet, 714

Circos plot, 7, 7

cirrhosis, 569, 571

cisplatin, 601

Fox protein impact on sensitivity, 332

resistance in ovarian cancer, 614–15

c-Kit, see KIT

Class IV PI3K-related kinases, 218

clathrin-mediated endocytosis, 92–4

clonal amplification, 2–3, 4

CLRF2 mutations, 780

clusterin, 896–7

clustering analysis, 41

c-Met, see MET

oncogene; MET signaling

Cockayne syndrome (CS), 437, 458

Cohesins, 458

COL1A1-PDGFβ fusion gene, 733

colitis-associated colon cancer (CAC), 340–2, 343

COLO-829 somatic mutations, 7, 7

colon histology, 547

colorectal cancer (CRC), 547

APC gene mutations, 544

BRAF mutations, 272

colitis-associated colon cancer (CAC), 340–2, 343

comparative genomic hybridization analyses, 32

hereditary non-polyposis colon cancer (HNPCC), 437

histopathology, 547, 548

mouse models, 550–2

NF-κB role, 340–2, 343

pathogenesis, 547–8

chromosomal instability, 549

epigenetic changes, 550

genetic defects, 548–9

micro-satellite instability, 549–50

PPARγ mutations, 392

cisplatin sensitivity, 550, 551

staging, 547, 551

targets, 125

columnar-lined esophagus (CLE), 526

combination therapy, 70, see also specific conditions

common disease common variant (CDCV) hypothesis, 10, 15

common disease rare variant (CDRV) hypothesis, 15

comparative genomic hybridization (CGH), 21, 22, 33, 32–3

carry array CGH, 21, 32
data interpretation, 25–6

genomic alterations detected, 230

normal and abnormal copy number differences, 21–2

technical considerations, 22–5
copy-number variations (CNVAs), 6, 6, see also

comparative genomic hybridization (CGH)

acute lymphoblastic leukemia, 780–1

low-level changes, 26

MYC genes, 314

inactivation, 239

underlying chromosomal profiles, 21

MYC genes, 314

low-level changes, 26

acutelymphoblasticleukemia, 75

technical considerations, 22–5

normal and abnormal copy data interpretation, 25–6

CyclinD, 802, 801–2

CyclinD2, testicular cancer, 21

inactivation, 239

cytogeneticanalysis, 28, 29

cytokinesis, 280, 297, 458

CyclinB, 295–6

CyclinA, 321

CYC116, 288

Custersin, 896–7

cullin, 473

CycloGTP, 457

Cowden's disease, 706

CpaD, 477

CpG-island methylator

CpdA, 477

Cowden's disease, 706

c-erbA, 467

CpGs, 37, 38, 908

CREB, DNA-damage response, 409

C-RET rearrangements, 66

crinoblastin, 213, 672, 922

Crk, 236

CRL (cullin–RING ligases), 473, 477

Caf-1, 866

Csk, 66

inactivation, 239

CTNNB1 gene, 21

mutations, 707, 829

hepatocellular carcinoma, 570, 571

cullin, 473

Cushing's syndrome, 657

Custerin, 896–7

CXCL12, 682

CXCR4, 761, 829

CYC116, 288

Cyclin A, 321

Cyclin B, 295–6

Cyclin B1, 457–8

Cyclin D, 321, 452

Cyclin D1, 249

esophageal cancer, 527

mantle cell lymphoma, 740

melanoma, 699

parathyroid adenoma, 715

PAPP-A interaction, 393,

394, 394

regulation, 452

squamous-cell carcinoma, 687

Cyclin D2, testicular cancer, 624

multiple myeloma, 802, 801–2

Cyclin E, 454, 455

gastric cancer, 538

cyclin-dependent kinase inhibitors (CDKIs), 757

bladder cancer, 384

pituitary tumors, 654

cyclin-dependent kinases (CDKs), 123, 125

CDK1, 295, 457–8

CDK11, 297

CDK2, 454, 455

CDK4, 453, 452–3, 699

CDK6, 453, 452–3

cell-cycle regulation, 452–3

dNA damage response, 406–7

inhibition, 407

cyclin-dependent kinase inhibitors (CDKIs)

esophageal cancer, 528

loss of inhibitors, 454

ornithine decarboxylase, 454

cyclo-oxygenase-2 (COX-2), 91,

528, 544

colon cancer relationship, 342

expression regulation, 342

inhibition, 342

cytoplasmic rotation (CYLD), 360

cytokine, 759

cytokine c, 353, 359, 367, 368

cytokine analysis, 28, see also

chronosomes

chronic lymphocytic leukemia, 787

comparative genomic hybridization (CGH), 32–3

fluorescence in situ hybridization (FISH), 28–9

M-FISH technique, 29–32

inter-phase cytogenetics, 33–4

spectral karyotyping (SKY), 29–32

cytokinesis, 280, 297, 458

DAAM proteins, 247, 250

dabrafinib, 273–4

danorubicin, 332

dasatinib, 232, 275, 757

chronic myeloid leukemia treatment, 793–5, 875–6

clinical trials, 875

development, 793–5

efficacy, 795, 875–6

EMS therapy, 815

side effects, 795

toxicities, 876

danosorubicin, 759

defects, 251

353–4

agonistic activation, 905

decoy receptor competition, 355–6

DISC formation, 354–5, 904

extrinsic2, 904

internalization, 359

ligand interactions, 354

non-apoptotic pathway induction, 360, 359–61

oncogenic alterations, 361

post-translational modification, 356–7, 361

signal modulation by cFLIP, 357–8

signaling initiation, 353–4

decitabine, 909–10

decoy receptors (DRs), 355–6, 357

changes in cancer, 361

degrasyn, 47–5

delayed early genes (DEGs), 95

Delta-like 4 (DII4), 864

dendritic cells (DCs), 309

dermatofibrosarcoma protuberans (DFSP), 137,

732–3

chromosome translocation, 733

secondary mutations, 733

targeted therapeutics, 733

deubiquitylating enzymes (DUBs), 473, 477–8

diabetes, 110–11, 113

Dicer RNase, 482

knockout mouse characteristics, 483

diffuse large B-cell lymphoma (DLBCL), 741–3

genetic lesions, 741–3

Dilopin, 298

DISC, 358, 904

caspase activation, 355

formation, 355, 354–5

Dishevelled family, 245,

247, 248

F Ursala2, 232, 250

Frizzled–Dishevelled complex, 247, 248

disorders of sex development (DSD), 622

D-loop structure, 426, 427

dNA damage, 403, see also

DNA damage response (DDR); genomics

acellular instability

apoptosis induction, 465, 470

delayed response, 465

effectors, 467–70

double-stranded break (DSB), 403–5

ataxia-telangiectasia repair defect, 412

repair pathways, 404, 405, 407

histone decacylase inhibitor effects, 914

inter-strand cross-links (ICLs), 425

lung cancer, 506

primary and secondary lesions, 465

sensitizers, 462–7

stalled replication, 426–7

DNA damage response (DDR), 404, 405–3, 407,

412–13, 937, see also

as a barrier against cancer, 410

ATM-mediated network, 408, 405–9

checkpoint activation, 406–7, 409

chromatin structure interaction, 409–10

consequences of regulator loss, 409

repair pathways, 404

DNA library preparation, 2, 2

hybrid approaches, 908–9

acute lymphoblastic leukemia, 779

acute myeloid leukemia, 751,

753, 757–8

anoctamin techniques, 39–41

high-throughput analysis, 47, 49

cancer methylome, 38, 38–9

colostral cancer, 350

demethylation, 37

esophageal adenocarcinoma, 527

gastric cancer, 537

importance of, 37–8

lung cancer, 514

multiple myeloma, 805

pancreatic cancer, 560

promoter methylation, 37

therapeutic targeting, 909–10

translational applications, 41–2

DNA methyltransferase enzymes (DNMT), 37, 908

gene mutations, 38–9

DNMT3A, 38, 752, 753,

756–7, 820

DNA repair, 601, 936, see also

DNA damage response (DDR)
histone decacylase inhibitor effects, 914

MGMT role, 41

pathways, 404, 936

synthetic lethality, 937–8

screening, 939–41

therapeutic approaches, 936

alternative pathway targeting, 938

hybrid approaches, 941

repair targets as sensitizers, 936–7

resistance reversion, 937

DNA replication, 455–6
Index

DNA sequencing
first-generation, 1
second-generation, 1–6
new technology, 1
sequencing flow cell, 3
whole-genome sequencing, 47
DNA-dependent protein kinase (DNA-PK), 405
DNMT, see DNA methyltransferase enzymes
dopamine, 657, 660
down syndrome, 780
doxorubicin sensitivity, 332
driver mutations, 7, 47, 893
drug resistance, 68, 921, 923–4, see also specific conditions and drugs
ABC transporter, 925
correlating strategies, 937
controlling strategies, 70
drug efflux and influx transporters, 69
historical perspective, 921–2
kinase switching, 69–70
redundancy paradigm, 925
synthetic lethality approaches, 938–9
DT8aIL-3, 780
dutasteride, 595
E1 ubiquitin-activating enzymes, 473
E2 ubiquitin-conjugating enzymes, 473, 476
E231G mutation, 382
E2A-PBX1 fusion, 778–9
E2F transcription factors, 453
E2A-PBX1 fusion, 778–9
endo-small interfering RNAs (endo-siRNAs), 491, 491
endocytosis, see also EAP
ENL-associated protein (EAP) complex, 778
enzymatic 85-receptors
ERK signaling pathway, 272, 272
ERK signaling, 90
ERK signaling pathway, 123
ERK signaling, 272
ERK signaling, 87
ERK signaling, 93
ERBB, see epidermal growth-factor receptor
ERBB2, see also ErbB2, 497–8, 840, 845–6
combination therapy, 602, 848
early breast cancer, 600
future directions, 849
breast cancer therapy, 68, 599–600, 848
treatment toxicity, 600
cancer association, 62, 85, 843
tumor models, 238
therapeutic targeting, 598–9
COX2 promoter association, 91
dimerization, 88
eosinophilic adenocarcinoma, 527
nonsmall-cell lung cancer, 65
oncogenic role, 483
over-expression, 26, 61, 85–6
breast cancer, 62
PI3K activation, 220, 224
retroperitoneal sarcoma, 61
ErbB2/ErbB3 complex, 599, 600
ErbB3, 843–4, see also ErbB7, 527
ErbB receptor tyrosine kinases
as a therapeutic target, 599, see also trastuzumab
Trastuzumab, 846–5
combination therapy, 602, 848
early breast cancer, 600
future directions, 849
treatment toxicity, 600
breast cancer association, 62, 85, 843
tumor models, 238
therapeutic targeting, 598–9
COX2 promoter association, 91
dimerization, 88
eosinophilic adenocarcinoma, 527
nonsmall-cell lung cancer, 65
oncogenic role, 483
over-expression, 26, 61, 85–6
breast cancer, 62
PI3K activation, 220, 224
retroperitoneal sarcoma, 61
ErbB2/ErbB3 complex, 599, 600
ErbB3, 843–4, see also ErbB7, 527
ErbB receptor tyrosine kinases
as a therapeutic target, 599, see also trastuzumab
Trastuzumab, 846–5
combination therapy, 602, 848
early breast cancer, 600
future directions, 849
treatment toxicity, 600
breast cancer association, 62, 85, 843
tumor models, 238
therapeutic targeting, 598–9
COX2 promoter association, 91
dimerization, 88
eosinophilic adenocarcinoma, 527
nonsmall-cell lung cancer, 65
oncogenic role, 483
over-expression, 26, 61, 85–6
breast cancer, 62
PI3K activation, 220, 224
retroperitoneal sarcoma, 61
ErbB2/ErbB3 complex, 599, 600
ErbB3, 843–4, see also ErbB7, 527
ErbB receptor tyrosine kinases
as a therapeutic target, 599, see also trastuzumab
Trastuzumab, 846–5
combination therapy, 602, 848
early breast cancer, 600
future directions, 849
treatment toxicity, 600
breast cancer association, 62, 85, 843
tumor models, 238
therapeutic targeting, 598–9
COX2 promoter association, 91
dimerization, 88
eosinophilic adenocarcinoma, 527
nonsmall-cell lung cancer, 65
oncogenic role, 483
over-expression, 26, 61, 85–6
breast cancer, 62
PI3K activation, 220, 224
retroperitoneal sarcoma, 61
ErbB2/ErbB3 complex, 599, 600
ErbB3, 843–4, see also ErbB7, 527
ErbB receptor tyrosine kinases
as a therapeutic target, 599, see also trastuzumab
Trastuzumab, 846–5
combination therapy, 602, 848
early breast cancer, 600
future directions, 849
treatment toxicity, 600
breast cancer association, 62, 85, 843
tumor models, 238
therapeutic targeting, 598–9
COX2 promoter association, 91
dimerization, 88
eosinophilic adenocarcinoma, 527
nonsmall-cell lung cancer, 65
oncogenic role, 483
over-expression, 26, 61, 85–6
breast cancer, 62
PI3K activation, 220, 224
retroperitoneal sarcoma, 61
ErbB2/ErbB3 complex, 599, 600
ErbB3, 843–4, see also ErbB7, 527
ErbB receptor tyrosine kinases
as a therapeutic target, 599, see also trastuzumab
Trastuzumab, 846–5
combination therapy, 602, 848
early breast cancer, 600
future directions, 849
treatment toxicity, 600
breast cancer association, 62, 85, 843
tumor models, 238
therapeutic targeting, 598–9
COX2 promoter association, 91
dimerization, 88
eosinophilic adenocar
therapeutic targets, 528–9
essential thrombocytosis (ET), 818
JAK2V617F mutation, 818
JAK2V617F-negative disease, 819
estrogen, 657
N-cadherin interaction, 659
estrogen receptor (ER), 657
everolimus, 581
ETV6-RUNX1 fusion, 778
Etk/BMX, 63
Fas, 355
Fas, 355
female liver kinase 2 (FLK2), see FMS-related tyrosine kinase 3 (FLT3)
FGFR1 gene, EMS, 809, 812, 812
fusion gene structures, 812–13
fusion proteins, 813, 814
partner gene relevance, 813
FGFR2 gene, breast cancer risk relationship, 15
FGFR3 gene, bladder cancer, 856–8, 866
multiple myeloma, 801
FGFR4 gene, rhombomeres, 734
FHT gene, 512
fibroblast growth-factor (FGF), 191
angiogenesis role, 863–4
FGF signaling axis, 191–3
pituitary tumors, 658–9, 660
prostate cancer association, 192, 198
ectopic activation studies, 194–8
prostate gland, 192
fibroblast growth-factor receptor (FGFR), 191, 191–2
activation, 192–3
inhibitors, 660
prostate cancer association, 192
ectopic activation studies, 196–9
ectopic expression studies, 194–5
prostate gland, 192
signaling pathways, 193, 193
 somatic mutations, 63
substrate-2 (FRS2), 814
variants, 191–3
fibroblasts, 866
ficolzumab, 206
figitumumab, 113, 114
finasteride, 595
FKRPI2, 121
flavoribol, 528
FL3T mutation, see FMS-related tyrosine kinase 3 (FLT3)
fluorescence in situ hybridization (FISH), 29, 28–9
inter-phase cytogenetics, 34
M-FISH technique, 29–32
fluorescence-lifetime imaging microscopy (FLIM), 79
fluorescence resonance energy transfer (FRET), 79, 80, 81
fluorophores, 79
fluorocein isothiocyanate (FITC), 79
FMS-related tyrosine kinase 3 (FLT3), 144
expression, 145, 146
hematopoietic malignancies, 148
function in normal cells, 819
future research directions, 155
internal tandem duplications (ITDs), 66, 148, 148–50
alipl cancer affiliation, 152
dimerization promotion, 149
prognostic significance, 151–2
proliferation promotion, 149
ligand (FL), 145
mutations, 65–6
acute myeloid leukemia, 751, 753–4
clinical significance, 150–3
differential functions between, 150
pyrimidine kinase domain, 150, 151, 152–3
receptor activation, 145, 146
receptor structure, 146
signaling pathway, 147, 145–7
structure, 144, 144–5
therapeutic interventions, 153, 759
small-molecule inhibitors, 155–8
stem-cell transplantation (SCT), 153, 153
focal aberrations, 25
POMFC/OXIN, 532
follicular lymphoma (FL), 741
folillatin, 658
forced expression, 193
teratin, 213, 214
Forkhead box (Fox) proteins, 328
as therapeutic targets, 333
drug-sensitivity relationships, 331–3
transformations, 332
anti-FGFR targeted therapies, 332
dendrocyst therapy, 332–3
platinum-based drugs, 332
signal interactions, 331
taxanes, 331–2
FoxM1, 328–30
metastasis promotion, 330–1
ovarian cancer, 613
FoxO, 328–9
formalin-fixed paraffin-embedded (FFPE) tissue, 76, 78
Fos proteins, 319, see also activating protein 1 (AP-1)
animal model data, 324
regulation, 321
structure and function, 319, 320
FOXE1, 14
FOXO transcription factors, 297
Frizzled receptor family, 243, 244–5, 248
Frizzled-Dishevelled complex, 246–7
FRS2, 193, 195
role in prostate cancer, 196, 197
fulvestrant, 602, 884–5
structure, 885
fumurate hydrazide (FH) mutations, 581
G3139, 759
GADD45 gene, 655
gamma-secretase inhibitors (GSIs), 779
Gardasil, 637
gastric cancer
developmental regulator pathways, 537
epigenetic mechanisms, 537
etiology, 532
gatekeeper, 537–8
gene expression profiles, 538–9
H. pylori infection association, 533–5
Hiwi over-expression, 490
inflammation association, 532–3, 538
invasion, 539
metastasis, 539
mutations in, 535–7
oncogenic pathways leading to growth, 538
pathology, 532
stem cells, 535
gastrointestinal stromal tumors (GISTs), 61, 542–3, 734–5
imatinib treatment, 543, 733–4, 874–5
resistance, 543, 733–4
KIT mutations, 65, 542, 543, 733–4
PDGFR mutations, 65, 139, 734
pediatric, 734
sunitinib therapy, 877
gatekeeper, 66, 793
esophageal adenocarcinoma, 526–7
gastric cancer, 537–8
squamous-cell carcinoma, 687–9
Index

GD2, 669, 672
anti-GD2 antibody therapy, 672
GDC-0941, 603
gefitinib, 67, 847, 878
bladder cancer therapy, 587
drug resistance, 66, 69
Fox protein interaction, 332
non-small-cell lung cancer therapy, 878–9
ovarian cancer therapy, 611
resistance, 879
imatinib, 89
geldamycin derivatives, 595
gemcitabine, 562
gemtuzumab ozogamicin, 760, 858
gene ablation, 193–4
gene expression changes in drug resistance, 922
profiling, 47–8, see also microarray analysis
breast cancer, 47–8, 930
challenges, 930–1
clinical application, 934
clinical trials of multi-gene signatures, 931–3
diagnostic impact, 930
gastric cancer, 538–9
history, 929–30
systems approach, 933, 933–4
gene therapy
multiple endocrine neoplasia type 2 (MEN2), 728
pituitary tumors, 660
genetic predisposition, 10, see also specific conditions
genome-wide association studies, 12–15
genetic streaming, 938
genetic variance related to disease risk, 10, 11
genital warts, 631–4
genome sequencing, 6–7, 47, see also cancer genome; DNA sequencing
genome-wide association studies (GWAS), 10, 12–15
challenges and limitations, 15
experimental design, 10–11, 12
hematologic malignancies, 14
interpretation, 12
neuroblastoma, 671
solid malignancies, 13
genomic disorders, 21
genomic instability, 428, 434, 456, 601, 936, see also DNA damage
acute myeloid leukemia, 757
associated diseases, 434
taxia-telangiectasia, 410–12
colorectal cancer, 549
genomic stability maintenance, 403, 410, see also DNA-damage response (DDR)
genomics, 47
lung cancer studies, 514–16
germ-cell tumors (GCTs), 619,
status of, 1, ovarian cancer;
testicular cancer
germinal center (GC), 738
Gimsa banding, 28
Gleevec, 239, 240, 733, see also imatinib
glial-cell-line-derived neurotrophic factor (GDNF), 726
glioblastoma multiforme (GBM), 641, 642, 641–2, 643
cancer stem-cell theory, 645–6
mutation, 1, 
therapeutic options, 648
glioblastomas
tumor drivers, 648
gliomas, 641, 648, 827
brain metastasis, 880
cellular origin, 645
optic pathway, 679, 679, 681
PDGF receptor mutations, 139
glucoconoids
apoptosis induction, 372, 372–3
apoptosis resistance and, 373
pituitary tumors, 657
therapeutic use, 371
expression, 46
glutathione S-transferase (GSTP), 592
glycogen synthase kinase 3β (GSK3β), 171, 282, 700
protein phosphatase 2A (PP2A), 55
golvatinib, 213
gonadotropin-releasing hormone (GnRH), 657
analogues, 593
tumor growth, 658
G-protein-coupled receptors (GPCRs)
transactivation, 60
G-proteins, 655–6
granulosa cell, androgen-receptor
 knockout effects, 382
GRN163L, 446–7
growth-factor receptor-bound protein 7 (GRB7), 826
growth-factor receptors, 61, see also specific receptors
growth hormone (GH), 656
antagonist therapy, 659
growth hormone releasing hormone (GHRH), 653
GSP mutations, 653–6
GTP/Phosphatase-activating proteins (GAPs), 258
guanine nucleotide exchange factors (GEFs), 258, 261, 284
GW9662, 397
H3K79 hypomethylolation,
757
HapMap project, 11
HBX1, 477
HBX10, 397, 477
HDM2, 476–7
head and neck cancer (HNC), 497, see also oropharynx cancer
combination therapies, 499
EGFR as a molecular target, 497–9
squamous-cell carcinoma
(HNSCC), 686
activation mutations, 688–9
gatekeeper, 687–9
therapeutic targets, 690–9
tumor oncogenes, 687
suppressor genes, 686–7
heat-shock protein 90 (HSP90),
inhibition, 848, 915
HECHT E3 ligases, 476
Hedgehog, 250
basal-cell carcinoma, 694
chronic myeloid leukemia, 796
gastric cancer, 537
inhibitor therapy, 695
lung cancer, 514, 515
pancreatic cancer, 561
HelA cells, 636
Helicobacter pylori infection,
533
gastric cancer association, 532–5
MALT lymphoma association,
743
hematopoiesis, 144, 146
FLT3 function, 147–8
hematopoietic stem cells (HSCs)
MYC effects, 316
heparan sulfate (HS), 191
hepatitis B virus (HBV), 569
hepatitis C virus (HCV), 569
hepatoblastoma (HB), 826–7
hepatocellular carcinoma (HCC), 569
hepatocyte growth factor (HGF), 204
inhibitors, 204–5
signaling in cancer, 204, 205, see also MET signaling
squamous-cell carcinoma, 688
strategies, 204, 206
hepatocyte growth-factor receptor (HGF), 687
HER2, see also epidermal growth-factor receptor (EGFR)
amplification, 46, 224
ovarian cancer, 609
expression, 46
immunohistochemistry, 76, 78
inhibitors, 67
Fox protein interaction, 332
over-expression, 26
PI3K activation, 220, 224
Herceptin, 78
herceptin, 67, 846, see also trastuzumab
drug resistance, 68–9
hereditary
hyperparathyroidism-jaw tumor syndrome (HPT-JT), 714
hereditary leiomyomatosis and renal-cell cancer (HLRCC), 581
hereditary non-polyposis colon cancer (HNPCC), 439, 545, 548–9
neoplasia in, 439
hereditary papillary renal carcinoma (HPRC), 581
hereditary prostate cancer, 594–5
Hesperidin, 286
HGF, see hepatocyte growth factor
Hgs (hematocyte growth-factor-regulated tyrosine-kinase substrate), 92, 94
high-throughput analysis, 47–9, see also microarray analysis
proteomics, 48–9, 55–6
Hirschsprung disease (HSCR), 725
histone acetyltransferases (HATs), 912

© in this web service Cambridge University Press www.cambridge.org
histone deacetylases (HDACs), 912–13
HDAC6, 913, 915
in cancer, 913–14
inhibitors, 514, 609, 910, 914, 915
adverse effects, 916
angiogenesis inhibition, 916
anti-cancer drug development, 916
apoptosis induction, 915
autophagy induction, 915
cell-cycle effects, 915
clinical response prediction, 918
combination therapy, 916
DNA-damage and repair, 914
directions, 918
gene expression and, 914–15
mitosis disruption, 915
non-cancer therapy, 916
reactive oxygen species and, 915
resistance, 918
non-histone substrates, 913
regulation, 913
structural features, 913
histone modifications, see post-translational histone modifications
histones, 409, 912
H2A, 410
H2AX, 406, 410
H2B, 410
Hiwi proteins, 490–1
Hodgkin and Reed–Sternberg (HRS) cells, 744
Hodgkin lymphoma (HL), 744–5
Jun protein role, 325
HoxA-4 (Hox-A4), 425, 427
homologous recombination (HR), 938
homzygous deletion detection, 6
HOX gene over-expression
acute lymphoblastic leukemia, 778
acute myeloid leukemia, 756
HR23b, 918
HRPT2 mutation, 714, 715
Hsp90, 121
ht-1 gene, 527
human epidermal growth factor receptor 2 (HER2)
human MM cell lines (HMCL), 799
human organic cation transporter 1 (hOCT1), 609
human papillomavirus (HPV), 499, 631, 630–1, 686
alpha group, 630, 631
beta group, 630
bionarkers of high-risk infection, 635
cervical cancer, 499, 630
E6 and E7 proteins, 501, 502, 503
genotypes and cancer risk, 500
high-grade cervical neoplasia, 634–5
immune response evasion, 631
low-grade cervical neoplasia, 632, 631–4
lung cancer, 514
mu. group, 630
oropharynx cancer, 497, 501, 499–501, 503
biomarker role, 501–2
futuristic studies, 503
prognostic significance, 502
therapeutic targets, 503
vaccine, 499, 637
warts, 631
human T-cell leukemia virus type 1 (HTLV1), 744
huntingtin-interacting protein 1 (Hip1), 94
hyperprolactinemia, 110
hyperinsulinemia, 110
hyperinsulinemia, 111
hypermetylation, 38, 38, 514, 908, see also DNA methylation
acute lymphoblastic leukemia, 779
acute myeloid leukemia, 751, 757, 758
bladder cancer, 585
colorectal cancer, 550
esophageal adenocarcinoma, 527
hepatocellular carcinoma, 571
hyperparathyroidism, 712
hypomethylation, 38, 38, 908, see also DNA methylation
acute myeloid leukemia, 757
multiple myeloma, 805
hypothryoidism, 656
hypoaxia role in angiogenesis, 863, 865, 866
hypoaxia-inducible factor (HIF), 580, 863, 865
acute myeloid leukemia, 759
IκB kinase (IKK) complex, 337
deletions of components, 339, 340
hepatocellular carcinoma relationship, 343
inhibition, 631–47
ovarian cancer, 612
squamous-cell carcinoma association, 347
ibrutinumib tuxetan, 839, 858
IDH1 mutations, 752, 758–9, 820, 821
IDH2 mutations, 752, 758–9, 820, 821
IGF, see insulin-like growth factors
IGF-binding proteins (IGFBPs), 112
IGlH translocations, 800–1
IKZF1 mutations, 777, 780
iminatinib, 68, 240, 543, 872–5, 921
acute lymphoblastic leukemia therapy, 777
acute myeloid leukemia therapy, 759
chronic myeloid leukemia therapy, 793, 872–4
chronic myelomonocytic leukemia therapy, 139
dermatofibrosarcoma, 704
proteasomes therapy, 137, 733
discontinuation trials, 796
drug resistance, 68, 69, 759, 793
mechanisms, 794, 793–4, 795, 922
efficacy, 795–6
GIST therapy, 61, 543, 733–4, 874–5
resistance, 543, 733–4
neurofibromatosis type 1 therapy, 682
structure, 794
toxicities, 872, 875
IMC-C225, see cetuximab
Imiquimod, 637
immediate-early genes (IEGs), 95
immune response
NF-κB role, 339
immune responses, 310
evasion by HPV, 631
evasion by tumor cells, 308, 909
NF-κB role, 336
STAT3 role, 308, 309, 310
immunofluorescence (IF), 79–80
immunohistochemistry (IHC), 76–9
alkaline phosphatase
anti-alkaline phosphatase technique (APAAP), 76
avdin-biotin-peroxidase IHC, 77
frozen vs. formalin-fixed paraffin-embedded tissue, 78
polymer-based, 77, 78
prognostic and predictive application, 78–9
quantitative analysis, 77–8
computerized methods, 78
rolling circle amplification (RCA), 77
tyrosine kinase amplification (TKA), 77
immunoprecipitation, methylated DNA analysis, 40–1
imprinted tumor-suppressor genes, 607–9
INCB28060, 213
indomethacin, 728
inducible pluripotent stem cells (iPS), 317
infection, 309, see also specific infections
Infinium HumanMethylation
Inflammation, 309, 310
gastric cancer association, 532–3, 538
hepatocellular carcinoma (HCC), 342, 344
oncogenesis relationship, 336–7, 340
inhibins, 658
inhibitors of apoptosis (IAPs), 870
infliximab, 635
 interleukin-1 (IL-1β), 370, 370–1, 477, 904
antagonist therapy, 905–6
INK4a gene, 558
inner centromere protein (INCENP), 281
insulin, 110–11
circulating levels, 112–13
gen expression, 112
pathophysiological studies, 111–13
PI3K interaction, 225–6
receptors, 111–12
IR superfamily, 162
PI3K activation, 220
resistance, 113
therapeutic strategies, 113–15
insulin-like growth factor 1 receptor (IGFIR), 732
insulin-like growth factors
acute lymphoblastic leukemia, 308
insulin-like growth factor 1 receptor (IGFR1), 732
bioactivity regulation, 112
insulin-like growth factor 2 (IGF2), 308
bioactivity regulation, 112
gene expression, 112
pathophysiological studies, 111–13
pituitary tumors, 656
receptor family, 111–12
therapeutic strategies, 113–15
insulin-like growth factor 2 gene, 527
influenza (IFN-α), 39, 305
interleukin-1β (IL-1β), 533
interleukin-6 (IL-6), 305, 342
hepatocellular carcinoma, 342, 62
lung cancer, 509
ovarian cancer, 611
International Cancer Genome Consortium, 8

© in this web service Cambridge University Press
www.cambridge.org

Cambridge University Press
978-0-521-87662-9 - Molecular Oncology: Causes of Cancer and Targets for Treatment
Edited by Edward P. Gelmann, Charles L. Sawyer and Frank J. Rauscher III
Index
More information
Index

interphase cytogenetics, 34, 33–4
intestinal cells of Cajal, 542
intestinal epithelial cells, 358
intra-cellular (non-receptor) tyrosine kinases (NRTKs), see tyrosine kinase
intra-tubular germ-cell neoplasia unclassified (IGCNU), 620, 619–20, 622, 624, 624
invasion
AP-1 role, 323
gastric cancer, 539
NF-κB role, 347
ionic regulation, apoptosis and, 371
ipilimumab, 275, 856
irinotecan, 552
isocitrate dehydrogenase
mutations, 1, 827
isotretinoin resistance, 673
ITK mutations, 63
Jagged-1, 864
JAK (Janus kinases), 233–4
conserved structure, 233
Hodgkin lymphoma, 745
inhibitors in clinical development, 823
JAK2
Down syndrome ALL association, 780
inhibitors, 611, 821–3
mutations, 14, 15, 66, 780, 818–19, 821
JAK3 mutations, 63
mouse models, 238
signaling, 234, 821
oncogenic role, 823
pathway interactions, 235
JAK-STAT signaling, 822
myeloproliferative neoplasms, 819
oncogenic role, 823
Jelly belly (Jeb) protein, 171
JNJ-26854165, 476
Jun
Jun N-terminal kinase, 319, see also JS-K, 476
Jun proteins, 319, see also activating protein (AP-1) actions relevant to onco genesis, 323
animal model data, 323–4
proliferation induction, 321–2
angiogenesis role, 323, 347
apoptosis regulation, 322–3
signaling, 319–21
structure and function, 319, 320
juncton plakoglobin (JUP), 626
ketoconazole, 595
kidney cancer, 579, see also renal cell carcinoma (RCC), Wilms tumor
kinase suppressor of ras (KSR), 393
Kinesins, 458
KIT, 144–5, 542, 543
acute myeloid leukemia, 751, 754
k-CIT mutations
germ-cell tumors, 621
retinoblastoma, 622, 623
GIST, 65, 542, 733–4
imatinib effect, 543, 543
KITLG-KIT signaling pathway, 14
mice, 599
KITLG gene, 14, 15
KLK6, 594
K-RAS, 264
inhibition, pancreatic cancer therapy, 563
mutations, 258, 264, 265
colorectal cancer, 548–9, 552
EGFR inhibitor resistance
relationships, 879
lung cancer, 265, 509
ovarian cancer, 611
pancreatic cancer, 558
Ku complex, 467
labeled streptavidin–biotin
microscopy (LSCM), 79
lasofoxifene, 888
structure, 885
LCL161, 477
leucine zipper (BZIP), 319
leucovorin, 552
leukemia, see specific types of leukemia
leukemia inhibitory factor (LIF)
leukemia
malignant peripheral nerve sheath tumors (MPNSTs), 679
MALT lymphoma, 743
malignant target of rapamycin (mTOR), 221
inhibitors, 176
pancreatic cancer therapy, 563–4
renal carcinoma therapy, 580
melanoma, 700
neurofibromatosis type 1 (NF1), 681
renal-cell carcinoma, 582
Mammaprint assay, 48, 930, 931
utility assessment, 931, 932
mantle-cell lymphoma (MCL), 739–41
pathogenesis, 75
MAPK14 gene, 744
MAPK (mitogen activated protein kinase) pathway, 272, 272, see also RAS/MAPK pathway
AP-1 regulation, 319
melanoma, 698–9, 700
PPARy interaction, 393
Marmastat, 528
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>medullary thyroid carcinoma</td>
<td>63</td>
</tr>
<tr>
<td>MEN1</td>
<td>866</td>
</tr>
<tr>
<td>MEK</td>
<td>231, 673</td>
</tr>
<tr>
<td>MEHD7945A</td>
<td>846</td>
</tr>
<tr>
<td>MEGA3</td>
<td>655</td>
</tr>
<tr>
<td>MEHD7945A</td>
<td>846</td>
</tr>
<tr>
<td>MDR2 ablation</td>
<td>344</td>
</tr>
<tr>
<td>MDR</td>
<td>344</td>
</tr>
<tr>
<td>MEK</td>
<td>231, 673</td>
</tr>
<tr>
<td>MEK1</td>
<td>231, 673</td>
</tr>
<tr>
<td>melanoma</td>
<td>698</td>
</tr>
<tr>
<td>BRAF mutations</td>
<td>272, 297</td>
</tr>
<tr>
<td>B-cell lymphoma</td>
<td>698, 701</td>
</tr>
<tr>
<td>NF-κB signaling pathways</td>
<td>232</td>
</tr>
<tr>
<td>PI3K/Akt pathway</td>
<td>699–700</td>
</tr>
<tr>
<td>MAPK pathway</td>
<td>701</td>
</tr>
<tr>
<td>p53 pathway</td>
<td>699</td>
</tr>
<tr>
<td>RB pathway</td>
<td>699</td>
</tr>
<tr>
<td>Wnt–β-catenin signaling</td>
<td>700</td>
</tr>
<tr>
<td>somatic mutation profile, 7–7</td>
<td>700</td>
</tr>
<tr>
<td>Src activity</td>
<td>700</td>
</tr>
<tr>
<td>STAT3 gene</td>
<td>700</td>
</tr>
<tr>
<td>MEK inhibitors</td>
<td>700</td>
</tr>
<tr>
<td>RAF kinase inhibitors</td>
<td>721–2</td>
</tr>
<tr>
<td>MET oncogene, 204, see also</td>
<td>653</td>
</tr>
<tr>
<td>multiple endocrine neoplasia type 1</td>
<td>653</td>
</tr>
<tr>
<td>mutations in parathyroid adenoma</td>
<td>653</td>
</tr>
<tr>
<td>menin, 653, 715, 778</td>
<td>653</td>
</tr>
<tr>
<td>meningioma</td>
<td>642, 645</td>
</tr>
<tr>
<td>cellular origin, 645</td>
<td>645</td>
</tr>
<tr>
<td>MET signaling</td>
<td>69–70</td>
</tr>
<tr>
<td>as a therapeutic target, 499</td>
<td></td>
</tr>
<tr>
<td>as a therapeutic target, 499</td>
<td></td>
</tr>
<tr>
<td>EGFR resistance role, 880</td>
<td></td>
</tr>
<tr>
<td>Met domain structure, 206 mutations</td>
<td>66, 205</td>
</tr>
<tr>
<td>papillary renal carcinoma, 63</td>
<td></td>
</tr>
<tr>
<td>over-expression, 205</td>
<td></td>
</tr>
<tr>
<td>osteosarcoma, 828</td>
<td></td>
</tr>
<tr>
<td>squamous-cell carcinoma, 687, 688</td>
<td></td>
</tr>
<tr>
<td>MET signaling, 204–206, see also</td>
<td></td>
</tr>
<tr>
<td>MET oncogene, 204</td>
<td></td>
</tr>
<tr>
<td>cancer, 205</td>
<td></td>
</tr>
<tr>
<td>lung cancer, 509</td>
<td></td>
</tr>
<tr>
<td>osteosarcoma, 828</td>
<td></td>
</tr>
<tr>
<td>inhibitors, 205</td>
<td></td>
</tr>
<tr>
<td>future research directions, 213–14</td>
<td></td>
</tr>
<tr>
<td>mAbs directed against MET, 230</td>
<td></td>
</tr>
<tr>
<td>renal-cell carcinoma, 581–2</td>
<td></td>
</tr>
<tr>
<td>resistance strategies, 214</td>
<td></td>
</tr>
<tr>
<td>small synthetic Met kinase, 212–13</td>
<td></td>
</tr>
<tr>
<td>metabolomics, 49</td>
<td></td>
</tr>
<tr>
<td>metastases</td>
<td></td>
</tr>
<tr>
<td>bladder cancer, 584</td>
<td></td>
</tr>
<tr>
<td>breast cancer, 238</td>
<td></td>
</tr>
<tr>
<td>Fox protein, 330–331</td>
<td></td>
</tr>
<tr>
<td>gastric cancer, 539</td>
<td></td>
</tr>
<tr>
<td>heterogeneity, 47</td>
<td></td>
</tr>
<tr>
<td>miRNA, 487, 488</td>
<td></td>
</tr>
<tr>
<td>PI3K, 397</td>
<td></td>
</tr>
<tr>
<td>Src role, 46</td>
<td></td>
</tr>
<tr>
<td>testicular cancer, 620</td>
<td></td>
</tr>
<tr>
<td>metformin, 113–14</td>
<td></td>
</tr>
<tr>
<td>methotrexate, 921</td>
<td></td>
</tr>
<tr>
<td>methylation, see DNA</td>
<td></td>
</tr>
<tr>
<td>methylation, hypermethylation;</td>
<td></td>
</tr>
<tr>
<td>hypomethylation</td>
<td></td>
</tr>
<tr>
<td>methylation-specific PCR (MSP), 39</td>
<td></td>
</tr>
<tr>
<td>MethylLight, 39</td>
<td></td>
</tr>
<tr>
<td>M-FISH technique, 29–32</td>
<td></td>
</tr>
<tr>
<td>MGCD265, 213, 214</td>
<td></td>
</tr>
<tr>
<td>MGMT gene methylation, 49</td>
<td></td>
</tr>
<tr>
<td>treatment response, 41–2</td>
<td></td>
</tr>
<tr>
<td>MIbG, 674</td>
<td></td>
</tr>
<tr>
<td>mi-RNAs (miRNAs), 48, 481–2</td>
<td></td>
</tr>
<tr>
<td>acute myeloid leukemia, 753</td>
<td></td>
</tr>
<tr>
<td>angiogenesis role, 864–5</td>
<td></td>
</tr>
<tr>
<td>anti-sense therapy approaches, 895</td>
<td></td>
</tr>
<tr>
<td>as biomarkers, 488</td>
<td></td>
</tr>
<tr>
<td>biogenesis, 483, 482–3</td>
<td></td>
</tr>
<tr>
<td>functional importance, 483–4</td>
<td></td>
</tr>
<tr>
<td>high-throughput analysis, 48</td>
<td></td>
</tr>
<tr>
<td>lung cancer regulation, 514</td>
<td></td>
</tr>
<tr>
<td>oncogenesis relationships, 483, 484–8</td>
<td></td>
</tr>
<tr>
<td>therapeutic applications, 488, 489</td>
<td></td>
</tr>
<tr>
<td>pancreatic cancer, 560</td>
<td></td>
</tr>
<tr>
<td>primary (pri-miRNA), 482</td>
<td></td>
</tr>
<tr>
<td>therapeutic potential, 868</td>
<td></td>
</tr>
<tr>
<td>microarray analysis, breast cancer, 930</td>
<td></td>
</tr>
<tr>
<td>challenges, 930–1</td>
<td></td>
</tr>
<tr>
<td>clinical application, 934</td>
<td></td>
</tr>
<tr>
<td>diagnostic impact, 930</td>
<td></td>
</tr>
<tr>
<td>history, 929, 929–30</td>
<td></td>
</tr>
<tr>
<td>methylated DNA, 39–41</td>
<td></td>
</tr>
<tr>
<td>proteomics, 52–3</td>
<td></td>
</tr>
<tr>
<td>systems approach, 933</td>
<td></td>
</tr>
<tr>
<td>tissue microarray (TMA), 62</td>
<td></td>
</tr>
<tr>
<td>tyrosine kinases, 62</td>
<td></td>
</tr>
<tr>
<td>Microarray Quality Control Project (MAQC), 930</td>
<td></td>
</tr>
<tr>
<td>microfibroblast-associated glycoprotein 2 (MAGP2), 614</td>
<td></td>
</tr>
<tr>
<td>microsatellite instability (MSI)</td>
<td>549–50</td>
</tr>
<tr>
<td>colorectal cancer, 549–50</td>
<td></td>
</tr>
<tr>
<td>gastrin cancer, 538</td>
<td></td>
</tr>
<tr>
<td>midkine (MK), 163, 171</td>
<td></td>
</tr>
<tr>
<td>Mig6 (mitogen-inducible gene), 6, 95</td>
<td></td>
</tr>
<tr>
<td>MINDACT trial, 932</td>
<td></td>
</tr>
<tr>
<td>miRNA sponges, 488</td>
<td></td>
</tr>
<tr>
<td>miRNAs, see micro-RNAs (miRNAs)</td>
<td></td>
</tr>
<tr>
<td>mismatch repair (MMR)</td>
<td></td>
</tr>
<tr>
<td>proteins, 439, 466</td>
<td></td>
</tr>
<tr>
<td>colorectal cancer, 549–50</td>
<td></td>
</tr>
<tr>
<td>mouse models, 551</td>
<td></td>
</tr>
<tr>
<td>deficiency, 439, 549–50</td>
<td></td>
</tr>
<tr>
<td>MITF (microphthalmia-associated transcription factor), 699</td>
<td></td>
</tr>
<tr>
<td>monoclonal gammopathy of undetermined</td>
<td>799</td>
</tr>
<tr>
<td>significance (MGUS), 799</td>
<td></td>
</tr>
<tr>
<td>Cyclin D gene dysregulation, 801–2</td>
<td></td>
</tr>
<tr>
<td>disease entities, 802–3</td>
<td></td>
</tr>
<tr>
<td>NF-κB pathway, 803–4</td>
<td></td>
</tr>
<tr>
<td>oncogenic pathways, 801</td>
<td></td>
</tr>
<tr>
<td>MOZ gene, 812</td>
<td></td>
</tr>
<tr>
<td>MRE11-RAD50-NBS1 complex, 466–7</td>
<td></td>
</tr>
<tr>
<td>MRN complex, 403</td>
<td></td>
</tr>
<tr>
<td>MRN complex (MRE11/RAD50/Nbs1), 405, 425</td>
<td></td>
</tr>
<tr>
<td>multi-endocrine neoplasia type 1 (MEN1), 653, 658</td>
<td></td>
</tr>
</tbody>
</table>
Index

multiple myeloma (MM) (cont.)
NF-κB role, 345, 346, 804, 805–7
oncogenic pathways, 801
pathogenesis model, 805, 805–6
precursor, 799
secondary Ig translocations, 804
smoldering (SMM), 799
stages of progression, 799, 800
TC classification, 802
multiple reaction monitoring
(MRM), 56
mutations, 893, see also specific mutations
cancer genomics, 893
mutation profile, 7
driver mutations, 7, 47, 893
gene family, 313
functions, 313
as therapeutic targets, 317
as cancer risk factors, 315, 314–15
as therapeutic targets, 317
functions, 313
in cancer, 315–16
gene family, 313
impact on stem cells, 316–17
multiple myeloma, 803, 803
prostate cancer, 594
structure, 313
WRN protein interaction, 428
MYCN, see MYC genes
mycosis fungoides, 744
myeloproliferative neoplasms (MPNs), 818, 819, 820
germline mutations, 821
JAK2 inhibitor therapy, 821–3
JAK2V617F mutations, 818–19, 821
JAK2V617F-negative MPN, 819
pathogenesis, 820
somatic mutations, 819–21
nasal NK/T-cell lymphoma, 744
N-cadherin, 659, 660
NCAM, 659
NCOA4, 14
NoxR, 887
neuroptosis, 360
necrosis, 367
NEDD8 E1 (NAE), 476
neovascularization, see angiogenesis
neratinib, 601
Neu receptor mutations, mouse models, 238
neural stem cells (NSCs), 643, 645, 646, 647
neuroblastoma, 827
anaplastic lymphoma kinase
role, 170–3, 178, 669, 827
mouse models, 177
mutational abnormalities, 177
heterogeneity, 669
MYCN aberrations, 173, 179, 672, 827
proposals, 36, 669–71
screening, 671
somatic genomic alterations, 671–2
targeted therapy approaches, 672, 865
ALK, 672
Aurora kinase A, 674
Chk1, 674
immunotherapy, 672
neurofibromatosis transporter (NET), 674
PI3K/AKT/mTOR pathway, 673–4
RAS/MAFK pathway, 672–3
neurofibromatosis type 1 (NF1), 679, 679–82
neurofibromin, 680, 680, 681
neuropilins, 865
NF-kB, 310
dimerization, 337
dNA damage response, 408–9
evidence for oncogenic role, 340
breast cancer, 346
colon cancer, 340–2, 343
cancer, 344, 342–4
lymphoid malignancies, 345, 346, 827
prostate cancer, 345, 346
family members, 337
involvement in human cancers, 336–7, 341, 346–7
acute lymphoblastic leukemia, 780
apoptosis evasion, 347
gastric cancer, 532
invasion, 347
lymphoma, 743, 744
malignant proliferation, 346–7
melanoma, 700
multiple myeloma, 804, 803–4
ovarian cancer, 612
preventive and therapeutic targeting, 347–8
signaling, 337–9
PI3K/Akt interaction, 393
target genes, 348
NF-κB essential modulator
(NEMO), 408
NF1 mutations, 641, 643
NF2 mutations, 645
Nijmegen breakage syndrome
(NBS), 411, 425, 438
NIR, 346
nilotinib, 759, 795, 876
clinical trials, 876
toxicities, 876
nimotuzumab, 858
NKG2D gene mutations, 252–3
NXX2-1 oncogene, lung cancer, 893, 510
NXX3.1, 592
non-coding RNAs (ncRNAs), 481
non-Hodgkin lymphoma (NHL)
B-NHL molecular pathogenesis, 740, 739–43
genetic lesions, 738–9
oncogenic viral sequences, 739
T-NHL molecular pathogenesis, 743–4
non-homologous end joining (NHEJ), 467
non-receptor tyrosine kinases
(NRTK), see tyrosine kinases
nonseminomas, 619, 624, see also testicular cancer treatment sensitivity, 626
non-small-cell lung cancer
(NSCLC), 506, see also lung cancer
anti-sense therapy trial, 897
crizotinib therapy, 922
EGFR mutations, 61–5, 91
EM14-ALK fusion proteins, 509–10
erlotinib therapy, 879
gefitinib therapy, 878–9
KRAS mutations, 265
K-RAS, 180
KRAS mutations, 509
NXX2-1 oncogene, 510
signaling pathways, 509, 508–9
SOX2 oncogene, 510
subtypes, 506
non-steroidal anti-inflammatory drugs (NSAIDs), 528
Noonan syndrome, 670
norepinephrine transporter
(NET), 674
Notch, 250
acute lymphoblastic leukemia, 779
angiogenesis role, 864
lung cancer, 514, 515
ovarian cancer, 611, 612
pancreatic cancer, 561
NPM1 mutations, 752
NRAS, see also RAS proteins
melanoma, 699, 701
NTRK1 gene, 705, 704–5
nuclear bodies (NBs), 771, 772
nucleophosmin (NPM), 757–8
nucleophosmin (NPM)-ALK fusion protein, 162, 171, 173, 174, 180, 179–80,
743, 744, see also anaplastic lymphoma kinase
effect on tumor cells, 175, 175
mouse models, 176–7
signaling pathways, 174, 173–6
nucleosome, 409, 912
nucleotide excision repair
(NER), 435, 435–6
Nutlin, 476, 699, 904
NVP-BEZ235, 603
oblimersen sodium, 759
OCT3/4, 620, 621, 623, 624
ofatumumab, 858
OGX-011, 896
oligodendrogial tumors (OTs), 644
cellular origin, 645
onartuzumab, 206, 214
Oncomine, 49
OncoType DX, 47, 930
utility assessment, 931–2
organic anion transporting polypeptides (OATPs), 923
organic cation transporters
(OCTs), 923–4
origin of replication complexes
(ORCs), 455
opharynx cancer
HPV as causative factor, 497, 501, 499–501
biomarker role, 501–2
future studies, 503
prognostic significance, 502
therapeutic targets, 503
osteosarcoma, 827–8
ovarian cancer, 606, 613
angiogenesis, 614
apoptolyis, 143–9
cell-signaling abnormalities, 611–13
challenges, 615
cisplatin resistance, 614–15
genetic abnormalities, 1, 617
BRCA genes, 607
oncogenes, 609–11
tumor-suppressor genes, 607–9
oncogenesis, 606–7
paclitaxel sensitivity, 615
PARP inhibitor therapy, 607
pathogenesis, 606–7
proteomic analysis, 53
risk factors, 607
screening, 48
Types I and II, 606, 611
ovary, androgen-receptor
knockout effects, 382
oxalaplatin, 552
oxidative stress, hepatocytes, 343

p16 tumor suppressor
p14ARF, 687, 699
p14, 779
p130 protein, 453
p110-PITSLRE, 297
P045204, 477

oxaliplatin, 552

ovary, androgen-receptor

p53 tumor suppressor, 511, 922,

p40AIS, 687
p38, 343
p27, 594, 715, 726
p18, 726

HPV-associated oropharynx
cancer, 502, 503
pancreatic cancer, 558
p16INK4A, 686, 699
p18, 726
p27, 594, 715, 726
p38, 343
p40AIS, 687

paclitaxel sensitivity, 615

pancreatic cancer, 558

epithelial cells, 382

DNA-damage response, 403
apoptosis induction, 468, 468

drug sensitivity modulation, 332

esophageal adenocarcinoma, 526–7
gastric cancer, 538
lung cancer, 511
melanoma, 699

ovarian cancer, 607

pancreatic cancer, 559

Peutz-Jeghers syndrome, 544
prostate cancer, 594
squamous-cell carcinoma, 689
WRN protein interaction, 428

p53 tumor suppressor, 688

p73 tumor suppressor, 688

aurin kinase A effects, 282

paclitaxel

Fox protein impact on
sensitivity, 331–2

ovarian cancer sensitivity, 615
Index

Porcupine (PORCN), 244
Porcine platelet-derived growth factor (PDGF), 863
plasmablasts (PBs), 799, 800
plasma-cell leukemia (PCL), 799, 800
plasma-cell development, 800
plasma analysis, 54–5
placental growth factor (PLGF), 800
Piwip proteins, 489
Piwi-interacting RNAs (piRNAs), 488–91
placental growth factor (PLGF), 863
plasminogen activator inhibitor-1 (PAI-1), 819
platelet-derived growth factor (PDGF), 58, 135
angiogenesis role, 863, 866
ligands, 136
mutational activation, 138, 137–9
physiological roles, 136–7
structure, 135
TGFB-β effect, 124
prostate-derived growth factor receptors (PDGFRs), 135, 136
activation, 58, 135
mutational activation, 137–9
future research issues, 139–40
inhibition of stromal PDGFRs, 139, 140
PDGFRα, 60
physiological roles, 136–7
roles in cancer, 137, 137–9
GIST, 65, 734
signaling, 135–6
pleiotrophic (PTEN), 163, 170, 171
PLX4032, 552, 698, 707
PML/RARA fusion, 755–6, 769
as a therapeutic target, 771, 771–4, 774
pathogenic role, 770–1
poly(ADP-ribose) polymerase (PARP), 466, 601, 937
inhibitor therapy, 601, 602, 607, 937, 938
resistance, 938–9
polycythemia vera (PV), 818
JAK2V617F mutation, 818
JAK2V617F-negative disease, 819
polycyclic aromatic hydrocarbons, 10
polymer-based
immunohistochemistry, 77, 78
ponatinib, 783, 795
Porcupine (PORCN), 244
post-translational histone modifications, 37
Plasminogen activator inhibitor-1 (PAI-1), 819
primary mediastinal large B-cell lymphoma (PMBCL), 800
primary myelofibrosis (PMF), 800
primary parathyroid hyperplasia, 800
primary adrenal cortical carcinoma, 800
primary aldosteronism, 800
primary plasma cell leukemia, 800
primary lung cancer, 800
primary myelofibrosis (PMF), 800
primary myelodysplastic syndrome (PMDS), 800
primary malignancies, 800
primary myelofibrosis (PMF), 800
primary lung cancer, 800
primary myelodysplastic syndrome (PMDS), 800
primary malignancies, 800
Src family kinases (SFKs), 58, 60–232
activation, 233
as therapeutic targets, 232
head and neck cancer, 499
melanoma, 700
estrogen-receptor interaction, 816
tamoxifen-resistance relationship, 888
FLT3–ITD interaction, 149
in cancer, 232
metastasis promotion, 238
inhibitors, 68
mouse models, 238
mutational activation, 238
signaling pathways, 236, 237
structural conservation, 234
ST1571, see imatinib
stable isotope labeling with amino acids (SILAC), 53
Stam (signal-transducing adaptor molecule), 92
Starry night, 248
STAT proteins, 305
domain structure, 306
STAT1, 305
STAT3, 305
activation, 234, 305, 306
as a therapeutic target, 310, 1071
complex formation, 307
gastric cancer, 508
melanoma, 700
ovarian cancer, 611
persistent activation in cancer, 305–7
signaling propagation in the tumor, 308, 308
squamous-cell carcinoma, 688
STAT5, 150
statins, 682
stem-cell leukemia/lymphoma syndrome (SCLL), 809
stem-cell transplantation (SCT), acute myeloid leukemia (AML), 153, 153
stem cells, see also stem-cell transplantation
cancer stem cells, 447, 535, 645–6, 647, 753–4
telomerase inhibitor effects, 446
gastric cancer, 535
leukemic stem cells (LSCs), 753–4, 760
chronic myeloid leukemia, 796
lung cancer, 514, 515
MYC effects, 316–17
neural stem cells (NSCs), 643, 645, 646, 647
stem-cell signaling network, 250, 252
STK11, 544
inactivation in lung cancer, 513–14
Peutz-Jeghers syndrome, 544
STK11 gene, 550
STK15 gene, 549
Strengthening the Reporting of Genomic Association Studies (STREGA), 12
stromal-cell-derived factor 1 (SDF-1), 761
inactivation, 761
SU11248, 154, 759
SU5416, 154, 759
SU6668, 287
SUMO, 475
sunitinib, 573, 867, 877
GIST therapy, 61
GIST treatment, 543, 734, 787
retinal-cell carcinoma therapy, 580, 581, 587
toxicity, 877
survivin, 370, 897–8
inhibition, 898
synthetic lethality, 601, 936, 937–8
hybrid therapeutic approaches, 941
resistance, 938–9
recycling, 939–40
chemical screening, 940–1
targeting alternative DNA repair pathways, 938
T790 mutation, 879, 879
TAK-701, 206
tamoxifen, 598, 602, 884, 885
activation, 887
molecular actions, 886
resistance, 884, 886–8
targeted therapies, see also specific conditions
math problem, 922–3
T-cell activation, 233
targeting alternative DNA repair pathways, 938
T-cell development, 738
telomerase, 442, 443–4
anti-telomerase therapy, 445, 446, 444–7, 447
chemotherapy comparison, 445
cancer stem cells and, 447
early cancer detection, 444
holoenzyme model, 445
lung cancer, 508
Werner syndrome, 424
telomerase biosensor technology (TBT), 444
telomerases, 442–3
chronic lymphocytic leukemia, 787
dNA-damage response, 410
heterogeneity, 787
lengthening, 424
pancreatic cancer, 560–1
structure, 425
Werner syndrome, 424
tensirolimus, 581, 582
teratoma, 619, 621
TERC, 34
testicular cancer, 619
early events, 621–2
pathology, 620, 621, 619–21
progression, 622–6
treatment sensitivity, 624, 626
resistance, 626
testicular dysgenesis syndrome (TDS), 622
testicular germ-cell tumors, 14
testicular germ-cell tumors, 14
testicular germ-cell tumors, 14
testicular germ-cell tumors, 14
myeloproliferative neoplasms, 820
thalamidome, 477
The Cancer Genome Atlas (TCGA), 47, 49
thiazolidinediones (TZDs), 392
thioredoxin (Trx), 915
thyroid cancer, 704–5
BRAF mutations, 705, 705–6, 708
CTNNB1 mutations, 707
gene expression in lung cancer, 707
retinoblastoma, 886–8
thyroid tumors, 704
thyroid cancer, 707
TP53, 763, 26
TRADD, 354
TRAIL, 356, 759
as a therapeutic target, 361
O-glycosylation, 356, 361
receptor aberrations in cancer, 361
receptor internalization, 359
trametinib, 273–4
transcriptome, 7
transforming growth factor α (TGFG-α)
esophageal cancer, 527
pituitary tumors, 658
squamous-cell carcinoma, 687
transforming growth factor β (TGFG-β) signaling, 119
colorectal cancer, 549
gastric cancer, 538
hepatocellular carcinoma, 570–1
lung cancer, 511
pituitary tumors, 654
squamous-cell carcinoma, 687–8
thyroid cancer, 707
TP53, 763, 26
TRADD, 354
TRAIL, 356, 759
as a therapeutic target, 361
O-glycosylation, 356, 361
receptor aberrations in cancer, 361
receptor internalization, 359
trametinib, 273–4
transcriptome, 7
transforming growth factor α (TGFG-α)
esophageal cancer, 527
pituitary tumors, 658
squamous-cell carcinoma, 687
transforming growth factor β (TGFG-β) signaling, 119
colorectal cancer, 549
gastric cancer, 538
hepatocellular carcinoma, 570–1
lung cancer, 511
pituitary tumors, 654
squamous-cell carcinoma, 687–8
thyroid cancer, 707
transposons, 488
trastuzumab, 67, 91, 94, 838, 839, 845–6, 858, see also herceptin
breast cancer treatment, 600, 846
combination therapy, 603
mechanisms of action, 599, 600
resistance, 224, 599–600, 848
toxicity, 600
trefoil factor family 2 (TFE2), expressing metaplasia, 532
Trial Assigning Individualized Options for Treatment (TAILORx), 932
trichothiodystrophy (TTD), 437
trimobas, 856
Tirp5 deletion, 646
TSC2 (tuberous sclerosis complex 2), 122
TSPY, 621, 623
tumor-associated macrophages (TAMs), 342
tumor-educated fibroblasts, 866
Tumor-educated macrophages (TAMs), 865, 866
tumor micro-environment, 124, 126
tumor necrosis factor (TNF), 353
TNαA, hepatocyte apoptosis mediation, 340
tumor necrosis factor (TNF) receptors
TNF-R1 internalization, 359
Tumour cells, as therapeutic targets, 125
TUSC2 gene, 513
type II diabetes, 110–11, 113
tyramide signal amplification (TSA), 77
tyrosine kinase inhibitors (TKIs), 67, 240, 872, see also specific kinases
type B acute myeloid leukemia therapy, 153–5, 759
anti-RTK antibodies, 845
clinical trials, 874
drug resistance, 68–70
strategies, 214
IGF receptor inhibition, 113
Met-selective inhibitors, 212–13
molecular targets, 873
renal-cell carcinoma therapy, 580–1
sensitivity, 89, 91
side effects, 847
small-molecule inhibitors, 846–7
STAT3 interaction, 311
thyroid cancer therapy, 707–8
tyrosine kinases, 58, 231–2, see also specific tyrosine kinases
activation mechanisms, 58–61
as therapeutic targets, 67–8
non-receptor (intra-cellular) tyrosine kinases (NRKT), 58, 59, 60–232
activation, 235
conserved regions, 235
inhibitors, 67–8
mouse models, 237–8
mutational activation/inactivation in cancer, 238–40
pathway interactions, 231, 235–7
structure, 60
proto-oncogenes, 61–3
functional profiles, 483
receptor tyrosine kinases (RTKs), 58, 59, 231, 812
acute myeloid leukaemia, 755
anti-RTK antibodies, 475
degradation, 475
gastric cancer, 538
inhibitors, 846–7
RTKIII family, 144–5
stromal expression, 61
structure, 60
thyroid cancer, 704–5
structural conservation, 234–5
structure–activity relationships, 235, 236
Ub13, 476
ubiquitin, 473, 473
recycling, 477
ubiquilification functional consequences, 475
ubiquitin C-terminal hydrolase (UCH) inhibitors, 477–8
ubiquitin-activating enzymes (E1), 473
ubiquitin-binding domains (UBDs), 474–5
ubiquitin-conjugating enzymes (E2), 473, 476
ubiquitin-like proteins (ULBs), 473, 473
ubiquitin-proteasome system (UPS), 474, 474, 473–5
therapeutic targets, 475–8
ubiquitin-specific protease (USP) inhibitors, 477
ulcerative colitis (UC), 340
uniparental disomy (UPD), 752
urothelial-cell carcinoma (UCC), 584
cytogenetics, 584
epithelial-to-mesenchymal transition (EMT), 586
genetic changes, 584–6
therapeutics, 586–7
transcription factor roles, 586
van Gogh, 248
vandetanib, 708, 867
vascular endothelial cadherin (VE-cadherin), 225
vascular endothelial growth factor (VEGF), 225
angiogenesis role, 861, 863, 865
miRNA interaction, 865
AP-1 interaction, 323
as a therapeutic target, 838–40
bladder cancer, 586
Fox interaction, 330
inhibitors, 67, 348, 876–8
adverse effects, 877
esophageal cancer therapy, 528
pancreatic cancer therapy, 563
renal-cell carcinoma therapy, 580–1
siRNA study, 896
NF-κB interaction, 347
ovarian cancer, 614
Src interaction, 236
venurafenib, 264, 273, 921–2
adverse effects, 273
resistance, 274, 922
VHL tumor-suppressor gene, 579–80
vincreistine, 921
vismodegib, 695
vitamin D receptor (VDR), 594
von Hippel–Lindau (VHL), gene mutations, 579–80
Von Recklinghausen disease, see neurofibromatosis type 1 (NF1)
vorinostat, 915, 916
VX-680, 285
Waldenstrom’s macroglobulinemia, 799
Warburg effect, 316
warts, 631–4
Wee1, 296, 457
Werner syndrome (WS), 423
Wntless (WLS), 244
Wnt/β-catenin signaling, 243, 245–7
Wnt proteins, 244, 243–4
receptors, 243
Wntless (WLS), 245
wound healing, 310, 311
WP1130, 478
WRN, 616, see also Werner syndrome (WS) as a therapeutic target, 428
ATM and ATR interactions, 425
biological activities, 423, 423–4
co-ordination with chromatin modifiers, 428
DNA-damage response role, RTK, 425
epigenetic inactivation and cancer, 428–9
p53 interaction, 428
recombination role, 425–6
stall/down replication role, 426, 426–7
tumor-promotion activity, 428
tumor-suppressor function, 428
WT1 gene, 829
WT1 tumor suppressor, 756
WT2 gene, 829
WTX gene, 829
xeroderma pigmentosum (XP), 434, 435, 434–6, 693
combined XP and Cockayne syndrome, 437
XP variant form, 436
XI999, 68
X-linked inhibitor of apoptosis protein (XIAP), 370, 898
inhibition, 898
Y-family proteins, 436
ZAP-70, 233, 789
ZH 1839, see geltininb
ZEN423, 673
ZM447439, 286
ZNF198–FGFR1 fusion, 812, 813
animal models, 814
ΔNp63, 687, 688