Elements of Crustal Geomechanics

This key textbook considers the mechanics of geomaterials at a wide range of scales, both in time and space. It provides detailed introduction to the study of crustal geomechanics, focusing specifically on the seismogenic crust.

Following an introduction to the necessary fundamentals of structural geology and material science, the book demonstrates how the application of continuum mechanics principles can provide efficient solutions to geomechanics problems at various scales, taking into account the multiphase characteristics of the geomaterials as well as discontinuities such as fractures and faults. It shows how field and laboratory observations can be combined with basic mathematical theory to build solutions with known levels of uncertainty. Particular consideration is given to the use of microseismicity in constraining geomechanical models – especially those involving fluid–rock interactions. Case studies are provided that illustrate how *in situ* stress determinations at very different scales provide unique constraints on the rheological characteristics of the seismogenic crust, and practical results from numerical modeling are used to illustrate the applicability and limitations of current theories.

Elements of Crustal Geomechanics introduces students to the common basic principles used in solving geomechanics problems ranging from exploitation of geothermal energy and long-term storage of nuclear waste to mitigating the impacts of volcanic eruptions. Accessible explanations of the mathematical formulations, convenient summaries of the key equations, and exercises that encourage students to put their learning into practice make this a valuable reference for students and researchers in geomechanics, geophysics, structural geology and engineering.

François Henri Cornet is a Professor at the Institut de Physique du Globe de Strasbourg. Prior to this he worked in the Department of Seismology at the Institut de Physique du Globe de Paris, and was also Visiting Scientist at Stanford University and at The Lawrence Berkeley National Laboratory. His main research interests are in rock mechanics, specializing in the measurement and modeling of stress fields; in rock–fluid interactions, including induced seismicity and applications to geothermal energy development; and in the development of large-scale, *in situ*, geophysical laboratories. Professor Cornet has extensive experience of teaching geomechanics courses at undergraduate and graduate levels and has also consulted internationally on stress field evaluations.

Elements of Crustal Geomechanics

FRANÇOIS HENRI CORNET

Institut de Physique du Globe de Strasbourg, Université de Strasbourg

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9780521875783

© François Henri Cornet 2015

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2015

Printed in the United Kingdom by TJ International Ltd., Padstow, Cornwall

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Cornet, F. H. Elements of crustal geomechanics / François Henri Cornet. pages cm ISBN 978-0-521-87578-3 1. Geodynamics. 2. Geology, Structural. I. Title. QE501.C634 2015 551.1-dc23 2014037526

ISBN 978-0-52187578-3 Hardback

Additional resources for this publication at www.cambridge.org/cornet

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> L'observation scientifique est toujours une observation polémique; elle confirme ou infirme une thèse antérieure, un schéma préalable.

Gaston Bachelard, Le nouvel esprit scientifique

(Scientific observation is always polemical; it confirms or contradicts a previous thesis, an earlier sketch.)

Contents

Preface

1	Geom	aterials ar	nd crustal geomechanics	1					
	1.1	Rocks	, soils and other geomaterials	1					
		1.1.1	Porosity, phase relationships, density	1					
		1.1.2	Rock and soil classification	6					
	1.2	Rock 1	masses and crustal geomechanics	8					
		1.2.1	Geophysical exploration	9					
		1.2.2	Borehole reconnaissance	10					
	1.3	Fractu	res and faults as structural discontinuities	12					
		1.3.1	Morphology and orientation of fractures	12					
		1.3.2	In situ reconnaissance of fractures	17					
		1.3.3	Fracture fields and scaling laws	20					
		1.3.4	Faults and their morphology	25					
	1.4	Loadir	ng processes	27					
		1.4.1	Natural loading processes	27					
		1.4.2	Coupling or no coupling	29					
	1.5	Exerci	ses	30					
2	Eleme	Elements of rheology							
	2.1	The elastic or Hookean solid							
	2.2	The viscous Newtonian fluid							
	2.3	Viscoe	coelastic materials						
		2.3.1	A solid-type viscoelastic material: the						
			Kelvin–Voigt material	34					
		2.3.2	A fluid-type viscoelastic material: the Maxwell material	35					
		2.3.3	Generalized viscoelastic materials	37					
	2.4	Limits to linear elasticity: friction and ductility							
		2.4.1	The Saint-Venant material	40					
		2.4.2	The Bingham material	41					
		2.4.3	The concept of a "residual" load	41					
	2.5	Nonlir	near models	42					
		2.5.1	Dynamic friction and earthquakes	43					
		2.5.2	General nonlinear models	44					
	2.6	Exerci	Exercises						

vii

iii	Contents					
	3 I	Forces and stresses				
		3.1	Forces a	and moments		
			3.1.1	Body forces, surface forces		
			3.1.2	Moments, momentum and Euler's laws		
		3.2	Stress te	ensor and stress vector		
			3.2.1	The stress tensor		
			3.2.2	The stress vector		
			3.2.3	Normal stress, shear stress, principal stress components		
		3.3	Mohr re	epresentation of the stress vector		
		3.4		ig the frame of reference		
			3.4.1	Normal stress and shear stress as functions of the principal		
			0	stress components		
			3.4.2	Components of the stress tensor in cylindrical and spherical		
			0	coordinates		
		3.5	More de	efinitions		
		3.6		rium conditions		
			3.6.1	Cartesian coordinates		
			3.6.2	Cylindrical and spherical coordinates		
		3.7	Exercise			
	4 I	Elements of kinematics				
	4	4.1	Two-dir	nensional elementary definitions of strain		
	4	4.2	Lagrang	gian and Eulerian frames of reference; material time derivative		
	4	4.3	Deform	ation and strain		
			4.3.1	Deformation gradient, displacement gradient		
			4.3.2	Local polar decomposition of the deformation gradient		
			4.3.3	Finite deformation: the Cauchy–Green tensors		
			4.3.4	Finite-strain and small-strain tensors		
			4.3.5	Surface strain, volumetric strain		
			4.3.6	Shear strain		
			4.3.7	Compatibility conditions		
			4.3.8	Small strains in cylindrical and spherical coordinates		
	4	4.4	Motion			
			4.4.1	Particle paths, streamlines, streaklines		
			4.4.2	Rate of deformation (stretching) and spin		
			4.4.3	Rate of deformation and strain rate		
	2	4.5	Exercise	es		
				r elasticity		
		5.1		s law for isotropic materials		
		5.2		s equation		
	-	5.3		problems in elasticity		
			5.3.1	Uniaxial stress		

ix		Contents				
		5.3.2	Uniaxial strain	102		
		5.3.3	Biaxial or plane stress conditions	102		
		5.3.4	Biaxial or plane strain conditions	103		
		5.3.5	Plane elastic waves	105		
	5.4	Elastic	strain energy and a new definition of elasticity	107		
		5.4.1	Elastic strain energy	107		
		5.4.2	A general definition of elasticity	109		
		5.4.3	Examples of anisotropic elasticity	111		
		5.4.4	Change of frame of reference	113		
	5.5	Theore	ems of elastostatics	114		
		5.5.1	Clapeyron's theorem	114		
		5.5.2	Betti's reciprocal work theorem	115		
		5.5.3	Uniqueness of solution for elastostatic problems	115		
	5.6	Solutio	ons for two-dimensional problems of elastostatics	116		
		5.6.1	Beltrami–Michell compatibility conditions and Airy stress			
			function	117		
		5.6.2	Elements of analytic functions	118		
		5.6.3	General form of Airy stress function	121		
		5.6.4	Practical applications for geomechanics	123		
	5.7	Exerci	Ses	130		
	6 From	continuum	mechanics to fluid mechanics	133		
	6.1		gm of continuum mechanics: the conservation principles	133		
		6.1.1	The conservation of mass and the continuity equation	134		
		6.1.2	Momentum principles and the equation of motion	140		
		6.1.3	Conservation of energy and the first law of thermodynamics	147		
	6.2		tutive equations for fluids	151		
		6.2.1	Constitutive equations	151		
		6.2.2	Constitutive equations for Newtonian fluids	152		
		6.2.3	Navier–Stokes equation for Newtonian fluids	154		
		6.2.4	The conservation of kinetic energy for incompressible	1.5.5		
	()	0.1	perfect fluids: the Bernouilli equation	155		
	6.3		e solutions for incompressible Newtonian fluids	156		
		6.3.1 6.3.2	Steady laminar flow between parallel plates	156		
	6.4	Exercis	Steady laminar flow through a circular pipe ses	159 159		
			ar fracture mechanics	161		
	7.1		re criteria	163		
		7.1.1	Griffith's energy fracture criterion	163		
		7.1.2	Irwin's basic modes of fracture and the stress			
			intensity factor	167		
		7.1.3	Limits of linearly elastic fracture mechanics and the	1 - 1		
			concept of the process zone	171		

х			Contents			
	_					
		7.2	On the dynamics of fracture propagation			
		7.2	7.2.1	Griffith's locus	172 173	
			7.2.2	Servocontrolled testing systems	175	
			7.2.3	Stress corrosion and sub-critical crack growth	175	
		7.3		nental investigations	170	
		1.5	7.3.1	Laboratory measurements	177	
			7.3.2	Numerical investigations on the propagation of a fracture	177	
			1.3.2	inclined to the principal stress directions	179	
		7.4	Exercis		182	
		7.4	LACICIE		102	
	8	Labor	atory inves	tigations on geomaterials under compression	183	
		8.1	Labora	tory testing of rocks	183	
			8.1.1	The concept of a complete stress-strain curve	183	
			8.1.2	Uniaxial compression test	186	
			8.1.3	Triaxial compression tests	190	
			8.1.4	Acoustic emissions	196	
			8.1.5	Time-dependent effects	198	
			8.1.6	Influence of pore pressure and drainage conditions	201	
			8.1.7	Influence of temperature	202	
			8.1.8	Compaction of porous rocks	203	
		8.2	Labora	tory testing of soil shear strength	204	
			8.2.1	Experimental procedures	205	
			8.2.2	The shear strength of sand	207	
			8.2.3	The shear strength of clay	207	
		8.3	Failure	criteria for geomaterials in compression	210	
			8.3.1	The Tresca failure criterion	210	
			8.3.2	The Coulomb failure criterion	211	
			8.3.3	The Mohr–Coulomb and Hoek and Brown		
				failure criteria	214	
			8.3.4	The von Mises and other polyaxial failure criteria	215	
		8.4	Exercis	es	216	
	9 Homogenized geomaterials				218	
	-	9.1		geomaterials	218	
		7.1	9.1.1	Effective rock compressibility	210	
			9.1.2	Influence of microcracks on effective elastic constants	220	
		9.2		tary considerations on plasticity	226	
).2	9.2.1	Strength, yield and yield surface	220	
			9.2.1	Plastic flow	234	
			9.2.2 9.2.3	Localization: shear bands and compaction bands	234	
		9.3	Darcy f		239 242	
		1.5	9.3.1	Piezometric head and seepage forces	242	
			9.3.1 9.3.2	The continuity equation for flow through porous media	242 245	
			9.3.2 9.3.3	Darcy's law and the permeability tensor	243 246	
			1.5.5	Darcy 5 faw and the permeability tensor	240	

xi	Contents							
		9.4	Exercis	es and further reading	251			
			9.4.1	Exercises	251			
			9.4.2	Further reading	251			
	10	Fractu	res and fau	ılts	253			
		10.1	Mechai	nical properties of fractures	253			
			10.1.1	Stiffness and compliance of a fracture	254			
			10.1.2	Friction	258			
			10.1.3	Shear strength at low normal stress and fracture dilatancy	264			
			10.1.4	Empirical constitutive equations for fractures	268			
		10.2	Hydrau	lic properties of fractures	272			
		10.3	-	nical and hydraulic characteristics of faults	275			
			10.3.1	Faults and fault growth	276			
			10.3.2	Discussion on the hydromechanical characteristics of faults	278			
		10.4	Further	reading	282			
	11	Eleme	nts of seisr	noloav	283			
		11.1	Seismi		284			
			11.1.1	Body waves	284			
			11.1.2	Refraction, reflection, diffraction	293			
			11.1.3	Surface waves	297			
		11.2	Kinema	atics of earthquake sources	299			
			11.2.1	Focal plane solutions and focal mechanisms	300			
			11.2.2	Seismic moment tensor	304			
			11.2.3	Seismic source location determination	307			
			11.2.4	Elementary considerations on source spectra	309			
		11.3	Scaling	of seismic events	311			
			11.3.1	Seismometry	312			
			11.3.2	Intensity and magnitude	315			
			11.3.3	Empirical scaling relationships	317			
			11.3.4	Seismic and aseismic motions	319			
		11.4	Further	reading	321			
	12	Elements of solid–fluid interactions						
		12.1	Linear	hydromechanical coupling	322 322			
			12.1.1	Terzaghi's effective stress concept	322			
			12.1.2	Linear poroelasticity	325			
		12.2		thermomechanical coupling	335			
			12.2.1	Heat transfer	336			
			12.2.2	Linear thermoelasticity	340			
		12.3		nical consequences of water–rock physicochemical interactions	342			
		12.4		lically induced fracturing processes	344			
			12.4.1	Hydraulic fracturing	344			
				-				

xii	Contents					
		12.4.2 H	lydraulically induced shear motions and related seismic			
			ctivity	352		
			arge-scale shear-failure processes and fluid migration in	363		
	12.5		ne seismogenic crust racturing processes	366 366		
	12.5	Further rea		367		
13	Metho	ds for stress fi	eld evaluation from <i>in situ</i> observations	369		
	13.1	Stress mea	surements from underground access	370		
			he flatjack method	370		
			tress relief methods	372		
	13.2		ermination from hydraulic tests in boreholes	375		
			(ydraulic fracturing (HF) method	375		
			lydraulic tests on preexisting fractures (HTPF) method	382		
			ntegrating the HF and HTPF methods for complete stress	001		
			etermination	384		
	13.3		failure analysis for stress field characterization	385		
	13.4		l characteristics derived from focal plane solutions	387		
	1011		rom focal plane solutions to stress characterization	388		
			he stress determination method of Gephart and Forsyth	391		
			ntegrating focal plane solutions with results from	571		
			ydraulic tests in boreholes for pore pressure mapping	395		
	13.5		Is and seismic wave velocity anisotropy	397		
	13.6	Further rea	• • • • • • • • • • • • • • • • • • • •	398		
14	Eleme	Elements of stress fields and crustal rheology				
	14.1		eld evaluation in a mountainous granite massif of			
		northern Po		400		
			esults from the stress determination program	400		
			ntegration of hydraulic and overcoring test			
			esults for an optimum evaluation of the natural			
			ress field	405		
		14.1.3 D	biscussion of adit influence on the stress field and			
			onclusions for the rock mass rheology	410		
	14.2		eld characterization in the sedimentary Paris Basin	412		
	11.2		esults from the stress determination program	413		
			viscussion on the origin of the local stress field	415		
	14.3		eld investigation in the upper Rhine graben	416		
	14.4		tion of the stress field in the north-central European lithosph			
	14.4		constraints from the stress data and from the mapping of	CIC 420		
			eismic activity	101		
			fumerical modeling investigation	421		
	145			423		
	14.5		of a conclusion	429		
	14.6	Further rea	ading on inverse-problem theory	430		

xiii	Contents					
	Appendix	Elements of tensors in rectangular coordinates	431			
	A.1	Definitions	431			
	A.2	Second-order tensor	432 433			
	A.3	Algebra of tensors				
	A.4	Trace and determinant	434			
	A.5	Change of orthogonal frame of reference	436			
		A.5.1 Vector components	436			
		A.5.2 Second-order tensor components	436			
	A.6	Eigenvalues and eigenvectors of a second-order tensor	437			
	A.7	Polar decomposition of a tensor	439			
	Reference.	S	440			
	Index		456			

Online resources available at www.cambridge.org/cornet:

- worked solutions to the exercises
- field-based datasets
- MATLAB codes

Preface

Geomechanics refers to the mechanics of geomaterials, i.e. to the deformation and flow processes that affect the materials which make up the planet earth.

Geomechanics issues are encountered in a great variety of situations with very different scales, both in space and time. Generally, in engineering applications, time scales vary from a few days to a few tens of years and the volumes under consideration vary from a few hundreds of cubic meters to a few cubic kilometers. In earth science, however, time scales range from seconds to tens of millions of years and volumes vary from a few cubic kilometers to that of the entire planet. Accordingly, each domain of application has developed its own appropriation of the geomechanics concept, given that engineers have to deal mostly with perturbations of an existing system, with particular concern for safety issues and production or construction efficiency, while earth scientists are trying to understand natural phenomena such as fault motion, mountain building and sedimentary basin evolution.

For the last 30 years engineers have been confronted with much longer time scales and much greater volumes. For example the development of a repository for nuclear waste must be proved to be safe for up to a million years. The exploitation of geothermal energy or the filling of dams must not reactivate large faults and so trigger destructive earthquakes. Similarly, earth scientists must come up with precise seismic risk analysis, which requires an accurate description of the expected ground motion at specific locations. They must analyze, in real time, deformation fields on volcanoes in order to mitigate the hazards associated with eruption.

Today, geoengineers and geoscientists dealing with the mechanics of earth materials need to speak the same language. The objective of this text book is to introduce the basic principles of mechanics that earth scientists and mining, petroleum, civil and environmental engineers need to apply for solving problems in geomechanics. The only materials which are considered here are crustal geomaterials. The only paradigm considered for describing the deformation and flow processes of these geomaterials is that of continuum mechanics, but the limits of this paradigm are pointed out occasionally.

The aim of this book is to introduce the material for a two-semester class on geomechanics for upper undergraduate and first-year graduate students in earth sciences. It is based on notes prepared for my classes and inspired by notes from P. R. Fosdick's continuum mechanics classes at the University of Minnesota.

In the first part of the book (chapters 1 to 7) the basic concepts of solid and fluid mechanics necessary for understanding the mechanical behavior of geomaterials are introduced. The second part of the book (chapters 8 to 12) discusses various specificities of geomechanics that result from the complexity of geomaterials. Special attention is given

xiv

© in this web service Cambridge University Press

CAMBRIDGE

Cambridge University Press 978-0-521-87578-3 - Elements of Crustal Geomechanics François Henri Cornet Frontmatter More information

XV

Preface

to dynamic phenomena (such as microseismicity) as well as to solid–fluid interactions. In the last part of the book (chapters 13 and 14) various *in situ* stress determination methods are introduced and practical examples at various scales illustrate how a sound evaluation of the stress field helps a better understanding of the various mechanical processes at work in the seismogenic crust.

The first chapter introduces the concept of equivalent geomaterials and a description of their discontinuities (fractures and faults). The second chapter presents various unidirectional rheological models that help one to understand the basic concepts of elasticity, viscosity, plasticity and friction. The third and fourth chapters discuss the concepts of stress, strain and deformation. In the fifth chapter the behavior of linearly elastic solids is discussed and problems frequently encountered in geomechanics are solved. The sixth chapter introduces some basic elements of continuum mechanics with application to the laminar flow of incompressible materials. The seventh chapter presents basic principles of linear fracture mechanics. With chapter 8, our attention turns more specifically to geomaterials, and the results of laboratory investigations are presented. Chapter 9 addresses the application of continuum mechanics principles to geomechanics, and chapter 10 introduces specific characteristics of fractures and faults. In chapter 11 we describe the various types of wave observed in seismology and then we discuss more specifically seismic sources. Chapter 12 addresses various aspects of solid-fluid interactions, including linear poroelasticity, thermoelasticity and the nonlinear effects associated with failure processes (hydraulic fracturing and fluid induced shear fractures). Chapter 13, on in situ stress determination methods, gives practical applications of the various concepts that have been introduced throughout the book. In the final chapter these methods are illustrated through examples that concern the design of an underground hydroelectric power scheme (km³ scale), the design of a nuclear waste repository (100 km³ scale) and the stress fields in the upper Rhine graben (1000 km³ scale) and the west-central European lithosphere (10^6 km³ scale).

I would like to thank very sincerely Susan Francis from Cambridge University Press, who suggested that I should take the time to write up my lecture notes. She did not anticipate that I would be so slow in doing so, however! I also thank her two assistants, Laura Clark and Zoe Pruce, for their help during the various preparatory phases, as well as Susan Parkinson for her thorough copyediting of the manuscript.

My sincere gratitude goes to Marco Calo, and to my son Jan, for their help in preparing most of the figures. The manuscript has also greatly benefitted from the help of my colleagues Patrick Baud, Daniel Billaux, Dominique Bruel, Michel Cara, Mai Linh Doan, Emmanuel Detrournay, Emmanuel Gaucher, Georges Jobert, Sophie Lambotte, Olivier Langline, Vincent Magnenet, Romain Prioul, Daniel Quesada and Jean Schmittbuhl for reading early versions of some chapters. They pointed out a multitude of typing errors and contributed significant improvements. But I bear the entire responsibility for all the errors that are still left in the present document.

Finally my sincere gratitude to my wife, Basia, who has helped me through all these years and kept my morale up especially during the last, never-ending, phase of this project.

F. H. Cornet