
1 Introduction

Mechanics is the study of the behavior of matter under the action of internal and
external forces. In this introductory treatment of continuum mechanics, we accept
the concepts of time, space, matter, energy, and force as the Newtonian ideals. Here
our objective is the formulation of engineering problems consistent with the fun-
damental principles of mechanics. To paraphrase Professor Y. C. Fung—there are
generally two ways of approaching mechanics: One is the ad hoc method, in which
specific problems are considered and specific solution methods are devised that in-
corporate simplifying assumptions, and the other is the general approach, in which
the general features of a theory are explored and specific applications are considered
at a later stage. Engineering students are familiar with the former approach from
their experience with “Strength of Materials” in the undergraduate curriculum. The
latter approach enables them to understand an entire field in a systematic way in a
short time. It has been traditional, at least in the United States, to have a course in
continuum mechanics at the senior or graduate level to unify the ad hoc concepts
students have learned in the undergraduate courses. Having had the knowledge of
thermodynamics, fluid dynamics, and strength of materials, at this stage, we look at
the entire field in a unified way.

1.1 Concept of a Continuum

Although mechanics is a branch of physics in which, according to current develop-
ments, space and time may be discrete, in engineering the length and time scales
are orders (and orders) of magnitude larger than those in quantum physics and we
use space coordinates and time as continuous. The concept of a continuum refers to
the treatment of matter as continuous. The justification for this, again, rests on the
length scales involved. For example, consider a large volume V of air under con-
stant pressure and temperature. Within this volume, visualize a small volume �V
centered at a fixed point in space. Let us denote by �M the mass of material in-
side �V. The ratio �M/�V is the average density ρ. However, if we shrink �V,
we can imagine a state in which molecules of oxygen and nitrogen pass through it,
and the concept of density loses its meaning. If the dimension of �V is kept large
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Figure 1.1. Density variation with volume.

compared with the mean free path of the molecules, we could use the concept of
density. Mathematically, we say, “let �V → 0,” but, physically, it is still kept above
some value ε � 0. We may also think of the situation as the discrete particles of mat-
ter are approximated as a continuous “smeared” state. Figure 1.1 shows a sketch of
the limiting process.

To distinguish moving matter from its fixed-background space we use the term
material particle, which is not to be confused with molecules or atoms.

1.2 Sequence of Topics

Prior to the consideration of mechanics topics such as stress and strain, the mathe-
matical apparatus needed for our work is briefly reviewed. The fixed space in which
the continuum moves is a three-dimensional (3D) Euclidean space. Cartesian ten-
sors are essential for describing the deformation, motion, and the forces in mechan-
ics within a Cartesian coordinate system. This topic is considered in Chapter 2. Al-
though general tensors are not required for our studies, an understanding of this
topic is worthwhile to appreciate its connection to geometry and mechanics. A num-
ber of advanced works in continuum mechanics use the general tensor formulation
that is invariant under coordinate transformations involving curvilinear coordinates.
Chapter 3 introduces some of the basic properties of general tensors.

Integral theorems of calculus, namely, the theorems of Gauss, Green, and
Stokes, are extremely useful for our study of mechanics. These theorems are known
to students from their studies of calculus. In Chapter 4 we visit these theorems by
using index notation.

The next two chapters, Chapter 5 and Chapter 6, deal with the descriptions of
the geometry of deforming bodies. Various strain measures and strain rate quanti-
ties are introduced in these chapters.

A separate chapter, Chapter 7, is devoted to a discussion of the fundamental
axioms of mechanics. For a proper introduction of the stress tensor in Chapter 8,
the fundamental axiom dealing with the balance of momentum is essential.
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Suggested Reading 3

Thermodynamics plays an important role not only in restricting the form of
stress–strain relations and stress–strain rate relations but also in explaining ther-
momechanical coupling. Chapter 9 refreshes the readers’ knowledge in thermo-
dynamics.

General forms of constitutive relations and their admissible forms are discussed
in Chapter 10.

Chapter 11 considers elastic materials. It starts with nonlinear elastic materials,
presents some of the classic inverse solutions, and then proceeds to linear elastic
materials. A section on rubber elasticity is included because of the importance of
this topic in engineering applications.

Chapter 12 deals with fluid dynamics. Again, classic inverse solutions of non-
linear fluids are presented first. Newtonian fluids and Navier–Stokes equations are
briefly discussed.

Most students are unfamiliar with viscoelasticity and plasticity. These two topics
are dealt with in Chapters 13 and 14. The treatment is of an elementary nature as
this is assumed to be the first exposure of these two topics.

A digression into the available numerical solution techniques applicable to non-
linear problems is not made. The finite-element method has become the method
of choice to deal with the solutions of solid mechanics problems. Finite-difference
methods are often used in fluid dynamics problems. Other methods, such as molec-
ular dynamics and Monte Carlo methods (see Frenkel and Smit, 2002), are actually
outside the domain of continuum mechanics. However, these two methods play cru-
cial roles in illuminating the foundations of irreversible thermodynamics (see Your-
grau, van der Merwe, and Raw, 1966) and continuum mechanics. Students are en-
couraged to supplement the topics covered here with courses in statistical mechanics
(see Chandler, 1987) and related numerical methods.
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2 Cartesian Tensors

When the coordinates used to describe the geometry and deformation of a con-
tinuum and the forces involved are Cartesian, that is, three mutually orthogonal,
right-handed coordinates with the Euclidean formula for distances, the quantities
entering the equations of motion are conveniently described by use of the Cartesian
tensors. Before we familiarize ourselves with these, let us examine a few related top-
ics. These topics are included here primarily to establish our notation and to refresh
the concepts the students might have seen in other contexts.

2.1 Index Notation and Summation Convention

Index notation uses coordinates x1, x2, and x3 to denote the classical x, y, and z
coordinates, respectively. The components of a vector v would be v1, v2, and v3

(in three dimensions), instead of the conventional u, v, and w. As far as matrix
elements are concerned, index notation, such as A23 to identify the element in the
second row and third column, has been in use for some time. The advantage of index
notation, in conjunction with the summation convention, is that we can shorten long
mathematical expressions.

Consider a system of M equations, in N unknowns:

A11x1 + A12x2 + · · · + A1NxN = c1,

A21x1 + A22x2 + · · · + A2NxN = c2,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . = , . . . ,

AM1x1 + AM2x2 + · · · + AMNxN = cM.

(2.1)

This system of equations can also be written as

N∑
j=1

Ai j xj = ci (i = 1, 2, . . . , M; j = 1, 2, . . . , N).

In accordance with the Einstein summation convention we can further simplify
the notation by writing

Ai j xj = ci (i = 1, 2, . . . , M; j = 1, 2, . . . , N), (2.2)
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2.1 Index Notation and Summation Convention 5

where summation on the repeated index j is implied. Here, i is called a free index
and j is called a dummy index. In dealing with three-dimensional (3D) Euclidean
space, we have indices ranging from 1 to 3 (i.e., M = N = 3). Whenever an index is
repeated once (and only once), the terms have to be summed with respect to that
index. For this convention to be effective, extreme care must be taken to avoid the
occurrence of any index more than twice. As examples, we have

Aii = A11 + A22 + A33,

Ai j Bi j = Bi j Ai j = Bji Aji .

The symmetry of an array can be expressed as

Ai j = Aji . (2.3)

If an array is skew symmetric (also called antisymmetric),

Bi j = −Bji . (2.4)

An arbitrary array C can be expressed as the sum of a symmetric and a skew-
symmetric array:

Ci j = Ai j + Bi j , (2.5)

where

Ai j = C(i j) = 1
2

(Ci j + C ji ), Bi j = C[i j] = 1
2

(Ci j − C ji ). (2.6)

The subscripts inside the parentheses and square brackets help us to avoid introduc-
ing new variables A and B.

There are rare occasions when we would like to suppress the summation con-
vention. Suppose we want to refer to A11, A22, or A33; if we use Aii we get the sum of
the three terms. We may underline the repeated index to suppress the summation:

Aii = A11, A22, or A33. (2.7)

When we need to substitute one formula into another, we have to make sure that
the dummy indices are distinct. For example,

ai = Ci j bj , bj = ci Dji . (2.8)

A direct substitution for bj in the first equation shows

ai = Ci j ci Dji , (2.9)

where i appears three times on the right-hand side, violating the summation rule.
To avoid this, first we write

bj = ckDjk, (2.10)

and then substitute in the first equation to get

ai = Ci j ckDjk = Ci j Djkck, (2.11)
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6 Cartesian Tensors

where j and k are summation indices (or dummy indices) and the free index i ap-
pears on both sides. The dummy indices are similar to dummy variables used in
integration of functions.

2.2 Kronecker Delta and Permutation Symbol

These two notations are extremely useful in connection with Cartesian coordinates.
The Kronecker delta is defined as

δi j =
{

1, if i = j
0, if i �= j

. (2.12)

This definition assumes that i and j are explicit integers, such as i = 1 and j = 3,
and it does not imply δi i = 1. Elements of the Kronecker delta correspond to the
elements of the identity matrix

I = [δi j ] =

⎡
⎢⎣ 1 0 0

0 1 0
0 0 1

⎤
⎥⎦ . (2.13)

With this,

δi i = 3, δi jδ jk = δik, δi j Ajk = Aik. (2.14)

The permutation symbol or alternator is defined as

ei jk =

⎧⎪⎨
⎪⎩

1, if i, j, k are even permutations of 1, 2, 3
−1, if i, j, k are odd permutations of 1, 2, 3

0, otherwise.
(2.15)

From the preceding definition we have

ei jk = e jki = eki j = −eikj = −e jik = −ekji , (2.16)

ei j j = e ji j = e j ji = 0. (2.17)

Explicitly we have

e123 = e231 = e312 = 1, e213 = e321 = e132 = −1. (2.18)

Figure 2.1 shows the order of the indices for even and odd permutations.

1 1

23 23

Figure 2.1. Even and odd permutations of the integers 1, 2,
and 3.
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2.2 Kronecker Delta and Permutation Symbol 7

Using the permutation symbol, we may express the determinant of a 3 × 3 – matrix
A as

det A = |A| = A11 A22 A33 + A12 A23 A31 + A13 A21 A32

− A11 A23 A32 − A12 A21 A33 − A13 A22 A31

= ei jk A1i A2 j A3k

= ei jk Ai1 Aj2 Ak3

= 1
6 ei jke�mn Ai� Ajm Akn.

(2.19)

We can see the second and third equations as the (first) row expansion and the
(first) column expansion of the determinant and the last equation as the sum of all
row expansions and all column expansions (which add up to 6), divided by 6.

We can also express the determinant in terms of the cofactors of the matrix. For
a 3 × 3 matrix the cofactor of an element Ai j is the 2 × 2 determinant we obtain by
eliminating the ith row and jth column and multiplying it by (−1)i+ j . Let us denote
this cofactor by A∗

i j . Then

|A| = Ai j A∗
i j (no sum on i). (2.20)

Observing that A∗
i j does not contain Ai j itself (recall, we eliminated a row and a

column), we find

A∗
i j = ∂|A|

∂Ai j
. (2.21)

When the inverse of the matrix exists, we have

A−1
i j = A∗

j i

|A| = 1
|A|

∂|A|
∂Aji

. (2.22)

A relation between the permutation symbols and the Kronecker deltas, known
as the “e–δ identity,” is useful in algebraic simplifications:

ei jkemnk = δimδ jn − δinδ jm. (2.23)

From this, when n = j , we get

ei jkemjk = 2δim, (2.24)

and, further, when m = i ,

ei jkei jk = 6. (2.25)

2.2.1 Example: Skew Symmetry

If Ai j is a skew-symmetric matrix, solve the system of equations

ei jk Ajk = Bi . (2.26)
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8 Cartesian Tensors

We use the “e–δ” identity to get

eimnei jk Ajk = eimn Bi ,

(δmjδnk − δmkδnj )Ajk = eimn Bi ,

Amn − Anm = eimn Bi ,

Amn = 1
2

eimn Bi . (2.27)

where we use the skew-symmetry property Anm = −Amn.

2.2.2 Example: Products

If Ai j is symmetric and Bi j is skew-symmetric, show that Ai j Bi j = 0.
Let

S = Ai j Bi j . (2.28)

If we interchange the dummy indices i → j and j → i , we have

S = Aji Bji . (2.29)

Using the symmetry of A and the skew symmetry of B, we can write this as

S = Ai j (−Bi j ) = −Ai j Bi j = −S, 2S = 0, S = 0. (2.30)

2.3 Coordinate System

As shown in Fig. 2.2, we use a proper (right-handed) Cartesian coordinate system
with x1, x2, and x3 denoting the three axes. A directed line segment from the origin
to any point in this 3D space is called a position vector r , with components x1, x2,

x1

x2

x3

r

Figure 2.2. Cartesian coordinate system.
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2.4 Coordinate Transformations 9

and x3 along the three axes. We also use the notation x instead of r at times. In
matrix notation, using a column vector, we have

r = x =

⎧⎪⎨
⎪⎩

x1

x2

x3

⎫⎪⎬
⎪⎭ . (2.31)

Defining unit vectors (or base vectors) e1, e2, and e3 as

e1 =

⎧⎪⎨
⎪⎩

1
0
0

⎫⎪⎬
⎪⎭ , e2 =

⎧⎪⎨
⎪⎩

0
1
0

⎫⎪⎬
⎪⎭ , e3 =

⎧⎪⎨
⎪⎩

0
0
1

⎫⎪⎬
⎪⎭ , (2.32)

we can write

r = x1e1 + x2e2 + x3e3. (2.33)

The dot and cross products of the unit vectors can be expressed with the
Kronecker delta and the permutation symbol in the form

ei · e j = δi j , ei × e j = ei jkek. (2.34)

2.4 Coordinate Transformations

Two types of coordinate transformations are encountered frequently in our studies:
coordinate translation and coordinate rotation. If we denote the new coordinates of
a point P by x′

i , in the case of translation, the two systems are related in the form

x′
i = xi + hi , (2.35)

where hi are constants. This is shown in Fig. 2.3.

P

x1

x2

x′
1

x′
2

h1

h2

Figure 2.3. Coordinate translation.
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10 Cartesian Tensors

x1

x2

x′
1

x′
2

θ

r

Figure 2.4. Coordinate rotation.

Let us consider first a rotation of coordinates in two dimensions. The origin
remains fixed and we obtain the x′

1 axis by rotating the x1 axis counterclockwise by
an angle, θ . As shown in Fig. 2.4, the two systems are related in the form

x′
1 = x1 cos θ + x2 sin θ,

x′
2 = −x1 sin θ + x2 cos θ.

(2.36)

We obtain the inverse of this transformation by replacing θ with (−θ), as

x1 = x′
1 cos θ − x′

2 sin θ,

x2 = x′
1 sin θ + x′

2 cos θ.

Equations (2.36) can also be written in matrix form:{
x′

1

x′
2

}
=

[
Q11 Q12

Q21 Q22

] {
x1

x2

}
, (2.37)

where

Q11 = Q22 = cos θ, Q12 = −Q21 = sin θ. (2.38)

Using column vectors x′ and x and the square matrix Q, we have

x′ = Qx. (2.39)

A note of caution is in order at this point. We have absolute vectors in space,
such as r , and then we have column representations of the components in a cho-
sen coordinate system, such as x and x′. When there are no coordinate rotations
involved, we do not have to distinguish these two representations. When there are
coordinate rotations, we use r for the absolute vector.
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