Mapping species distributions: spatial inference and prediction

Maps of species distributions or habitat suitability are required for many aspects of environmental research, resource management, and conservation planning. These include biodiversity assessment, reserve design, habitat management, and restoration, species and habitat conservation plans and predicting the effects of environmental change on species and ecosystems. The proliferation of methods and uncertainty regarding their effectiveness can be daunting to researchers, resource managers, and conservation planners alike. Franklin summarizes the methods used in species distribution modeling (also called niche modeling) and presents a framework for spatial prediction of species distributions based on the attributes (space, time, scale) of the data and questions being asked. The framework links theoretical ecological models of species distributions to spatial data on species and environment, and statistical models used for spatial prediction. Provides practical guidelines to students, researchers, and practitioners in a broad range of environmental sciences including ecology, geography, conservation biology, and natural resources management.

JANET FRANKLIN has been a Professor of Biology and Adjunct Professor of Geography at San Diego State University, where she was on the faculty from 1988–2009. In 2009 she joined the faculty of Arizona State University as a Professor in the Schools of Geographical Sciences and Life Sciences. She received the Bachelor's degree on Environmental Biology (1979), the Master of Arts (1983), and the Ph.D. (1988) in Geography, all from the University of California at Santa Barbara. Her research interests include biogeography, landscape ecology, plant ecology, biophysical remote sensing, digital terrain analysis, and geographic information science. She has conducted research on plant community composition, structure, dynamics and spatio-temporal patterns in Mediterranean-climate ecosystems, deserts, tropical dry forests and rain forests.

She was the Editor of *The Professional Geographer* (1997–2000), Board Member of *Landscape Ecology* (2000–2005), and Associate Editor of the *Journal of Vegetation Science* (1999–2006). She is currently a Board Member of *Ecology*, and *Diversity and Distributions*. She has published more than 80 refereed book chapters and papers in journals *Ecological Applications*, *Ecological Modelling*, *Journal of Vegetation Science*, *Ecology*, *Diversity and Distributions*, *Journal of Tropical Ecology* and *Conservation Biology*. She has received research support from NSF, NASA, USGS, Forest Service, California State Parks, National Geographic Society, and others.

ECOLOGY, BIODIVERSITY AND CONSERVATION

Series Editors Michael Usher University of Stirling, and formerly Scottish Natural Heritage Denis Saunders Formerly CSIRO Division of Sustainable Ecosystems, Canberra Robert Peet University of North Carolina, Chapel Hill Andrew Dobson Princeton University

Editorial Board Paul Adam University of New South Wales, Australia H. J. B. Birks University of Bergen, Norway Lena Gustafsson Swedish University of Agricultural Science Jeff McNeely International Union for the Conservation of Nature R. T. Paine University of Washington David Richardson University of Cape Town Jeremy Wilson Royal Society for the Protection of Birds

The world's biological diversity faces unprecedented threats. The urgent challenge facing the concerned biologist is to understand ecological processes well enough to maintain their functioning in the face of the pressures resulting from human population growth. Those concerned with the conservation of biodiversity and with restoration also need to be acquainted with the political, social, historical, economic, and legal frameworks within which ecological and conservation practice must be developed. The new Ecology, Biodiversity, and Conservation series will present balanced, comprehensive, up-to-date, and critical reviews of selected topics within the sciences of ecology and conservation biology, both botanical and zoological, and both "pure" and "applied." It is aimed at advanced final-year undergraduates, graduate students, researchers, and university teachers, as well as ecologists and conservationists in industry, government and the voluntary sectors. The series encompasses a wide range of approaches and scales (spatial, temporal, and taxonomic), including quantitative, theoretical, population, community, ecosystem, landscape, historical, experimental, behavioural, and evolutionary studies. The emphasis is on science related to the real world of plants and animals rather than on purely theoretical abstractions and mathematical models. Books in this series will, wherever possible, consider issues from a broad perspective. Some books will challenge existing paradigms and present new ecological concepts, empirical or theoretical models, and testable hypotheses. Other books will explore new approaches and present syntheses on topics of ecological importance.

The Ecology of Phytoplankton C. S. Reynolds Invertebrate Conservation and Agricultural Ecosystems T. R. New Risks and Decisions for Conservation and Environmental Management Mark Burgman Nonequilibrium Ecology Klaus Rohde

CAMBRIDGE

Cambridge University Press 978-0-521-87635-3 - Mapping Species Distributions: Spatial Inference and Prediction Janet Franklin Frontmatter More information

> Ecology of Populations Esa Ranta, Veijo Kaitala and Per Lundberg

Ecology and Control of Introduced Plants Judith H. Myers, Dawn Bazely

Systematic Conservation Planning Chris Margules, Sahotra Sarkar

Assessing the Conservation Value of Fresh Waters Phil Boon, Cathy Pringle

Bird Conservation and Agriculture Jeremy D. Wilson, Andrew D. Evans, Philip V. Grice

Large Scale Landscape Experiments David B. Lindenmayer

Insect Species Conservation Tim R. New

Mapping species distributions

Spatial inference and prediction

JANET FRANKLIN

School of Geographical Sciences and School of Life Sciences, Arizona State University Formerly at the Departments of Biology and Geography, San Diego State University

With contributions by JENNIFER A. MILLER

Department of Geography and the Environment, University of Texas, Austin, Texas, USA

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521700023

© Cambridge University Press 2009

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2009

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

ISBN 978-0-521-87635-3 Hardback ISBN 978-0-521-70002-3 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To the extent permitted by applicable law, Cambridge University Press is not liable for direct damages or loss of any kind resulting from the use of this product or from errors or faults contained in it, and in every case Cambridge University Press's liability shall be limited to the amount actually paid by the customer for the product.

To Serge, Savannah, and Connor

Contents

	Prefa Ackr	ce 10wledgn		<i>page</i> xv xvii	
Part I:	History and ecological basis of species distribution modeling				
1	Spec	ies distr	ibution modeling	3	
	1.1	Introd	uction	3	
	1.2	What	What is in a name?		
		1.2.1	Niche models	5	
		1.2.2	Habitat suitability models	6	
	1.3	Height	tened interest in species distribution		
		model	ing	7	
	1.4	What i	is species distribution modeling and how		
			book organized?	9	
	1.5	Why n	nodel species distributions?	11	
		1.5.1	Reserve design and conservation		
			planning	12	
		1.5.2	Impact assessment and resource		
			management	14	
		1.5.3	Ecological restoration and ecological		
			modeling	14	
		1.5.4	Risk and impacts of invasive species		
			including pathogens	15	
		1.5.5	Effects of global warming on		
			biodiversity and ecosystems	17	
2	Why	v do we	need species distribution models?	21	
	2.1	Introd	uction	21	
	2.2	Mappi	ng species – atlas projects and natural		
			collections	22	

Cambridge University Press	
978-0-521-87635-3 - Mapping Species Distributions: Spatial Inference and	Prediction
Janet Franklin	
Frontmatter	
More information	

x · Contents

		2.2.1	Grid-based atlases of species	
			distributions	22
		2.2.2	Species locations from natural history	
			collections	30
	2.3	Direct	interpolation of species data	30
	2.4		ary – what do we really want?	32
3	Fcol	orical u	nderstanding of species distributions	34
5	3.1	Introdu		34
	3.2		ecies niche concept	34
	5.2	3.2.1	The species niche in environmental and	51
		5.2.1	geographical space	35
		3.2.2	The species niche in evolutionary time	39
		3.2.2	Niche or resource selection function?	40
	3.3		s controlling species distributions	41
	3.4		nmental gradients and species response	11
	functions			41
			ptual models of environmental factors	11
	controlling species distributions			44
		3.5.1	Heat, moisture, light, nutrients, and the	
		0.0.1	distribution of plants	44
		3.5.2	Hierarchical and nested scales of factors	
		0.0.2	affecting species distributions	46
		3.5.3	Environmental factors affecting species	10
		0.0.0	diversity and life form	49
	3.6	Summa	-	51
Part II:	The		eeded for modeling species distribution	0116
				0115
4		-	cies distribution models: the	
		ogical da		55
	4.1		action – the species data model	55
	4.2	-	prediction of species distributions: what	
			g predicted?	55
	4.3		oncepts related to species data	57
	4.4	-	sampling design issues related to	
		species		59
		4.4.1	Probability sample designs	60
			How many observations?	62
		4.4.3	Species prevalence	63

CAMBRIDGE

Cambridge University Press 978-0-521-87635-3 - Mapping Species Distributions: Spatial Inference and Prediction Janet Franklin Frontmatter <u>More information</u>

			Contents	· xi
		4.4.4	Sample resolution	64
		4.4.5	1	
			environmental gradients	66
		4.4.6	Using existing data for modeling	66
			Species presence-only data	71
	4.5		oral sampling issues and species data	73
		4.5.1		73
		4.5.2	Historical species data	73
	4.6	Summ	ary	74
5	Data	ı for spe	cies distribution models: the	
		ronmen		76
	5.1	Introd	uction	76
	5.2	Spatial	data representing primary environmental	
		regime		77
		5.2.1	Climate maps	77
		5.2.2	Digital terrain maps	84
		5.2.3	Soil factors and geology maps	89
	5.3	Other	environmental data for SDM	91
		5.3.1	Vegetation maps	91
		5.3.2	Disturbance and disturbance history	93
		5.3.3	Remote sensing	94
		5.3.4	Landscape pattern	99
		5.3.5	The distributions of other species	100
	5.4	Enviro	nmental data for aquatic and marine	
		species	;	101
	5.5	Summ	ary	103
Part III:	An	overvie	w of the modeling methods	
6	Stati	stical m	odels – modern regression (Janet Franklin	
			A. Miller)	113
	-	Introd	•	113
	6.2	The li	near model	114
	6.3	Gener	alized linear models	115
		6.3.1	Transformations of the predictors	117
		6.3.2	Model estimation	119
		6.3.3	Model selection and predictor	
			collinearity	122
		6.3.4	Use of GLMs in species distribution	
			modeling	124
		6.3.5	Summary	125

Cambridge University Press			
978-0-521-87635-3 - Mapping S	Species Distributions:	Spatial Inference and Pre	diction
Janet Franklin			
Frontmatter			
More information			

xii \cdot Contents

	6.4	Generalized additive models	126		
	0	6.4.1 Use of GAMs in species distribution			
		modeling	127		
		6.4.2 Summary	130		
	6.5	Multivariate adaptive regression splines	130		
		6.5.1 Use of MARS in species distribution			
		modeling	134		
	6.6	Multivariate statistical approaches to SDM	134		
	6.7	Bayesian approaches to SDM	136		
	6.8	7 11			
		species distributions	138		
		6.8.1 Consequences of SAC data	139		
		6.8.2 Solutions to SAC data	142		
		Autoregression	143		
		Applications of autoregression methods			
		in SDM	147		
		Generalized estimating equations and			
		generalized linear mixed models	148		
		Geographically weighted regression	149		
		Spatial filtering methods	151		
		6.8.3 Summary	152		
7	Mac	hine learning methods	154		
	7.1	Introduction	154		
	7.2	Decision tree-based methods	155		
		7.2.1 How decision trees work	155		
		7.2.2 When are decision trees useful?	161		
		7.2.3 A note about multivariate decision			
		trees	165		
		7.2.4 Application of decision trees in species	3		
		distribution modeling	165		
	7.3	Ensemble methods applied to decision			
		trees – bagging, boosting, and random			
		forests	165		
	7.4	Artificial neural networks	170		
	7.5	Genetic algorithms	173		
	7.6	Maximum entropy	174		
	7.7	Support vector machines	174		
	7.8	Ensemble forecasting and consensus methods	176		
	7.9	Summary			

CAMBRIDGE

Cambridge University Press 978-0-521-87635-3 - Mapping Species Distributions: Spatial Inference and Prediction Janet Franklin Frontmatter More information

			Contents	· xiii	
8	Classification, similarity and other methods for				
	prese	ence-on	ly data	180	
	8.1	Introd	uction	180	
	8.2	Envelo	pe models and similarity measures	181	
		8.2.1	Environmental envelope methods	182	
		8.2.2	Environmental distance methods	183	
	8.3	Specie	s presence versus habitat availability	187	
		8.3.1	Resource selection functions using		
			descriminative models	188	
		8.3.2	Ecological niche factor analysis	191	
		8.3.3	Genetic algorithms for rule production		
			(GARP)	194	
		8.3.4	Maximum entropy	196	
	8.4	Habita	t suitability indices and other expert		
		model	\$	200	
	8.5	Summ	ary	203	
Part IV:	Мос	lel eval	uation and implementation		
9	Model evaluation				
,		Introd		209 209	
	9.2		or model evaluation	211	
	9.3		res of prediction errors	213	
	2.0	9.3.1	Threshold-dependent measures of	210	
		, 1011	accuracy	214	
		9.3.2	Choosing a threshold for classification	216	
		9.3.3	-		
			accuracy	222	
		1	AUC	222	
			Correlation	224	
		(Calibration	224	
			Evaluating presence-only models	226	
		9.3.5			
			uncertainty and error	228	
	9.4	Summ	-	233	
10	Impl			235	
10	Implementation of species distribution models 10.1 Introduction				
			s attributes	235 237	
		Specie		246	
		-	nmental data and scale	240	
	10.4	LIIVIIU	minemai data and scale	270	

Cambridge University Press	
978-0-521-87635-3 - Mapping Species Distributions: Spatial Inference and Predic	tion
Janet Franklin	
Frontmatter	
More information	

xiv · Contents

10.5 Modeling methods10.6 Model evaluation	253 259
10.7 Summary – beyond species distribution modeling	260
References	262
Index	318

Preface

Maps of actual or potential species distributions or habitat suitability are required for many aspects of environmental research, resource management, and conservation planning. These applications include biodiversity assessment, biological reserve design, habitat management and restoration, species and habitat conservation plans, population viability analysis, environmental risk assessment, invasive species management, community and ecosystem modeling, and predicting the effects of global environmental change on species and ecosystems. In recent years a burgeoning number of statistical and related methods have been used with mapped biological and environmental data in order to model, or, in some way, spatially interpolate species distributions, and other biospatial variables of interest, over large spatial extents. This practice is known as species distribution modeling (SDM). It has also been referred to as environmental, bioclimatic, or species niche modeling, and habitat suitability modeling, but, in this book, the term SDM will be preferred.

The proliferation of modeling methods applied to SDM, and conflicting results regarding their efficacy and relative merits, is daunting to researchers and resource analysts alike. The lack of integration of modeling and Geographic Information System (GIS) tools can impede the effective implementation of SDM. This book summarizes the key components of, and various approaches to, this problem that have been applied worldwide. This comprehensive summary provides guidance to novice species distribution modelers and also a review of current practices for more advanced practitioners. The book is organized according to a framework for modeling species distributions that has three parts: the ecological, data, and statistical models. The ecological model includes ecological theory used to link environmental predictors to species distributions according to a response function. The data model includes the decisions made regarding how data for modeling are collected and measured. The statistical model includes the choice of modeling methods and decisions required during model fitting and evaluation.

xvi · Preface

The elements of SDM are: a conceptual model of the abiotic and biotic factors controlling species distributions in space and time; data on species occurrences in geographical space; digital maps of environmental variables representing those factors thought to control species distributions; a quantitative or rule-base model linking species occurrence to the environmental predictors; a geographic information system (GIS) for applying the model rules to the environmental variable maps in order to produce a map of predicted species occurrence; and, data and methods for evaluating the error or uncertainty in the predictions.

This book discusses each of these elements. It then concludes with a framework for mapping species distributions from biological survey data, statistical models and digital maps of the environment. That framework is based on the attributes (space, time, scale) of the data and questions being asked. The framework links ecological theories of species distributions to the spatial data and statistical models used in empirical studies. This provides practical guidelines for model formulation, calibration, evaluation, and application.

Acknowledgments

I thank Alan Crowden for encouraging me to write this book, providing mentorship, and offering excellent guidance and suggestions for improving the book. I am extremely grateful to Alexandra Syphard for reading and commenting on the entire manuscript and for developing several of the figures. I also greatly appreciate the considerable efforts of several others who reviewed all or significant portions of the book at various stages, and offered tremendously useful suggestions and corrections, including Mike Austin, Jane Elith, Jennifer Miller, Helen Regan and Michael Usher. In addition to them, I also thank Simon Ferrier for allowing me to draw on his expertise and graciously responding to my many questions.

The people who have inspired and nurtured my passion for this topic are too numerous to mention without fear of leaving someone out. They include many of the authors whose work I cite as well as many of my former students and mentors. I will single out a few who set me on this path and those who offered wisdom, timely insights, good questions, and stimulating discussions along the way (in alphabetical order): Richard Aspinall, Mike Austin, Mark Burgman, Frank Davis, Tom Edwards, Jane Elith, Simon Ferrier, Robert Fisher, Mike Goodchild, Antoine Guisan, John Leathwick, Brian Lees, Brendan Mackey, Ross Meentemeyer, Joel Michaelsen, Jennifer Miller, Gretchen Moisen, Aaron Moody, Helen Regan, John Rotenberry, Andrew Skidmore, Peter Scull, Alan Strahler, Alexandra Syphard, Kim Van Niel, John Wilson, Brendan Wintle, and Nick Zimmermann.

I invited Jennifer Miller to coauthor Chapter 6, contributing the material on spatial autocorrelation and statistical species distribution models. I appreciate the breadth and depth she has added to this topic and I believe that the readers will benefit from her expertise.

I would like to thank all of the participants of the Riederalp 2008 workshop on species distribution modeling for sharing their ideas and friendship. I also thank the students who participated in my species

xviii · Acknowledgments

distribution modeling seminars at San Diego State University in 2003, 2005 and 2007. A number of students showed great enthusiasm for species distribution modeling and through their own research have taught me new things about it, including Paul McCullough, Dawn Lawson, Matt Guilliams, and Katherine Wejnert.

I thank my Editor at Cambridge University Press, Dominic Lewis, and Editorial Assistants, Alison Evans and Rachel Eley, for their support and assistance.

My long-time friend and colleague, David Steadman, has provided constant, unwavering support and encouragement for this book project, and even feigned interest in the topic, for which I am profoundly grateful. Finally, I sincerely thank my family for their endless patience, love and support, and for being proud of what I do for a living.

The writing of this book was supported, in part, by National Science Foundation grant BCS-0452389. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation (NSF).