
Chapter 1

Cbits and Qbits

1.1 What is a quantum computer?

It is tempting to say that a quantum computer is one whose operation

is governed by the laws of quantum mechanics. But since the laws of

quantum mechanics govern the behavior of all physical phenomena,

this temptation must be resisted. Your laptop operates under the laws

of quantum mechanics, but it is not a quantum computer. A quantum

computer is one whose operation exploits certain very special transfor-

mations of its internal state, whose description is the primary subject of

this book. The laws of quantum mechanics allow these peculiar trans-

formations to take place under very carefully controlled conditions.

In a quantum computer the physical systems that encode the indi-

vidual logical bits must have no physical interactions whatever that are

not under the complete control of the program. All other interactions,

however irrelevant they might be in an ordinary computer – which

we shall call classical – introduce potentially catastrophic disruptions

into the operation of a quantum computer. Such damaging encoun-

ters can include interactions with the external environment, such as

air molecules bouncing off the physical systems that represent bits, or

the absorption of minute amounts of ambient radiant thermal energy.

There can even be disruptive interactions between the computation-

ally relevant features of the physical systems that represent bits and

other features of those same systems that are associated with computa-

tionally irrelevant aspects of their internal structure. Such destructive

interactions, between what matters for the computation and what does

not, result in decoherence, which is fatal to a quantum computation.

To avoid decoherence individual bits cannot in general be encoded

in physical systems of macroscopic size, because such systems (except

under very special circumstances) cannot be isolated from their own

irrelevant internal properties. Such isolation can be achieved if the bits

are encoded in a small number of states of a system of atomic size, where

extra internal features do not matter, either because they do not exist, or

because they require unavailably high energies to come into play. Such

atomic-scale systems must also be decoupled from their surroundings

except for the completely controlled interactions that are associated

with the computational process itself.

1

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87658-2 - Quantum Computer Science: An Introduction
N. David Mermin
Excerpt
More information

http://www.cambridge.org/9780521876582
http://www.cambridge.org
http://www.cambridge.org

2 CB ITS AND QBITS

Two things keep the situation from being hopeless. First, because

the separation between the discrete energy levels of a system on the

atomic scale can be enormously larger than the separation between the

levels of a large system, the dynamical isolation of an atomic system

is easier to achieve. It can take a substantial kick to knock an atom

out of its state of lowest energy. The second reason for hope is the

discovery that errors induced by extraneous interactions can actually

be corrected if they occur at a sufficiently low rate. While error cor-

rection is routine for bits represented by classical systems, quantum

error correction is constrained by the formidable requirement that it

be done without knowing either the original or the corrupted state of

the physical systems that represent the bits. Remarkably, this turns out

to be possible.

Although the situation is therefore not hopeless, the practical diffi-

culties in the way of achieving useful quantum computation are enor-

mous. Only a rash person would declare that there will be no useful

quantum computers by the year 2050, but only a rash person would

predict that there will be. Never mind. Whether or not it will ever

become a practical technology, there is a beauty to the theory of quan-

tum computation that gives it a powerful appeal as a lovely branch of

mathematics, and as a strange generalization of the paradigm of clas-

sical computer science, which had completely escaped the attention of

computer scientists until the 1980s. The new paradigm demonstrates

that the theory of computation can depend profoundly on the physics

of the devices that carry it out. Quantum computation is also a valuable

source of examples that illustrate and illuminate, in novel ways, the

mysterious phenomena that quantum behavior can give rise to.

For computer scientists the most striking thing about quantum com-

putation is that a quantum computer can be vastly more efficient than

anything ever imagined in the classical theory of computational com-

plexity, for certain computational tasks of considerable practical inter-

est. The time it takes the quantum computer to accomplish such tasks

scales up much more slowly with the size of the input than it does in

any classical computer. Much of this book is devoted to examining the

most celebrated examples of this speed-up.

This exposition of quantum computation begins with an introduc-

tion to quantum mechanics, specially tailored for this particular ap-

plication. The quantum-mechanics lessons are designed to give you,

as efficiently as possible, the conceptual tools needed to delve into

quantum computation. This is done by restating the rules of quantum

mechanics, not as the remarkable revision of classical Newtonian me-

chanics required to account for the behavior of matter at the atomic

and subatomic levels, but as a curious generalization of rules describ-

ing an ordinary classical digital computer. By focusing exclusively on

how quantum mechanics enlarges the possibilities for the physical ma-

nipulation of digital information, it is possible to characterize how

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87658-2 - Quantum Computer Science: An Introduction
N. David Mermin
Excerpt
More information

http://www.cambridge.org/9780521876582
http://www.cambridge.org
http://www.cambridge.org

1.2 CB ITS AND THE IR STATES 3

the quantum theory works in an elementary and quite concise way,

which is nevertheless rigorous and complete for this special area of

application.

While I assume no prior familiarity with quantum physics (or any

other kind of physics), I do assume familiarity with elementary linear

algebra and, in particular, with the theory of finite-dimensional vector

spaces over the complex numbers. Appendix A summarizes the relevant

linear algebra. It is worth examining even if you are well acquainted

with the mathematics of such vector spaces, since it also provides a

compact summary of the mathematically unconventional language –

Dirac notation – in which linear algebra is couched in all treatments of

quantum computation. Dirac notation is also developed, more infor-

mally, throughout the rest of this chapter.

1.2 Cbits and their states

We begin with an offbeat formulation of what an ordinary classical

computer does. I frame the elementary remarks that follow in a lan-

guage which may look artificial and cumbersome, but is designed to

accommodate the richer variety of things that a computer can do if it

takes full advantage of the possibilities made available by the quantum-

mechanical behavior of its constituent parts. By introducing and apply-

ing the unfamiliar nomenclature and notation of quantum mechanics

in a familiar classical context, I hope to make a little less strange its

subsequent extension to the broader quantum setting.

A classical computer operates on strings of zeros and ones, such

as 110010111011000, converting them into other such strings. Each

position in such a string is called a bit, and it contains either a 0 or a

1. To represent such collections of bits the computer must contain a

corresponding collection of physical systems, each of which can exist

in two unambiguously distinguishable physical states, associated with

the value (0 or 1) of the abstract bit that the physical system represents.

Such a physical system could be, for example, a switch that could be

open (0) or shut (1), or a magnet whose magnetization could be oriented

in two different directions, “up” (0) or “down” (1).

It is a common practice in quantum computer science to use the

same term “bit” to describe the two-state classical system that rep-

resents the value of the abstract bit. But this use of a single term to

characterize both the abstract bit (0 or 1) and the physical system whose

two states represent the two values is a potential source of confusion.

To avoid such confusion, I shall use the term Cbit (“C” for “classi-

cal”) to describe the two-state classical physical system and Qbit to

describe its quantum generalization. This terminology is inspired by

Paul Dirac’s early use of c-number and q-number to describe classical

quantities and their quantum-mechanical generalizations. “Cbit” and

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87658-2 - Quantum Computer Science: An Introduction
N. David Mermin
Excerpt
More information

http://www.cambridge.org/9780521876582
http://www.cambridge.org
http://www.cambridge.org

4 CB ITS AND QBITS

“Qbit” are preferable to “c-bit” and “q-bit” because the terms them-

selves often appear in hyphenated constructions.

Unfortunately the preposterous spelling qubit currently holds sway

for the quantum system. The term qubit was invented and first used

in print by the otherwise admirable Benjamin Schumacher.1 A brief

history of the term can be found in the acknowledgments at the end of

his paper. Although “qubit” honors the English (German, Italian, . . .)

rule that q should be followed by u , it ignores the equally powerful

requirement that qu should be followed by a vowel. My guess is that

“qubit” has gained acceptance because it visually resembles an obsolete

English unit of distance, the homonymic cubit. To see its ungainliness

with fresh eyes, it suffices to imagine that Dirac had written qunumber
instead of q-number, or that one erased transparencies and cleaned one’s

ears with Qutips.
Because clear distinctions among bits, Cbits, and Qbits are crucial

in the introduction to quantum computation that follows, I shall use

this currently unfashionable terminology. If you are already addicted

to the term qubit, please regard Qbit as a convenient abbreviation.

To prepare for the extension from Cbits to Qbits, I introduce what

may well strike you as a degree of notational overkill in the discussion

of Cbits that follows. We shall represent the state of each Cbit as a kind

of box, depicted by the symbol | 〉, into which we place the value, 0

or 1, represented by that state. Thus the two distinguishable states of

a Cbit are represented by the symbols |0〉 and |1〉. It is the common

practice to call the symbol |0〉 or |1〉 itself the state of the Cbit, thereby

using the same term to refer to both the physical condition of the

Cbit and the abstract symbol that represents that physical condition.

There is nothing unusual in this. For example one commonly uses the

term “position” to refer to the symbol x that represents the physical

position of an object. I call this common, if little noted, practice to your

attention only because in the quantum case “state” refers only to the

symbol, there being no internal property of the Qbit that the symbol

represents. The subtle relation between Qbits and their state symbol

will emerge later in this chapter.

Along the same lines, we shall characterize the states of the five Cbits

representing 11001, for example, by the symbol

|1〉|1〉|0〉|0〉|1〉, (1.1)

and refer to this object as the state of all five Cbits. Thus a pair of Cbits

can have (or “be in”) any of the four possible states

|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉, (1.2)

1 Benjamin Schumacher, “Quantum coding,” Physical Review A 51,

2738–2747 (1995).

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87658-2 - Quantum Computer Science: An Introduction
N. David Mermin
Excerpt
More information

http://www.cambridge.org/9780521876582
http://www.cambridge.org
http://www.cambridge.org

1.2 CB ITS AND THE IR STATES 5

three Cbits can be in any of the eight possible states

|0〉|0〉|0〉, |0〉|0〉|1〉, |0〉|1〉|0〉, |0〉|1〉|1〉, |1〉|0〉|0〉,
|1〉|0〉|1〉, |1〉|1〉|0〉, |1〉|1〉|1〉, (1.3)

and so on.

As (1.4) already makes evident, when there are many Cbits such

products are often much easier to read if one encloses the whole string

of zeros and ones in a single bigger box of the form | 〉 rather than

having a separate box for each Cbit:

|000〉, |001〉, |010〉, |011〉, |100〉, |101〉, |110〉, |111〉. (1.4)

We shall freely move between these two equivalent ways of expressing

the state of several Cbits that represent a string of bits, boxing the whole

string or boxing each individual bit. Whether the form (1.3) or (1.4) is

to be preferred depends on the context.

There is also a third form, which is useful when we regard the zeros

and ones as constituting the binary expansion of an integer. We can

then replace the representations of the 3-Cbit states in (1.4) by the

even shorter forms

|0〉, |1〉, |2〉, |3〉, |4〉, |5〉, |6〉, |7〉. (1.5)

Note that, unlike the forms (1.3) and (1.4), the form (1.5) is ambiguous,

unless we are told that these symbols express states of three Cbits. If

we are not told, then there is no way of telling, for example, whether

|3〉 represents the 2-Cbit state|11〉, the 3-Cbit state|011〉, or the 4-Cbit

state |0011〉, etc. This ambiguity can be removed, when necessary, by

adding a subscript making the number of Cbits explicit:

|0〉3, |1〉3, |2〉3, |3〉3, |4〉3, |5〉3, |6〉3, |7〉3. (1.6)

Be warned, however, that, when there is no need to emphasize how

many Cbits |x〉 represents, it can be useful to use such subscripts for

other purposes. If, for example, Alice and Bob each possess a single

Cbit it can be convenient to describe the state of Alice’s Cbit (if it has

the value 1) by |1〉a , Bob’s (if it has the value 0) by |0〉b , and the joint

state of the two by |1〉a |0〉b or |10〉ab .

Dirac introduced the | 〉 notation (known as Dirac notation) in the

early days of the quantum theory, as a useful way to write and manipu-

late vectors. For silly reasons he called such vectors kets, a terminology

that has survived to this day. In Dirac notation you can put into the box

| 〉 anything that serves to specify what the vector is. If, for example, we

were talking about displacement vectors in ordinary three-dimensional

space, we could have a vector

|5 horizontal centimeters northeast〉. (1.7)

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87658-2 - Quantum Computer Science: An Introduction
N. David Mermin
Excerpt
More information

http://www.cambridge.org/9780521876582
http://www.cambridge.org
http://www.cambridge.org

6 CB ITS AND QBITS

In using Dirac notation to express the state of a Cbit, or a collection

of Cbits, I’m suggesting that there might be some utility in thinking

of the states as vectors. Is there? Well, in the case of Cbits, not very

much, but maybe a little. We now explore this way of thinking about

Cbit states, because when we come to the generalization to Qbits, it

becomes absolutely essential to consider them to be vectors – so much

so that the term state is often taken to be synonymous with vector (or,

more precisely, “vector that represents the state”).

We shall briefly explore what one can do with Cbits when one takes

the two states |0〉 and |1〉 of a single Cbit to be represented by two

orthogonal unit vectors in a two-dimensional space. While this is little

more than a curious and unnecessarily elaborate way of describing

Cbits, it is fundamental and unavoidable in dealing with Qbits. Playing

unfamiliar and somewhat silly games with Cbits will enable you to

become acquainted with much of the quantum-mechanical formalism

in a familiar setting.

If you prefer your vectors to be expressed in terms of components,

note that we can represent the two orthogonal states of a single Cbit,

|0〉 and |1〉, as column vectors

|0〉 =
(

1

0

)
, |1〉 =

(
0

1

)
. (1.8)

In the case of two Cbits the vector space is four-dimensional, with

an orthonormal basis

|00〉, |01〉, |10〉, |11〉. (1.9)

The alternative notation for this basis,

|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉, (1.10)

is deliberately designed to suggest multiplication, since it is, in fact,

a short-hand notation for the tensor product of the two single-Cbit

2-vectors, written in more formal mathematical notation as

|0〉 ⊗ |0〉, |0〉 ⊗ |1〉, |1〉 ⊗ |0〉, |1〉 ⊗ |1〉. (1.11)

In terms of components, the tensor product a ⊗ b of an M-component

vector a with components aμ and an N-component vector b with com-

ponents bν is the (MN)-component vector with components indexed

by all the MN possible pairs of indices (μ, ν), whose (μ, ν)th com-

ponent is just the product aμbν . A broader view can be found in the

extended review of vector-space concepts in Appendix A. I shall freely

move back and forth between the various ways (1.9)–(1.11) of writing

the tensor product and their generalizations to multi-Cbit states, using

in each case a form that makes the content clearest.

Once one agrees to regard the two 1-Cbit states as orthogonal unit

vectors, the tensor product is indeed the natural way to represent

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87658-2 - Quantum Computer Science: An Introduction
N. David Mermin
Excerpt
More information

http://www.cambridge.org/9780521876582
http://www.cambridge.org
http://www.cambridge.org

1.2 CB ITS AND THE IR STATES 7

multi-Cbit states, since it leads to the obvious multi-Cbit generaliza-

tion of the representation (1.8) of 1-Cbit states as column vectors. If we

express the states |0〉 and |1〉 of each single Cbit as column vectors, then

we can get the column vector describing a multi-Cbit state by repeat-

edly applying the rule for the components of the tensor product of two

vectors. The result is illustrated here for a three-fold tensor product:

(
x0

x1

)
⊗

(
y0

y1

)
⊗

(
z0

z1

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0 y0z0

x0 y0z1

x0 y1z0

x0 y1z1

x1 y0z0

x1 y0z1

x1 y1z0

x1 y1z1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1.12)

On applying this, for example, to the case |5〉3, we have

|5〉3 = |101〉 = |1〉|0〉|1〉 =
(

0

1

)
⊗

(
1

0

)
⊗

(
0

1

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

0

0

0

1

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (1.13)

If we label the vertical components of the 8-vector on the right

0, 1, . . ., 7, from the top down, then the single nonzero component is

the 1 in position 5 – precisely the position specified by the state vector

in its form on the left of (1.13). This is indeed the obvious multi-Cbit

generalization of the column-vector form (1.8) for 1-Cbit states.

This is quite general: the tensor-product structure of multi-Cbit

states is just what one needs in order for the 2n-dimensional column

vector representing the state |m〉n to have all its entries zero except for

a single 1 in the m th position down from the top.

One can turn this development upside down, taking as one’s starting

point the simple rule that an integer x in the range 0 ≤ x < N is

represented by one of N orthonormal vectors in an N-dimensional

space. One can then pick a basis so that 0 is represented by an N-

component column vector |0〉 that has 0 in every position except for a

1 in the top position, and x is to be represented by an N-component

column vector |x〉 that has 0 in every position except for a 1 in the

position x down from the top. It then follows from the nature of the

tensor product that if N = 2n and x has the binary expansion x =∑n−1
j=0 x j 2

j , then the column vector |x〉n is the tensor product of the n
2-component column vectors |x j 〉:

|x〉n = |xn−1〉 ⊗ |xn−2〉 ⊗ · · · ⊗ |x1〉 ⊗ |x0〉. (1.14)

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87658-2 - Quantum Computer Science: An Introduction
N. David Mermin
Excerpt
More information

http://www.cambridge.org/9780521876582
http://www.cambridge.org
http://www.cambridge.org

8 CB ITS AND QBITS

In dealing with n-Cbit states of the form (1.14) we shall identify each

of the n 1-Cbit states, out of which they are composed, by giving the

power of 2 associated with the individual bit that the Cbit represents.

Thus the 1-Cbit state on the extreme right of (1.14) represents Cbit 0,

the state immediately to its left represents Cbit 1, and so on.

This relation between tensor products of vectors and positional

notation for integers is not confined to the binary system. Suppose,

for example, one represents a decimal digit x = 0, 1, . . ., 9 as a 10-

component column vector v(x) with all components 0 except for a

1, x positions down from the top. If the n-digit decimal number

X = ∑n−1
j=0 x j 10 j is represented by the tensor product V = v(xn−1) ⊗

v(xn−2) ⊗ · · · ⊗ v(1) ⊗ v(0), then V will be a 10n-component column vec-

tor with all components 0 except for a 1, x positions down from the

top.

Although the representation of Cbit states by column vectors clearly

shows why tensor products give a natural description of multi-Cbit

states, for almost all other purposes it is better and much simpler to

forget about column vectors and components, and deal directly with

the state vectors in their abstract forms (1.3)–(1.6).

1.3 Reversible operations on Cbits

Quantum computers do an important part of their magic through re-
versible operations, which transform the initial state of the Qbits into

its final form using only processes whose action can be inverted. There

is only a single irreversible component to the operation of a quantum

computer, called measurement, which is the only way to extract useful

information from the Qbits after their state has acquired its final form.

Although measurement is a nontrivial and crucial part of any quantum

computation, in a classical computer the extraction of information from

the state of the Cbits is so conceptually straightforward that it is not

viewed as an inherent part of the computational process, though it is,

of course, a nontrivial concern for those who design digital displays

or printers. Because the only computationally relevant operations on

a classical computer that can be extended to operations on a quantum

computer are reversible, only operations on Cbits that are reversible

will be of interest to us here.

In a reversible operation every final state arises from a unique initial

state. An example of an irreversible operation is ERASE, which forces

a Cbit into the state |0〉 regardless of whether its initial state is |0〉 or

|1〉. ERASE is irreversible in the sense that, given only the final state

and the fact that it was the output of the operation ERASE, there is no

way to recover the initial state.

The only nontrivial reversible operation we can apply to a single Cbit

is the NOT operation, denoted by the symbol X, which interchanges

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87658-2 - Quantum Computer Science: An Introduction
N. David Mermin
Excerpt
More information

http://www.cambridge.org/9780521876582
http://www.cambridge.org
http://www.cambridge.org

1.3 REVERS IBLE OPERAT IONS ON CBITS 9

the two states |0〉 and |1〉:
X : |x〉 → |x̃〉; 1̃ = 0, 0̃ = 1. (1.15)

This is sometimes referred to as flipping the Cbit. NOT is reversible

because it has an inverse: applying X a second time brings the state of

the Cbit back to its original form:

X2 = 1, (1.16)

where 1 is the unit (identity) operator. If we represent the two or-

thogonal states of the Cbit by the column vectors (1.8), then we can

express NOT by a linear operator X on the two-dimensional vector

space, whose action on the column vectors is given by the matrix

X =
(

0 1

1 0

)
. (1.17)

So the two reversible things you can do to a single Cbit – leaving it

alone and flipping it – correspond to the two linear operators X and 1,

1 =
(

1 0

0 1

)
, (1.18)

on its two-dimensional vector space.

A pedantic digression: since multiplication by the scalar 1 and ac-

tion by the unit operator 1 achieve the same result, I shall sometimes

follow the possibly irritating practice of physicists and not distinguish

notationally between them. I shall take similar liberties with the scalar

0, the zero vector 0, and the zero operator 0.

Possibilities for reversible operations get richer when we go from a

single Cbit to a pair of Cbits. The most general reversible operation on

two Cbits is any permutation of their four possible states. There are 4!

= 24 such operations. Perhaps the simplest nontrivial example is the

swap (or exchange) operator Si j , which simply interchanges the states

of Cbits i and j :

S10|xy〉 = |yx〉. (1.19)

Since the swap operator S10 interchanges |01〉 = |1〉2 and |10〉 = |2〉2,

while leaving |00〉 = |0〉2 and |11〉 = |3〉2 fixed, its matrix in the basis

|0〉2, |1〉2, |2〉2, |3〉2 is

S10 = S01 =

⎛
⎜⎜⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞
⎟⎟⎠. (1.20)

The 2-Cbit operator whose extension to Qbits plays by far the

most important role in quantum computation is the controlled-NOT
or cNOT operator Ci j . If the state of the i th Cbit (the control Cbit) is

|0〉, Ci j leaves the state of the j th Cbit (the target Cbit) unchanged, but,

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87658-2 - Quantum Computer Science: An Introduction
N. David Mermin
Excerpt
More information

http://www.cambridge.org/9780521876582
http://www.cambridge.org
http://www.cambridge.org

10 CB ITS AND QBITS

if the state of the control Cbit is |1〉, Ci j applies the NOT operator X

to the state of the target Cbit. In either case the state of the control Cbit

is left unchanged.

We can summarize this compactly by writing

C10|x〉|y〉 = |x〉|y ⊕ x〉, C01|x〉|y〉 = |x ⊕ y〉|y〉, (1.21)

where ⊕ denotes addition modulo 2:

y ⊕ 0 = y, y ⊕ 1 = ỹ = 1 − y. (1.22)

The modulo-2 sum x ⊕ y is also called the “exclusive OR” (or XOR)

of x and y.

You can construct SWAP out of three cNOT operations:

Si j = Ci j C j i Ci j . (1.23)

This can easily be verified by repeated applications of (1.21), noting

that x ⊕ x = 0. We note some other ways of showing it below.

To construct the matrix for the cNOT operation in the four-

dimensional 2-Cbit space, note that if the control Cbit is on the left

then cNOT leaves |00〉 = |0〉2 and |01〉 = |1〉2 fixed and exchanges

|10〉 = |2〉2 and |11〉 = |3〉2. Therefore the 4 ⊗ 4 matrix representing

C10 is just

C10 =

⎛
⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎠. (1.24)

If the control Cbit is on the right, then the states |01〉 = |1〉2 and

|11〉 = |3〉2 are interchanged, and |00〉 = |0〉2 and |10〉 = |2〉2 are fixed,

so the matrix representing C01 is

C01 =

⎛
⎜⎜⎝

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎞
⎟⎟⎠. (1.25)

The construction (1.23) of S out of cNOT operators also follows

from (1.20), (1.24), and (1.25), using matrix multiplication. As a prac-

tical matter, it is almost always more efficient to establish operator

identities by dealing with them directly as operators, avoiding matrix

representations.

A very common kind of 2-Cbit operator consists of the tensor prod-

uct ⊗ of two 1-Cbit operators:

(a ⊗ b)|xy〉 = (a ⊗ b)|x〉 ⊗ |y〉 = a|x〉 ⊗ b|y〉, (1.26)

from which it follows that

(a ⊗ b)(c ⊗ d) = (ac) ⊗ (bd). (1.27)

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-87658-2 - Quantum Computer Science: An Introduction
N. David Mermin
Excerpt
More information

http://www.cambridge.org/9780521876582
http://www.cambridge.org
http://www.cambridge.org

	http://www:
	cambridge:
	org:

	9780521876582:

