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Background

1.1 Notion of Visibility

Visibility is a natural phenomenon in everyday life. We see objects around us and

then decide our movement accordingly. Seeing an object means identifying the

portions of the object visible from the current position of an observer. The entire

object may not be visible as some of its parts may be hidden from the observer. The

observer also determines shapes and sizes of visible portions of an object. Visible

portions of an object change as the observer moves from one position to another.

Moreover, the observer may see several objects in different directions from its current

position; the visible portions of these objects form the scene around the observer.

Constructing such a scene continuously is very natural for a human observer as the

human visual system can execute such tasks effortlessly.

Suppose a robot wants to move from a starting position to a target position

without colliding with any object or obstacle around it. The robot constructs the

scene around itself from its current position and then guides its motion in the free

space lying between itself and the visible portion of the objects around it. The

positions of the robot and the objects can be represented in the computer of the

robot by their x, y and z co-ordinates and therefore, the scene consisting of visible

portions of these objects can be computed for the current position of the robot.

The problem of computing visible portions of given objects from a viewpoint has

been studied extensively in computer graphics [115]. Since the scene is constructed

from thousands of objects of different shapes and sizes lying in different positions, it

becomes a complex task from a computational point of view. Even computing visible

portions of one object in the presence of several other objects is a non-trivial task.

Moreover, computing such a scene for every position on the path of the robot is a

time-consuming task even for high-speed computers. Designing efficient algorithms

for executing such movements of a robot in the presence of obstacles in a reasonable

period of time is one of the objectives in the field of robot path planning [226].
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2 Background

The above problem of robot path planning can be reduced to the corresponding

problem in two dimensions. If a mobile robot that maintains contact with the floor

is projected on the floor, the two-dimensional footprint of the robot can be modeled

as a polygon. Similar projections on the floor can now also be produced for all

obstacles. This process yields a map consisting of polygons in two dimensions. The

polygon corresponding to the robot can be navigated using this map by avoiding

collisions with polygonal obstacles. Thus a collision-free path of the robot can be

computed from its starting position to the target position. While navigating, the

visible portions of polygonal obstacles are computed to construct the scene around

the current position of the robot. Although such a representation in two dimensions

has reduced the complexity of the robot path planning problem, designing efficient

algorithms for such computations remains a challenging task.

The notion of visibility has also been used extensively in the context of the art

gallery problem in computational geometry [271, 310, 333]. The art gallery problem

is to determine the number of guards that are sufficient to see every point in the

interior of an art gallery room. This means that every interior point of the room

must be visible to one of the guards so that all paintings in the gallery remain

guarded. There are many theorems and algorithms for the minimization of the

number of guards and their placement in the art gallery room.

The study of visibility started way back in 1913 when Brunn [67] proved a

theorem regarding the kernel of a set. Today visibility is used in many fields of

computer science including robotics [66, 226, 249, 283], computer vision [139, 168]

and computer graphics [93, 113, 115].

1.2 Polygon

A polygon P is defined as a closed region R in the plane bounded by a finite set

of line segments (called edges of P ) such that there exists a path between any two

points of R which does not intersect any edge of P . Any endpoint of an edge of P is

called a vertex of P , which is a point in the plane. Since P is a closed and bounded

region, the boundary of P consists of cycles of edges of P , where two consecutive

edges in a cycle share a vertex. If the boundary of P consists of two or more cycles,

then P is called a polygon with holes (see Figure 1.1(a)). Otherwise, P is called a

simple polygon or a polygon without holes (see Figure 1.1(b)). The region R is called

the internal region or interior of P . Similarly, the regions of the plane excluding all

points of R are called the external regions or exterior of P . A vertex of P is called

convex if the interior angle at the vertex formed by two edges of that vertex is at

most π; otherwise it is called reflex. Note that the interior angle at a vertex always

faces the interior of P .

As defined above, a simple polygon P is a region of the plane bounded by a cycle

of edges such that any pair of non-consecutive edges do not intersect. In this book,
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1.2 Polygon 3

Figure 1.1 (a) In this polygon with holes, b and c are visible from a but not d. (b) In this
simple polygon (or a polygon without holes), b and c are visible from a, but not d.

we assume that P is given as a doubly linked list of vertices. Each vertex has two

fields containing x and y co-ordinates of the vertex and it has two pointers pointing

to the next clockwise and counterclockwise vertices of P . It can be seen that if edges

of P are traversed in counterclockwise (or clockwise) order, then the interior of P

always lies to the left (respectively, right) of the edges of P .

Let c0, c1, c2, . . . , ch be the cycles on the boundary of a polygon P with h holes,

where c0 represents the outer boundary of P . Let Rj denote the region of the plane

enclosed by cj for all j ≤ h (see Figure 1.1(a)). Since P is a closed and bounded

region, Rj ⊂ R0 for all j > 0. Moreover, Rj ∩ Rk = ∅ where k 6= j and k > 0.

Therefore, R = R0 − (R1 ∪ R2 ∪ . . . ∪ Rh). Observe that if P is a simple polygon,

then R = R0 as the boundary of P consists of only one cycle c0 (see Figure 1.1(b)).

In this book, we assume that a polygon P with h holes is given in the form of h

cycles, where vertices of each cycle are stored in a doubly linked list as stated above

and there is an additional pointer to one vertex of each cycle of P to access that

cycle.

Two points p and q in P are said to be visible if the line segment joining p and q

contains no point on the exterior of P . This means that the segment pq lies totally

inside P . This definition allows the segment pq to pass through a reflex vertex or

graze along a polygonal edge. We also say that p sees q if p and q are visible in P .

It is obvious that if p sees q, q also sees p. So, we sometime say that p and q are

mutually visible. In Figure 1.1, the point a sees two points b and c, but not the

point d.

Exercise 1.2.1 Given two points p and q inside a polygon P , design a

method to determine whether p and q are visible in P .

Suppose a set of line segments in the plane is given such that they do not form

a polygon. Let A denote the arrangement of these line segments in the plane (see
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4 Background

Figure 1.2 (a) In this arrangement of line segments A, points b and c are visible from a but
not d. (b) A convex polygon P where any two points are mutually visible. (c) A star-shaped
polygon P where the entire polygon is visible from any point of the kernel K.

Figure 1.2(a)). Two points p and q in the plane are said to be visible in the presence

of A if the line segment joining p and q does not cross any line segment in A. This

definition permits the segment pq to touch a line segment of A. In Figure 1.2, a

point a sees two points b and c, but not the point d.

Using the definition of visibility in a polygon, we define two special classes of

simple polygons called convex and star-shaped polygons. A simple polygon P is

called convex if every pair of points in P is mutually visible [176] (see Figure 1.2(b)).

It can be seen that the internal angle at every vertex of a convex polygon is at most

π [327]. A convex polygon can also be defined as intersections of closed half-planes

which is bounded. A simple polygon P is said to be star-shaped if there exists a

point z inside P such that all points of P are visible from z (see Figure 1.2(c)). The

set of all such points z of P is called the kernel of P . The kernel of P is always

convex [67]. If P is a star-shaped polygon with respect to a point z, it can be seen

that the order of vertices on the boundary of P is same as the angular order of

vertices around z. We refer to this property by saying that the vertices of P are in

sorted angular order around z. It follows from the theorem of Krasnosel’skii [223]

that a simple polygon P is star-shaped if and only if every triple of convex vertices is

visible from some point of P [334]. Note that a convex polygon is also a star-shaped

polygon and all points of the convex polygon belong to the kernel.

Exercise 1.2.2 Prove that a polygon P is star-shaped if and only if every

triple of convex vertices is visible from some point of P [223].

Exercise 1.2.3 Prove that the kernel of a star-shaped polygon is convex.
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1.3 Asymptotic Complexity 5

Exercise 1.2.4 Draw two star-shaped polygons A and B such that each

edge of A intersects every edge of B [291].

1.3 Asymptotic Complexity

The time and space complexity of the sequential algorithms presented in this book

are measured using the standard notation O(f(n)), where n is the size of the input

to the algorithm. The notation O(f(n)) denotes the set of all functions g(n) such

that there exist positive constants c and n0 with |g(n)| ≤ c|f(n)| for all n ≥ n0. We

say that an algorithm runs in polynomial time if the running time of the algorithm

is O(nk) for some constant k. The notation Ω(f(n)) denotes the set of all functions

g(n) such that there exist positive constants c and n0 with g(n) ≥ cf(n) for all

n ≥ n0.

The idea of evaluating asymptotic efficiency of an algorithm is to know how the

running time (or space) of the algorithm increases with the size of the input. The

running time expressed using O notation gives a simple characterization of the

efficiency of the algorithm, which in turn allows us to compare the efficiency of one

algorithm with another. For more discussion on asymptotic efficiency of algorithms,

see the book by Cormen et al. [96].

The real RAM (Random Access Machine) has become the standard model of

computation for sequential algorithms in computational geometry. As stated in

[291], the real RAM is a random access machine with infinite precision and real

number arithmetic. The real RAM can be used to perform addition, subtraction,

multiplication, division and comparisons on real numbers in unit time. In addition,

various other operations such as indirect addressing of memory (integer address

only), computing the intersection of two lines, computing the distance between two

points, testing whether a vertex is convex are also available. These operations are

assumed to take constant time for execution. For more details of these operations,

see O’Rourke [272].

Exercise 1.3.1 Is O(2n) = O(2O(n))?

Exercise 1.3.2 Given a point z and a polygon P , design an O(n) time

algorithm to test whether z lies in the interior of P [291].

All parallel algorithms mentioned in this book (at the end of chapters) are designed

for the Parallel Random Access Machine (PRAM) model of computations [35, 172,

211]. This can be viewed as the parallel analog of the sequential RAM. A PRAM

consists of several independent sequential processors, each with its own private

memory, communicating with one another through a global memory. In one unit
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6 Background

of time, each processor can read one global or local memory location. PRAMs can

be classified according to restrictions on global memory access. An Exclusive-Read

Exclusive-Write (or EREW) PRAM is a PRAM for which simultaneous access to

any memory location by different processors is forbidden for both reading and writ-

ing. In Concurrent-Read Exclusive-Write (or CREW) PRAM, simultaneous reads

are allowed but not simultaneous writes. A Concurrent-Read Concurrent-Write (or

CRCW) PRAM allows simultaneous reads and writes. PRAM models of compu-

tation allow for infinite precision real arithmetic, with all simple unary and binary

operations being computable in O(1) time by a single processor.

We say that a parallel algorithm in the PRAM model of computations runs in

polylogarithmic time if it runs in O(logk n) time using O(nm) processors, where k

and m are constants and n is the size of the input to the algorithm. A problem

is said to be in the class NC if it can be solved in polylogarithmic time using

a polynomial number of processors. A parallel algorithm is called optimal if the

product of the running time of a parallel algorithm and the number of processors

used by the parallel algorithm is within a constant factor of the best sequential

algorithm for the same problem.

1.4 Triangulation

In this section, we provide a brief overview of the results on triangulation of a

polygon as there are visibility algorithms that depend on a first stage of computing

a triangulation of the input polygon. A triangulation of a polygon P is a partition

of P into triangles by diagonals (see Figure 1.3), where a line segment joining any

two mutually visible vertices of P is called a diagonal of P [242]. Note that if a line

segment joining two vertices u and v of P passes through another vertex w of P and

the segment uv lies inside P , then uw and vw are diagonals and not uv.

Exercise 1.4.1 Prove that every simple polygon admits triangulation

[272].

Exercise 1.4.2 Using the proof of Exercise 1.4.1, design an O(n2) time

algorithm for triangulating a simple polygon of n vertices [272].

It can be seen that a triangulation of P is not unique as many subsets of diagonals

give triangulations of the same polygon. The dual of a triangulation of P is a

graph where every triangle is represented as a node of the graph and two nodes are

connected by an arc in the graph if and only if their corresponding triangles share

a diagonal (see Figure 1.3). Since there are three sides of a triangle, the degree of

every node in the dual graph is at most three. A graph with no cycle is called a

tree. In the following lemmas, we state some of the properties of triangulations of

P .
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1.4 Triangulation 7

Figure 1.3 (a) A triangulation of a polygon with holes and its dual graph. (b) A triangula-
tion of a simple polygon and its dual tree.

Lemma 1.4.1 Every triangulation of a simple polygon of n vertices uses n − 3

diagonals and has n − 2 triangles.

Corollary 1.4.2 The sum of the internal angles of a simple polygon of n vertices

is (n − 2)π.

Lemma 1.4.3 Every triangulation of a polygon with h holes with a total of n vertices

uses n + 3h − 3 diagonals and has n + 2h − 2 triangles.

Lemma 1.4.4 The dual graph of a triangulation of a simple polygon is a tree.

Lemma 1.4.5 The dual graph of a triangulation of a polygon with holes must have

a cycle.

Exercise 1.4.3 Prove that there is no cycle in the dual graph of a trian-

gulation of a simple polygon.

Exercise 1.4.4 Let a graph G of m vertices denote the dual of a triangu-

lation of a polygon with holes. Design an O(m) time algorithm to locate

a cycle in G.

The first O(n log n) time algorithm for triangulating a simple polygon P was

given by Garey et al. [148]. The first step of their algorithm is to partition P

into y-monotone polygons. A simple polygon is called y-monotone if its boundary

can be divided into two chains of vertices such that each chain has vertices with

increasing y-coordinates. The partition of P into y-monotone polygons can be done

in O(n log n) time by the algorithm of Lee and Preparata [233] for locating a point

in a given set of regions. It has been shown by Garey et al. that each y-monotone

polygon can be triangulated in a time that is proportional to the number of vertices
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8 Background

of the y-monotone polygon. So, the overall time complexity of the algorithm for

triangulating P is O(n log n). This algorithm also works for polygons with holes, as

pointed out by Asano et al. [29], and it is optimal for this class of polygons.

Another O(n log n) time algorithm for triangulating a simple polygon was pre-

sented by Mehlhorn [257] and uses the plane sweep technique. This algorithm was

generalized for a polygon with holes by Ghosh and Mount [165] with the same

time complexity (see Section 5.3.2). Later, Bar-Yehuda and Chazelle [43] gave an

O(n + h log1+ε h), ε > 0 time algorithm for triangulating a polygon with h holes

with a total of n vertices.

Many researchers worked for more than a decade on the problem of triangulating a

simple polygon P in less than O(n log n) time. One approach was to consider special

classes of simple polygons that could be triangulated in O(n) time [48, 131, 142, 162,

183, 239, 280, 331, 342]. Another approach was to find algorithms whose running

time was based on structural properties of simple polygons [78, 193]. Tarjan and Van

Wyk [326] were the first to establish an improvement by proposing an O(n log log n)

time algorithm for this problem. Later, a simpler O(n log log n) time algorithm was

presented by Kirkpatrick et al. [217]. Finally, an O(n) time optimal algorithm

for this problem was presented by Chazelle [71] settling this long-standing open

problem. We have the following theorem.

Theorem 1.4.6 A simple polygon P of n vertices can be triangulated in O(n) time.

The algorithm of Chazelle [71] uses involved tools and notions such as a pla-

nar separator theorem, polygon cutting theorem and conformality. Although this

algorithm does not use any complex data structure, it is conceptually difficult and

too complex to be considered practical. Moreover, although it has been used as a

preprocessing step for many of the visibility algorithms presented in this book, the

development of a simple O(n) time algorithm for triangulating a simple polygon

remains an open problem.

1.5 The Art Gallery Problem

As stated in Section 1.1, the art gallery problem is to determine the number of

guards that are sufficient to see every point in the interior of an art gallery room.

The art gallery can be viewed as a polygon P of n vertices and the guards are

stationary points in P . A point z ∈ P is visible from a guard g if the line segment

zg lies inside P . If guards are placed at vertices of P , they are called vertex guards.

If guards are placed at any point of P , they are called point guards. Since guards

placed at points or vertices are stationary, they are referred as stationary guards. If

guards are mobile along a segment inside P , they are referred as mobile guards. If

mobile guards move along edges of P , they are referred as edge guards.
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1.5 The Art Gallery Problem 9

Exercise 1.5.1 Draw a simple polygon of 3k vertices for k > 1 showing

that k stationary guards are necessary to see the entire polygon [91].

In a conference in 1976, V. Klee first posed the art gallery problem (see [198]).

Chavátal [91] showed that for a simple polygon P , bn/3c stationary guards are

always sufficient and occasionally necessary to see or guard the entire P . Later,

Fisk [141] gave a simple proof for this bound. Using this proof, Avis and Toussaint

[41] designed an O(n log n) time algorithm for positioning guards at vertices of P .

For mobile guards, O’Rourke [270] showed that bn/4c mobile guards are always

sufficient and occasionally necessary. For edge guards, bn/4c edge guards appear to

be sufficient, except for some types of polygons (see [333]).

Exercise 1.5.2 Let P be a triangulated simple polygon of n vertices.

Design an O(n) time algorithm for positioning at most bn/3c stationary

guards at vertices of P such the entire P is visible for these guards [41,

141].

A polygon is said to be rectilinear if its edges are aligned with a pair of orthogonal

coordinate axes. For a simple rectilinear polygon P where edges of P are horizontal

or vertical, Kahn et al. [207] showed that bn/4c stationary guards are always suf-

ficient and occasionally necessary to guard P . An alternative proof for this bound

was given later by O’Rourke [269]. These proofs first partition P into convex quadri-

laterals and then bn/4c guards are placed in P . A convex quadrilaterization of P

can be obtained by using the algorithms of Edelsbrunner et al. [121], Lubiw [250],

Sack [299] and Sack and Toussaint [301]. For mobile guards in rectilinear polygons

P , Aggarwal [11] proved that b(3n + 4)/16c mobile guards are always sufficient and

occasionally necessary to guard P . Bjorling-Sachs [55] showed later that this bound

also holds for edge guards in rectilinear polygons.

Exercise 1.5.3 Let P be a triangulated simple polygon of n vertices. De-

sign an O(n) time algorithm for partitioning P into convex quadrilaterals

[250, 301].

For a polygon P with h holes, O’Rourke [271] showed that P can always be

guarded by at most b(n + 2h)/3c vertex guards. For point guards, Hoffmann et al.

[194] and Bjorling-Sachs and Souvaine [56] proved independently that

d(n+h)/3e point guards are always sufficient and occasionally necessary to guard P .

Bjorling-Sachs and Souvaine also presented an O(n2) time algorithm for positioning

guards in P . No tight bound is known on the number of mobile guards sufficient
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10 Background

for guarding P . However, since d(n + h)/3e point guards are sufficient for guarding

P , the bound obviously holds for mobile guards. For an rectilinear polygon P with

h holes, Györi et al. [182] showed that b(3n + 4h + 4)/16c mobile guards are always

sufficient and occasionally necessary for guarding P . For more details on art gallery

theorems and algorithms, see O’Rourke [271], Shermer [310] and Urrutia [333]. We

do not cover this subfield of visibility in this book.

The minimum guard problem is to locate the minimum number of guards for

guarding a polygon with or without holes. O’Rourke and Supowit [276] proved that

the minimum point, vertex and edge guard problems are NP-hard in polygons with

holes. Even for simple polygons, these problems are NP-hard as shown by Lee and

Lin [231].

There are approximation algorithms for these NP-hard problems. Ghosh [152] pre-

sented approximation algorithms for minimum vertex and edge guard problems for

polygons P with or without holes. The approximation algorithms run in O(n5 log n)

time and yield solutions that can be at most O(log n) times the optimal solution.

This means that the approximation ratio of these algorithms is O(log n). These

algorithms partition the polygonal region into convex pieces and construct sets con-

sisting of these convex pieces. Then the algorithms use an approximation algorithm

for the minimum set-covering problem on these constructed sets to compute the

solution for the minimum vertex and edge guard problems in P . Recently, Ghosh

[158] has improved the running time of these approximation algorithms by improv-

ing the upper bound on the number of convex pieces in P . After improvement, the

approximation algorithms run in O(n4) time for simple polygons and O(n5) time

for polygons with holes.

Efrat and Har-Peled [122] also gave approximation algorithms for the minimum

vertex guard problem in polygons with or without holes. Let copt denote the num-

ber of vertices in the optimal solution. Their approximation algorithm for simple

polygons runs in O(nc2
opt log4 n) time and the approximation ratio is O(log copt).

Their other approximation algorithm is for polygons with holes, which runs in

O(nhc3
optpolylog n) time, where h is the number of holes in the polygon. The

approximation ratio is O(log n log(copt log n)). For the minimum point guard problem

in simple polygons, they gave an exact algorithm which runs in O((ncopt)
3(copt+1))

time.

Observe that in the worst case, copt can be a fraction of n. So, the approximation

ratio of approximation algorithms of Ghosh [152, 158] and Efrat and Har-Peled [122]

is O(log n) in the worst case. On the other hand, Eidenbenz [123, 124] showed that

the problems of minimum vertex, point and edge guards in simple polygons are

APX-hard. This implies that there exists a constant ε > 0 such that no polynomial

time approximation algorithm for these problems can guarantee an approximation

ratio of 1 + ε unless P = NP .
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