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1 Introduction

1.1 Definition

A distributed system is a collection of independent entities that cooperate to
solve a problem that cannot be individually solved. Distributed systems have
been in existence since the start of the universe. From a school of fish to a flock
of birds and entire ecosystems of microorganisms, there is communication
among mobile intelligent agents in nature. With the widespread proliferation
of the Internet and the emerging global village, the notion of distributed
computing systems as a useful and widely deployed tool is becoming a reality.
For computing systems, a distributed system has been characterized in one of
several ways:

• You know you are using one when the crash of a computer you have never
heard of prevents you from doing work [23].

• A collection of computers that do not share common memory or a common
physical clock, that communicate by a messages passing over a communi-
cation network, and where each computer has its own memory and runs its
ownoperating system.Typically the computers are semi-autonomousandare
loosely coupled while they cooperate to address a problem collectively [29].

• A collection of independent computers that appears to the users of the
system as a single coherent computer [33].

• A term that describes a wide range of computers, from weakly coupled
systems such as wide-area networks, to strongly coupled systems such as
local area networks, to very strongly coupled systems such as multipro-
cessor systems [19].

A distributed system can be characterized as a collection of mostly
autonomous processors communicating over a communication network and
having the following features:

• No common physical clock This is an important assumption because
it introduces the element of “distribution” in the system and gives rise to
the inherent asynchrony amongst the processors.
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2 Introduction

• No shared memory This is a key feature that requires message-passing
for communication. This feature implies the absence of the common phys-
ical clock.
It may be noted that a distributed system may still provide the abstraction

of a common address space via the distributed shared memory abstraction.
Several aspects of shared memory multiprocessor systems have also been
studied in the distributed computing literature.

• Geographical separation The geographically wider apart that the pro-
cessors are, the more representative is the system of a distributed system.
However, it is not necessary for the processors to be on a wide-area net-
work (WAN). Recently, the network/cluster of workstations (NOW/COW)
configuration connecting processors on a LAN is also being increasingly
regarded as a small distributed system. This NOW configuration is becom-
ing popular because of the low-cost high-speed off-the-shelf processors
now available. The Google search engine is based on the NOW architec-
ture.

• Autonomy and heterogeneity The processors are “loosely coupled”
in that they have different speeds and each can be running a different
operating system. They are usually not part of a dedicated system, but
cooperate with one another by offering services or solving a problem
jointly.

1.2 Relation to computer system components

A typical distributed system is shown in Figure 1.1. Each computer has a
memory-processing unit and the computers are connected by a communication
network. Figure 1.2 shows the relationships of the software components that
run on each of the computers and use the local operating system and network
protocol stack for functioning. The distributed software is also termed as
middleware. A distributed execution is the execution of processes across the
distributed system to collaboratively achieve a common goal. An execution
is also sometimes termed a computation or a run.
The distributed system uses a layered architecture to break down the com-

plexity of system design. The middleware is the distributed software that

Figure 1.1 A distributed
system connects processors by
a communication network.
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3 1.3 Motivation

Figure 1.2 Interaction of the
software components at each
processor.
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drives the distributed system, while providing transparency of heterogeneity at
the platform level [24]. Figure 1.2 schematically shows the interaction of this
software with these system components at each processor. Here we assume
that the middleware layer does not contain the traditional application layer
functions of the network protocol stack, such as http, mail, ftp, and telnet.
Various primitives and calls to functions defined in various libraries of the
middleware layer are embedded in the user program code. There exist several
libraries to choose from to invoke primitives for the more common func-
tions – such as reliable and ordered multicasting – of the middleware layer.
There are several standards such as Object Management Group’s (OMG)
common object request broker architecture (CORBA) [36], and the remote
procedure call (RPC) mechanism [1, 11]. The RPC mechanism conceptually
works like a local procedure call, with the difference that the procedure code
may reside on a remote machine, and the RPC software sends a message
across the network to invoke the remote procedure. It then awaits a reply,
after which the procedure call completes from the perspective of the program
that invoked it. Currently deployed commercial versions of middleware often
use CORBA, DCOM (distributed component object model), Java, and RMI
(remote method invocation) [7] technologies. The message-passing interface
(MPI) [20, 30] developed in the research community is an example of an
interface for various communication functions.

1.3 Motivation

The motivation for using a distributed system is some or all of the following
requirements:

1. Inherently distributed computations In many applications such as
money transfer in banking, or reaching consensus among parties that are
geographically distant, the computation is inherently distributed.

2. Resource sharing Resources such as peripherals, complete data sets
in databases, special libraries, as well as data (variable/files) cannot be
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4 Introduction

fully replicated at all the sites because it is often neither practical nor
cost-effective. Further, they cannot be placed at a single site because access
to that site might prove to be a bottleneck. Therefore, such resources are
typically distributed across the system. For example, distributed databases
such as DB2 partition the data sets across several servers, in addition to
replicating them at a few sites for rapid access as well as reliability.

3. Access to geographically remote data and resources In many sce-
narios, the data cannot be replicated at every site participating in the
distributed execution because it may be too large or too sensitive to be
replicated. For example, payroll data within a multinational corporation is
both too large and too sensitive to be replicated at every branch office/site.
It is therefore stored at a central server which can be queried by branch
offices. Similarly, special resources such as supercomputers exist only in
certain locations, and to access such supercomputers, users need to log in
remotely.
Advances in the design of resource-constrained mobile devices as well

as in the wireless technology with which these devices communicate
have given further impetus to the importance of distributed protocols and
middleware.

4. Enhanced reliability A distributed system has the inherent potential
to provide increased reliability because of the possibility of replicating
resources and executions, as well as the reality that geographically dis-
tributed resources are not likely to crash/malfunction at the same time
under normal circumstances. Reliability entails several aspects:
• availability, i.e., the resource should be accessible at all times;
• integrity, i.e., the value/state of the resource should be correct, in the

face of concurrent access from multiple processors, as per the semantics
expected by the application;

• fault-tolerance, i.e., the ability to recover from system failures, where
such failures may be defined to occur in one of many failure models,
which we will study in Chapters 5 and 14.

5. Increased performance/cost ratio By resource sharing and accessing
geographically remote data and resources, the performance/cost ratio is
increased. Although higher throughput has not necessarily been the main
objective behind using a distributed system, nevertheless, any task can be
partitioned across the various computers in the distributed system. Such a
configuration provides a better performance/cost ratio than using special
parallel machines. This is particularly true of the NOW configuration.

In addition to meeting the above requirements, a distributed system also offers
the following advantages:

6. Scalability As the processors are usually connected by a wide-area net-
work, adding more processors does not pose a direct bottleneck for the
communication network.
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5 1.4 Relation to parallel multiprocessor/multicomputer systems

7. Modularity and incremental expandability Heterogeneous processors
may be easily added into the system without affecting the performance,
as long as those processors are running the same middleware algo-
rithms. Similarly, existing processors may be easily replaced by other
processors.

1.4 Relation to parallel multiprocessor/multicomputer systems

The characteristics of a distributed system were identified above. A typical
distributed system would look as shown in Figure 1.1. However, how does
one classify a system that meets some but not all of the characteristics? Is the
system still a distributed system, or does it become a parallel multiprocessor
system? To better answer these questions, we first examine the architec-
ture of parallel systems, and then examine some well-known taxonomies for
multiprocessor/multicomputer systems.

1.4.1 Characteristics of parallel systems

A parallel system may be broadly classified as belonging to one of three
types:

1. A multiprocessor system is a parallel system in which the multiple proces-
sors have direct access to shared memory which forms a common address
space. The architecture is shown in Figure 1.3(a). Such processors usually
do not have a common clock.
A multiprocessor system usually corresponds to a uniform memory

access (UMA) architecture in which the access latency, i.e., waiting time, to
complete an access to any memory location from any processor is the same.
The processors are in very close physical proximity and are connected by
an interconnection network. Interprocess communication across processors
is traditionally through read and write operations on the shared memory,
although the use of message-passing primitives such as those provided by

Figure 1.3 Two standard
architectures for parallel
systems. (a) Uniform memory
access (UMA) multiprocessor
system. (b) Non-uniform
memory access (NUMA)
multiprocessor. In both
architectures, the processors
may locally cache data from
memory. M  memory P  processor

(b)(a)
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6 Introduction

Figure 1.4 Interconnection
networks for shared memory
multiprocessor systems. (a)
Omega network [4] for n= 8
processors P0–P7 and
memory banks M0–M7. (b)
Butterfly network [10] for
n= 8 processors P0–P7 and
memory banks M0–M7.

P0

P1

P2

P3

P4

P6

P7

101P5

000

001

M0

M1

010

011

100

101

110

111

001

101

110

111

100

111

110

100

011

010

000

M2010

000
001

100
101

P0
P1

P2
P3

P4
P5

P6
P7

(a) 3-stage Omega network (n = 8, M = 4) (b) 3-stage Butterfly network (n = 8, M = 4)

011 M3

M4

M5

M6

M7

000

001

010

011

M0

M1

M2

M3

M4

M5

M6

M7

110
111

the MPI, is also possible (using emulation on the shared memory). All the
processors usually run the same operating system, and both the hardware
and software are very tightly coupled.
The processors are usually of the same type, and are housed within the

same box/container with a shared memory. The interconnection network
to access the memory may be a bus, although for greater efficiency, it is
usually a multistage switch with a symmetric and regular design.
Figure 1.4 shows two popular interconnection networks – the Omega

network [4] and the Butterfly network [10], each of which is a multi-stage
network formed of 2×2 switching elements. Each 2×2 switch allows data
on either of the two input wires to be switched to the upper or the lower
output wire. In a single step, however, only one data unit can be sent on an
output wire. So if the data from both the input wires is to be routed to the
same output wire in a single step, there is a collision. Various techniques
such as buffering or more elaborate interconnection designs can address
collisions.
Each 2× 2 switch is represented as a rectangle in the figure. Further-

more, a n-input and n-output network uses log n stages and log n bits
for addressing. Routing in the 2× 2 switch at stage k uses only the kth
bit, and hence can be done at clock speed in hardware. The multi-stage
networks can be constructed recursively, and the interconnection pattern
between any two stages can be expressed using an iterative or a recursive
generating function. Besides the Omega and Butterfly (banyan) networks,
other examples of multistage interconnection networks are the Clos [9]
and the shuffle-exchange networks [37]. Each of these has very interesting
mathematical properties that allow rich connectivity between the processor
bank and memory bank.

Omega interconnection function The Omega network which connects
n processors to n memory units has n/2log2 n switching elements of size
2× 2 arranged in log2 n stages. Between each pair of adjacent stages of
the Omega network, a link exists between output i of a stage and the input
j to the next stage according to the following perfect shuffle pattern which
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7 1.4 Relation to parallel multiprocessor/multicomputer systems

is a left-rotation operation on the binary representation of i to get j. The
iterative generation function is as follows:

j =
{
2i� for 0 ≤ i ≤ n/2−1�
2i+1−n� for n/2 ≤ i ≤ n−1�

(1.1)

Consider any stage of switches. Informally, the upper (lower) input lines
for each switch come in sequential order from the upper (lower) half of
the switches in the earlier stage.
With respect to the Omega network in Figure 1.4(a), n= 8. Hence, for

any stage, for the outputs i, where 0 ≤ i ≤ 3, the output i is connected
to input 2i of the next stage. For 4 ≤ i ≤ 7, the output i of any stage is
connected to input 2i+1−n of the next stage.

Omega routing function The routing function from input line i to output
line j considers only j and the stage number s, where s ∈ �0� log2n− 1�.
In a stage s switch, if the s+1th MSB (most significant bit) of j is 0, the
data is routed to the upper output wire, otherwise it is routed to the lower
output wire.

Butterfly interconnection function Unlike the Omega network, the gen-
eration of the interconnection pattern between a pair of adjacent stages
depends not only on n but also on the stage number s. The recursive expres-
sion is as follows.Let there beM = n/2 switches per stage, and let a switch be
denoted by the tuple �x� s�, wherex ∈ �0�M−1� and stage s ∈ �0� log2n−1�.
The two outgoing edges from any switch �x� s� are as follows. There is

an edge from switch �x� s� to switch �y� s+1� if (i) x = y or (ii) x XOR
y has exactly one 1 bit, which is in the �s+1�th MSB. For stage s, apply
the rule above for M/2s switches.
Whether the two incoming connections go to the upper or the lower

input port is not important because of the routing function, given below.

Example Consider the Butterfly network in Figure 1.4(b), n = 8 and
M = 4. There are three stages, s = 0�1�2, and the interconnection pattern
is defined between s = 0 and s = 1 and between s = 1 and s = 2. The
switch number x varies from 0 to 3 in each stage, i.e., x is a 2-bit string.
(Note that unlike the Omega network formulation using input and output
lines given above, this formulation uses switch numbers. Exercise 1.5 asks
you to prove a formulation of the Omega interconnection pattern using
switch numbers instead of input and output port numbers.)
Consider the first stage interconnection (s = 0) of a butterfly of size M ,

and hence having log2 2M stages. For stage s = 0, as per rule (i), the first
output line from switch 00 goes to the input line of switch 00 of stage
s= 1. As per rule (ii), the second output line of switch 00 goes to input line
of switch 10 of stage s = 1. Similarly, x = 01 has one output line go to an
input line of switch 11 in stage s = 1. The other connections in this stage
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8 Introduction

can be determined similarly. For stage s= 1 connecting to stage s= 2, we
apply the rules considering only M/21 =M/2 switches, i.e., we build two
butterflies of size M/2 – the “upper half” and the “lower half” switches.
The recursion terminates for M/2s = 1, when there is a single switch.

Butterfly routing function In a stage s switch, if the s+1th MSB of j
is 0, the data is routed to the upper output wire, otherwise it is routed to
the lower output wire.
Observe that for the Butterfly and the Omega networks, the paths from

the different inputs to any one output form a spanning tree. This implies
that collisions will occur when data is destined to the same output line.
However, the advantage is that data can be combined at the switches if
the application semantics (e.g., summation of numbers) are known.

2. A multicomputer parallel system is a parallel system in which the multiple
processors do not have direct access to shared memory. The memory of
the multiple processors may or may not form a common address space.
Such computers usually do not have a common clock. The architecture is
shown in Figure 1.3(b).
The processors are in close physical proximity and are usually very

tightly coupled (homogenous hardware and software), and connected by
an interconnection network. The processors communicate either via a com-
mon address space or via message-passing. A multicomputer system that
has a common address space usually corresponds to a non-uniform mem-
ory access (NUMA) architecture in which the latency to access various
shared memory locations from the different processors varies.
Examples of parallel multicomputers are: the NYU Ultracomputer and

the Sequent shared memory machines, the CM* Connection machine
and processors configured in regular and symmetrical topologies such
as an array or mesh, ring, torus, cube, and hypercube (message-passing
machines). The regular and symmetrical topologies have interesting math-
ematical properties that enable very easy routing and provide many rich
features such as alternate routing.
Figure 1.5(a) shows a wrap-around 4×4 mesh. For a k×k mesh which

will contain k2 processors, the maximum path length between any two
processors is 2�k/2−1�. Routing can be done along the Manhattan grid.
Figure 1.5(b) shows a four-dimensional hypercube. A k-dimensional hyper-
cube has 2k processor-and-memory units [13,21]. Each such unit is a node
in the hypercube, and has a unique k-bit label. Each of the k dimensions is
associated with a bit position in the label. The labels of any two adjacent
nodes are identical except for the bit position corresponding to the dimen-
sion in which the two nodes differ. Thus, the processors are labelled such
that the shortest path between any two processors is the Hamming distance
(defined as the number of bit positions in which the two equal sized bit
strings differ) between the processor labels. This is clearly bounded by k.
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9 1.4 Relation to parallel multiprocessor/multicomputer systems

Figure 1.5 Some popular
topologies for multicomputer
shared-memory machines. (a)
Wrap-around 2D-mesh, also
known as torus. (b) Hypercube
of dimension 4.
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Example Nodes 0101 and 1100 have a Hamming distance of 2. The
shortest path between them has length 2.
Routing in the hypercube is done hop-by-hop. At any hop, the message

can be sent along any dimension corresponding to the bit position in which
the current node’s address and the destination address differ. The 4D
hypercube shown in the figure is formed by connecting the corresponding
edges of two 3D hypercubes (corresponding to the left and right “cubes”
in the figure) along the fourth dimension; the labels of the 4D hypercube
are formed by prepending a “0” to the labels of the left 3D hypercube
and prepending a “1” to the labels of the right 3D hypercube. This can
be extended to construct hypercubes of higher dimensions. Observe that
there are multiple routes between any pair of nodes, which provides fault-
tolerance as well as a congestion control mechanism. The hypercube and
its variant topologies have very interesting mathematical properties with
implications for routing and fault-tolerance.

3. Array processors belong to a class of parallel computers that are physically
co-located, are very tightly coupled, and have a common system clock (but
may not share memory and communicate by passing data using messages).
Array processors and systolic arrays that perform tightly synchronized
processing and data exchange in lock-step for applications such as DSP
and image processing belong to this category. These applications usually
involve a large number of iterations on the data. This class of parallel
systems has a very niche market.

The distinction between UMAmultiprocessors on the one hand, and NUMA
and message-passing multicomputers on the other, is important because
the algorithm design and data and task partitioning among the processors
must account for the variable and unpredictable latencies in accessing mem-
ory/communication [22]. As compared to UMA systems and array processors,
NUMA and message-passing multicomputer systems are less suitable when
the degree of granularity of accessing shared data and communication is
very fine.
The primary and most efficacious use of parallel systems is for obtain-

ing a higher throughput by dividing the computational workload among the
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10 Introduction

processors. The tasks that are most amenable to higher speedups on par-
allel systems are those that can be partitioned into subtasks very nicely,
involving much number-crunching and relatively little communication for
synchronization. Once the task has been decomposed, the processors perform
large vector, array, and matrix computations that are common in scientific
applications. Searching through large state spaces can be performed with sig-
nificant speedup on parallel machines. While such parallel machines were
an object of much theoretical and systems research in the 1980s and early
1990s, they have not proved to be economically viable for two related reasons.
First, the overall market for the applications that can potentially attain high
speedups is relatively small. Second, due to economy of scale and the high
processing power offered by relatively inexpensive off-the-shelf networked
PCs, specialized parallel machines are not cost-effective to manufacture. They
additionally require special compiler and other system support for maximum
throughput.

1.4.2 Flynn’s taxonomy

Flynn [14] identified four processing modes, based on whether the processors
execute the same or different instruction streams at the same time, and whether
or not the processors processed the same (identical) data at the same time. It
is instructive to examine this classification to understand the range of options
used for configuring systems:

• Single instruction stream, single data stream (SISD)
This mode corresponds to the conventional processing in the von Neumann
paradigm with a single CPU, and a single memory unit connected by a
system bus.

• Single instruction stream, multiple data stream (SIMD)
This mode corresponds to the processing by multiple homogenous proces-
sors which execute in lock-step on different data items. Applications that
involve operations on large arrays and matrices, such as scientific applica-
tions, can best exploit systems that provide the SIMD mode of operation
because the data sets can be partitioned easily.
Several of the earliest parallel computers, such as Illiac-IV, MPP, CM2,

and MasPar MP-1 were SIMD machines. Vector processors, array pro-
cessors’ and systolic arrays also belong to the SIMD class of processing.
Recent SIMD architectures include co-processing units such as the MMX
units in Intel processors (e.g., Pentium with the streaming SIMD extensions
(SSE) options) and DSP chips such as the Sharc [22].

• Multiple instruction stream, single data stream (MISD)
This mode corresponds to the execution of different operations in parallel
on the same data. This is a specialized mode of operation with limited but
niche applications, e.g., visualization.
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