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1 Vector calculus

1.1 Introduction

Before we can start with biomechanics it is necessary to introduce some basic
mathematical concepts and to introduce the mathematical notation that will be
used throughout the book. The present chapter is aimed at understanding some of
the basics of vector calculus, which is necessary to elucidate the concepts of force
and momentum that will be treated in the next chapter.

1.2 Definition of a vector

A vector is a physical entity having both a magnitude (length or size) and a
direction. For a vector 4 it holds, see Fig. 1.1:

i = ae. (1.1)

The length of the vector a is denoted by || and is equal to the length of the
arrow. The length is equal to a, when a is positive, and equal to —a when a is
negative. The direction of @ is given by the unit vector ¢ combined with the sign
of a. The unit vector ¢ has length 1. The vector 0 has length zero.

1.3 Vector operations

Multiplication of a vector @ = aé by a positive scalar « yields a vector b having
the same direction as a but a different magnitude o/|a|:

b = ad = aae. (1.2)

This makes sense: pulling twice as hard on a wire creates a force in the wire
having the same orientation (the direction of the wire does not change), but with
a magnitude that is twice as large.
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/'

The vector @ = aé witha > 0.

ol

Graphical representation of the sum of two vectors: ¢ = a + b.

The sum of two vectors & and b is a new vector ¢, equal to the diagonal of the
parallelogram spanned by a and b, see Fig. 1.2:

¢=a+b. (1.3)

This may be interpreted as follows. Imagine two thin wires which are attached
to a point P. The wires are being pulled at in two different directions according
to the vectors & and b. The length of each vector represents the magnitude of the
pulling force. The net force vector exerted on the attachment point P is the vector
sum of the two vectors & and b. If the wires are aligned with each other and the
pulling direction is the same, the resulting force direction is clearly coinciding
with the direction of the two wires and the length of the resulting force vector is
the sum of the two pulling forces. Alternatively, if the two wires are aligned but
the pulling forces are in opposite directions and of equal magnitude, the resulting
force exerted on point P is the zero vector 0.

The inner product or dot product of two vectors is a scalar quantity, defined
as

G-b=l|al|b|cos(¢), (1.4)

where ¢ is the smallest angle between a and b, see Fig. 1.3. The inner product is
commutative, i.e.

Ql
S
Il
S
Ql

(1.5)
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b
o

Definition of the angle ¢.

The inner product can be used to define the length of a vector, since the inner
product of a vector with itself yields (¢ = 0):

a-a=l|allal cos(0)= |a|’. (1.6)

If two vectors are perpendicular to each other the inner product of these two
vectors is equal to zero, since in that case ¢ = 75

aZ=Qﬁ¢=%. (1.7)

The cross product or vector product of two vectors & and b yields a new vector
¢ that is perpendicular to both @ and b such that a, b and ¢ form a right-handed
system. The vector ¢ is denoted as

—axh. (1.8)

ol

The length of the vector ¢ is given by
|| = [al|B| sin( ). (1.9)

where ¢ is the smallest angle between a and b. The length of ¢ equals the area of
the parallelogram spanned by the vectors @ and b. The vector system a, b and ¢
forms a right-handed system, meaning that if a corkscrew is used rotating from a
to b the corkscrew would move into the direction of ¢.

The vector product of a vector a with itself yields the zero vector since in that
case ¢ = 0:

axa=0. (1.10)

The vector product is not commutative, since the vector product of band a yields
a vector that has the opposite direction of the vector product of @ and b:

ixb=—bxa. (1.11)
The triple product of three vectors a, b and ¢ is a scalar, defined by
axb-¢=(axb) ¢ (1.12)

So, first the vector product of a and b is determined and subsequently the inner
product of the resulting vector with the third vector ¢ is taken. If all three vectors
a, b and ¢ are non-zero vectors, while the triple product is equal to zero then the
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vector ¢ lies in the plane spanned by the vectors @ and b. This can be explained

by the fact that the vector product of @ and b yields a vector perpendicular to the
plane spanned by a and b. Reversely, this implies that if the triple product is non-
zero then the three vectors a, l; and ¢ are not in the same plane. In that case the
absolute value of the triple product of the vectors a, b and ¢ equals the volume of
the parallelepiped spanned by &, b and ¢.

The dyadic or tensor product of two vectors a and b defines a linear transfor-
mation operator called a dyad ab. Application of a dyad @b to a vector p yields
a vector into the direction of @, where d is multiplied by the inner product of b
and p:
ab-p=a(b-p). (1.13)
So, application of a dyad to a vector transforms this vector into another vector.
This transformation is linear, as can be seen from

ab-(ap+ Bg)=ab-op+ab-pg=adab-p+pab-g.  (1.14)
The transpose of a dyad (Zzl;)T is defined by
(ab)' -p = ba - p, (1.15)
or simply
(ab)" = ba. (1.16)
An operator A that transforms a vector a into another vector b according to
b=A-a, (1.17)

is called a second-order tensor A. This implies that the dyadic product of two
vectors is a second-order tensor.

In the three-dimensional space a set of three vectors ¢1, ¢; and ¢ is called a basis
if the triple product of the three vectors is non-zero, hence if all three vectors are
non-zero vectors and if they do not lie in the same plane:

¢ X Ca - C3 £ 0. (1.18)

The three vectors ¢4, ¢o and ¢3, composing the basis, are called basis vectors.

If the basis vectors are mutually perpendicular vectors the basis is called an
orthogonal basis. If such basis vectors have unit length, then the basis is called
orthonormal. A Cartesian basis is an orthonormal, right-handed basis with
basis vectors independent of the location in the three-dimensional space. In the
following we will indicate the Cartesian basis vectors with é,, ¢, and e.
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_ 1.4 Decomposition of a vector with respect to a basis

1.4 Decomposition of a vector with respect to a basis

As stated above, a Cartesian vector basis is an orthonormal basis. Any vector can
be decomposed into the sum of, at most, three vectors parallel to the three basis
vectors ey, éy and é:

a = axex + ayéy + aze. (1.19)

The components ay, ay and a; can be found by taking the inner product of the
vector a with respect to each of the basis vectors:

ay =a - ey
ay =a-ey (1.20)
a,=a-ée;,

where use is made of the fact that the basis vectors have unit length and are
mutually orthogonal, for example:

Q- €y = ayly - €x + ayéy - €x + az; - €x = dy. (1.21)

The components, say ay, ay and a, of a vector a with respect to the Cartesian
vector basis, may be collected in a column, denoted by a:

a=| a |. (1.22)

So, with respect to a Cartesian vector basis any vector @ may be decomposed in
components that can be collected in a column:

QU

«~—a. (1.23)

This ‘transformation’ is only possible and meaningful if the vector basis with
which the components of the column g are defined has been specified. The choice
of a different vector basis leads to a different column representation g of the vector
a, this is illustrated in Fig. 1.4. The vector a has two different column representa-
tions, a and ¢*, depending on which vector basis is used. If, in a two-dimensional
context {é,, Zy} is used as a vector basis then

a—>g=[“x] (1.24)
dy
while, if {e,", Ey*} is used as vector basis:
- a;
a— a* = - (1.25)
dy
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.

j\Is

a 8,

Vector & with respect to vector basis {€x, €y} and {€y, é;‘}.

Consequently, with respect to a Cartesian vector basis, vector operations such as
multiplication, addition, inner product and dyadic product may be rewritten as
‘column’ (actually matrix) operations.
Multiplication of a vector @ = ayéx + ayéy + azé, with a scalar « yields a new
vector, say b:
b = ad = a(aéx + ayéy + aze;)
= aayeyx + aayéy + aaze;. (1.26)

So

b=ad — b=oaa. (1.27)
The sum of two vectors a and I; leads to
¢=a+b—c=a+bh. (1.28)

Using the fact that the Cartesian basis vectors have unit length and are mutually
orthogonal, the inner product of two vectors a and b yields a scalar ¢ according to

c=0a-b=(ak@, +ae,+az,) - (beéx+ byé, + b.é,)

= axby + ayby + a;b;. (1.29)
In column notation this result is obtained via
c=a'b, (1.30)

where aT denotes the transpose of the column a , defined as

QT= [ax ay az], (1.31)
such that:
by
QTQ = [ax ay az] by | = axby + ayby + azb;. (1.32)
b,
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1.4 Decomposition of a vector with respect to a basis

Using the properties of the basis vectors of the Cartesian vector basis:

ey xe, =0

G X oy = &

ey X e, = —éy
ey X ex = —e;
ey x ey =0 (1.33)

ey X €; = e
e; X ex = e,
e, X &y = —&y
¢, x e, =0,
the vector product of a vector a and a vector b is directly computed by means of
a x b = (ayex + ayey + ae;) x (beey + byey + bre;)

= (ayb; —a;by)éx + (a; by — ayby)éy + (axby — ayby)e..

(1.34)
If by definition ¢ = a x b, then the associated column ¢ can be written as:
ayb; —a; by
c=| a;by—ayb; |. (1.35)

axby — ay by

The dyadic product ab transforms another vector ¢ into a vector d, according to
the definition

d=ab-¢t=A-¢, (1.36)

with A the second-order tensor equal to the dyadic product ab. In column notation
this is equivalent to

d=a(b"c)=(abMec, (1.37)

with @ bT a (3 x 3) matrix given by

ay axby axby axb;
A=ab"=| ay |[ b by b |=| ab ab ab |, (139
a; azb, aby a;b,
or
d=Ac. (1.39)
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n Vector calculus

In this case A is called the matrix representation of the second-order tensor A, as

the comparison of Egs. (1.36) and (1.39) reveals.

Exercises

1.1 The basis {éy, éy, €.} has a right-handed orientation and is orthonormal.

(a) Determine |¢;| fori = x,y,z.

(b) Determine ¢; - ¢; for i,j = x,y,z.

(c) Determine éy - &y x é;.

(d) Whyis:ex x ey =¢;?

1.2 Let {éy,éy,¢;} be an orthonormal vector basis. The force vectors Fy =
3¢x + 2¢, + ¢, and Fy = —48, + éy + 4¢; act on point P. Calculate a
vector F - acting on P in such a way that the sum of all force vectors is the
Zero vector.

1.3 Let{éy, Zy, ¢,} be a right-handed and orthonormal vector basis. The follow-
ing vectors are given: d = 4¢., b = —3¢y+4é;and ¢ = ¢, + 2 ¢
(a) Write the vectors in column notation.

(b) Determine a + b and 3(a + b+ c)

(¢) Determine a - b b a, a X b and b x a.

(d) Determine |al, | [, |a x bl and |b X d.

(e) Determine the smallest angle between a and b.

(f) Determine a unit normal vector on the plane defined by a and b.

(g2) Determine a x b-¢andd x ¢ - b.

(h) Determine @b - ¢, (ab)T -¢ and ba - c.

(i) Do the vectors a, b and ¢ form a suitable vector basis? If the answer
is yes, do they form an orthogonal basis? If the answer is yes, do they
form an orthonormal basis?

1.4  Consider the basis {a, b ¢} with a, b and ¢ defined as in the previous
exercise. The following vectors are given: d=a+2bandé =24 — 3¢.
(a) Determine d -+ .

(b) Determine d - &.

1.5  The basis {éy, éy, €} is right-handed and orthonormal. The vectors dy, a,
and a are given by: a, = 4é, + 3¢, ; a, = 3éx — 4¢y and a; = dy X ay.
(a) Determine a, expressed in éy, ¢, and ..

(b) Determine |a;| for i = x,y, z.

(c) Determine the volume of the parallelepiped defined by dy, ay and a;.

(d) Determine the angle between the lines of action of d, and ay.

(e) Determine the vector &, from a; = |a;|&; for i = x,y, z. Is {atx, &y, &}
a right-handed, orthonormal vector basis?
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(f) Consider the vector b = 2¢, + 3¢y + ¢,. Determine the column rep-
resentation of b according to the bases {éy, ¢y, €.}, {dy,dy,a;} and
{&X’ &yv &Z} . . N
(g) Show that: dy X Gy - b =dy-dy X b=dy-b X dy.

1.6 Assume {éy, ey, ¢} is an orthonormal vector basis. The following vectors
are defined:

ST
I

ol

4éx +3éy, — ¢,
6
8

L

y €
X

G — 2,

Are a, band ¢ linearly independent? If not, what is the relationship between
the vectors?

1.7 The vector bases {é,éy,é;} and {€y, €, €} are orthonormal and do not
coincide:

What is the effect of éx€ + ¢,€, + €€ acting on a vector a?
(b) What is the effect of €,é, + €,¢, + €, acting on a vector a?

1.8 The vector basis {éx,éy,é;} is orthonormal. What is the effect of the
following dyadic products if they are applied to a vector a?

(a)

(a)
(b)
()
(d)
(e)

xey.

- - - >
exex + eyey.

exex + eyey + eze;.
exey — eyex + eze;.
exex — eyey + eze;.
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2 The concepts of force and moment

2.1 Introduction

We experience the effects of force in everyday life and have an intuitive notion
of force. For example, we exert a force on our body when we lift or push an
object while we continuously (fortunately) feel the effect of gravitational forces,
for instance while sitting, walking, etc. All parts of the human body in one way
or the other are loaded by forces. Our bones provide rigidity to the body and can
sustain high loads. The skin is resistant to force, simply pull on the skin to witness
this. The cardiovascular system is continuously loaded dynamically due to the
pulsating blood pressure. The bladder is loaded and stretched when it fills up. The
intervertebral discs serve as flexible force transmitting media that give the spine its
flexibility. Beside force we are using levers all the time in our daily life to increase
the ‘force’ that we want to apply to some object, for example by opening doors
with the latch, opening a bottle with a bottle-opener. We feel the effect of a lever
arm when holding a weight close to our body instead of using a stretched arm.
These experiences are the result of the moment that can be exerted by a force.
Understanding the impact of force and moment on the human body requires us to
formalize the intuitive notion of force and moment. That is the objective of this
chapter.

2.2 Definition of a force vector

Imagine pulling on a thin wire that is attached to a wall. The pulling force exerted
on the point of application is a vector with a physical meaning, it has

e alength: the magnitude of the pulling force
e an orientation in space: the direction of the wire
e aline-of-action, which is the line through the force vector.

The graphical representation of a force vector, denoted by F , 1s given in Fig. 2.1.
The ‘shaft’ of the arrow indicates the orientation in space of the force vector. The
point of application of the force vector is denoted by the point P.
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