Several major breakthroughs in the last decade have helped to contribute to the emerging field of astrobiology. These have ranged from the study of microorganisms, which have adapted to living in extreme environments on Earth, to the discovery of over 200 planets orbiting around other stars, and the ambitious programs for the robotic exploration of Mars and other bodies in our Solar System. Focusing on these developments, this book explores some of the most exciting and important problems in this field.

Beginning with how planetary systems are discovered, the text examines how these systems formed, and how water and the biomolecules necessary for life were produced. It then focuses on how life may have originated and evolved on Earth. Building on these two themes, the final section takes the reader on an exploration for life elsewhere in the Solar System. It presents the latest results of missions to Mars and Titan, and explores the possibilities for life in the ice-covered ocean of Europa. Colour versions of some of the figures are available at www.cambridge.org/9780521875486.

This interdisciplinary book is a fascinating resource for students and researchers in subjects in astrophysics, planetary science, geosciences, biochemistry, and evolutionary biology. It will provide any scientifically literate reader with an enjoyable overview of this exciting field.

RALPH PUDRITZ is Director of the Origins Institute and a Professor in the Department of Physics and Astronomy at McMaster University.

PAUL HIGGS is Canada Research Chair in Biophysics and a Professor in the Department of Physics and Astronomy at McMaster University.

JONATHON STONE is Associate Director of the Origins Institute and SHARCNet Chair in Computational Biology in the Department of Biology at McMaster University.
Cambridge Astrobiology

Series Editors
Bruce Jakosky, Alan Boss, Frances Westall, Daniel Prieur, and Charles Cockell

Books in the series:
1. Planet Formation: Theory, Observations, and Experiments
 Edited by Hubert Klahr and Wolfgang Brandner
 ISBN 978-0-521-86015-4
2. Fitness of the Cosmos for Life: Biochemistry and Fine-Tuning
 ISBN 978-0-521-87102-0
3. Planetary Systems and the Origins of Life
 Edited by Ralph Pudritz, Paul Higgs, and Jonathon Stone
 ISBN 978-0-521-87548-6
PLANETARY SYSTEMS AND
THE ORIGINS OF LIFE

RALPH PUDRITZ, PAUL HIGGS, JONATHON STONE
McMaster University, Canada
Contents

List of contributors xi
Preface xv

Part I Planetary systems and the origins of life 1

1 Observations of extrasolar planetary systems 3
 Shay Zucker
 1.1 Introduction 3
 1.2 RV detections 4
 1.3 Transit detections 7
 1.4 Properties of the extrasolar planets 10
 1.5 Other methods of detection 14
 1.6 Future prospects for space missions 16
 Acknowledgements 17
 References 17

2 The atmospheres of extrasolar planets 21
 L. Jeremy Richardson and Sara Seager
 2.1 Introduction 21
 2.2 The primary eclipse 21
 2.3 The secondary eclipse 23
 2.4 Characteristics of known transiting planets 25
 2.5 Spectroscopy 27
 2.6 Model atmospheres 30
 2.7 Observations 32
 2.8 Future missions 35
 2.9 Summary 37
 References 38
Contents

Acknowledgements 106
References 106

Part II Life on Earth 111

6 Extremophiles: defining the envelope for the search for life in the universe 113
Lynn Rothschild
6.1 Introduction 113
6.2 What is an extremophile? 114
6.3 Categories of extremophiles 115
6.4 Environmental extremes 115
6.5 How do they do it? 123
6.6 Examples of extreme ecosystems 125
6.7 Space: new categories of extreme environments 126
6.8 Life in the Solar System? 127
6.9 Conclusions 130
Acknowledgements 131
References 131

7 Hyperthermophilic life on Earth – and on Mars? 135
Karl O. Stetter
7.1 Introduction 135
7.2 Biotopes 136
7.3 Sampling and cultivation 138
7.4 Phylogenetic implications 139
7.5 Physiologic properties 141
7.6 Examples of recent HT organisms 143
References 147

8 Phylogenomics: how far back in the past can we go? 149
Henner Brinkmann, Denis Baurain, and Hervé Philippe
8.1 Introduction 149
8.2 The principles of phylogenetic inference 149
8.3 Artefacts affecting phylogenetic reconstruction 152
8.4 Strengths and limitations of phylogenomics 155
8.5 The importance of secondary simplification 160
8.6 The tree of life 164
8.7 Frequent strong claims made with weak evidence in their favour 167
9 Horizontal gene transfer, gene histories, and the root of the tree of life 178
Olga Zhaxybayeva and J. Peter Gogarten
9.1 Introduction 178
9.2 How to analyse multigene data? 179
9.3 What does the plurality consensus represent? Example of small marine cyanobacteria 182
9.4 Where is the root of the ‘tree of life’? 183
9.5 Use of higher order characters: example of ATPases 185
9.6 Conclusions 188
Acknowledgements 188
References 188

10 Evolutionary innovation versus ecological incumbency 193
Adolf Seilacher
10.1 The Ediacaran world 193
10.2 Preservational context 194
10.3 Vendobionts as giant protozoans 195
10.4 Kimberella as a stem-group mollusc 198
10.5 Worm burrows 202
10.6 Stability of ecosystems 203
10.7 The parasite connection 204
10.8 Conclusions 207
Acknowledgements 208
References 208

11 Gradual origin for the metazoans 210
Alexandra Pontefract and Jonathon Stone
11.1 Introduction 210
11.2 Collagen as a trait tying together metazoans 211
11.3 The critical oxygen concentration criterion 212
11.4 The Burgess Shale fauna: a radiation on rocky ground 213
11.5 Accumulating evidence about snowball Earth 215
11.6 North of 80° 216
11.7 Conclusion 219
Contents

Acknowledgements 219
References 219

Part III Life in the Solar System?

12 The search for life on Mars 225

Chris P. McKay

12.1 Introduction 225
12.2 Mars today and the Viking search for life 227
12.3 Search for second genesis 229
12.4 Detecting a second genesis on Mars 235
12.5 Conclusions 238
References 238

13 Life in the dark dune spots of Mars: a testable hypothesis 241

Eörs Szathmáry, Tibor Gánti, Tamás Pócs, András Horváth, Ákos Kereszturi, Szaniszló Bérczi, and András Sik

13.1 Introduction 241
13.2 History 241
13.3 Basic facts and considerations about DDSs 243
13.4 Challenges and answers 250
13.5 Partial analogues on Earth 255
13.6 Discussion and outlook 257
Acknowledgements 258
References 258

14 Titan: a new astrobiological vision from the Cassini–Huygens data 263

François Raulin

14.1 Introduction 263
14.2 Analogies between Titan and the Earth 264
14.3 A complex prebiotic-like chemistry 271
14.4 Life on Titan? 278
14.5 Conclusions 280
Acknowledgements 281
References 282

15 Europa, the ocean moon: tides, permeable ice, and life 285

Richard Greenberg

15.1 Introduction: life beyond the habitable zone 285
15.2 The surface of Europa 286
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.3 Tides</td>
<td>295</td>
</tr>
<tr>
<td>15.4 The permeable crust: conditions for a Europan biosphere</td>
<td>305</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>309</td>
</tr>
<tr>
<td>References</td>
<td>309</td>
</tr>
</tbody>
</table>

Index | 313 |
Contributors

Denis Baurain
Department de Biochimie
Université de Montréal
Montréal, Quebec
Canada

Szaniszló Bérczi
Department of General Physics
Cosmic Material Research Group
Eötvös University
Budapest
Hungary

Henner Brinkmann
Department de Biochimie
Université de Montréal
Montréal, Quebec
Canada

David Deamer
Department of Chemistry & Biochemistry
University of California, Santa Cruz
Santa Cruz, CA
USA

Tibor Gánti
Collegium Budapest
Institute for Advanced Study
Budapest
Hungary

J. Peter Gogarten
Department of Molecular & Cell Biology
University of Connecticut
Storrs, CT
USA

Richard Greenberg
Lunar and Planetary Observatory
University of Arizona
Tucson, AZ
USA

Paul G. Higgs
Department of Physics & Astronomy
McMaster University
Hamilton, Ontario
Canada

András Horváth
Collegium Budapest
Institute for Advanced Study
Budapest
Hungary

Ákos Kereszturi
Collegium Budapest
Institute for Advanced Study
Budapest
Hungary
Contributors

Chris P. McKay
NASA Ames Research Center
Moffett Field, CA
USA

Hervé Philippe
Department de Biochimie
Université de Montréal
Montréal, Quebec
Canada

Tamás Pócs
Department of Botany
Eszterházy Károly College
Eger
Hungary

Alexandra Pontefract
Department of Biology
McMaster University
Hamilton, Ontario
Canada

Ralph E. Pudritz
Department of Physics & Astronomy
McMaster University
Hamilton, Ontario
Canada

François Raulin
Universités Paris 7 et Paris 12
Creteil
France

L. Jeremy Richardson
NASA Goddard Space Flight Center
Greenbelt, MD
USA

Lynn Rothschild
NASA Ames Research Center
Moffett Field, CA
USA

Sara Seager
Department of Earth, Atmospheric and Planetary Sciences
Massachusetts Institute of Technology
Cambridge, MA
USA

Adolf Seilacher
University of Tubingen
Tubingen
Germany

András Sik
Department of Physical Geography
Eötvös University
Budapest
Hungary

Karl O. Stetter
Lehrstuhl fur Mikrobiologie
Universität Regensburg
Regensburg
Germany

Jonathon Stone
Department of Biology
McMaster University
Hamilton, Ontario
Canada

Eörs Szathmáry
Collegium Budapest
Institute for Advanced Study
Budapest
Hungary

Edward W. Thommes
Canadian Institute for Theoretical Astrophysics
University of Toronto
Toronto, Ontario
Canada
Contributors

Olga Zhaxybayeva
Department of Biochemistry & Molecular Biology
Dalhousie University
Halifax, Nova Scotia
Canada

Shay Zucker
Geophysics & Planetary Science Department
Faculty of Exact Sciences
Tel Aviv University
Tel Aviv
Israel
Preface

The inspiration for this book arises from the creation of the Origins Institute (OI) at McMaster University, which formally started operating in July 2004. Many of the greatest questions that face twenty-first century scientists are interrelated in fundamental ways. The OI was established to address several of these major interdisciplinary questions from within a broad framework of ‘origins’ themes: space-time, elements, structure in the cosmos, life, species, and humanity.

The origin of life has a privileged position in this great sweep of scientific endeavour and ideas. It addresses, arguably, the most surprising and most fundamental transition to have arisen during the entire evolution of the universe, namely, the transformation of collections of molecules from the inanimate to animate realm. Substantial progress in solving this great problem has been achieved relatively recently but may be traced back to ideas first proposed by Darwin. The great excitement in our era is the realization that physical properties of planetary systems play an important role in setting the stage for life, and that microbial life, on Earth at least, is incredibly robust and has adapted itself to surprisingly ‘extreme’ conditions. Progress can be traced to four scientific revolutions that have occurred over the last two decades:

(i) the discovery, since 1995, of over 200 extrasolar planets (one which is only 7.5 times more massive than the Earth) around other stars and the possibility that at least a few of these systems may harbour life-sustaining planets;
(ii) the discovery of extremophile microorganisms on Earth that have adapted to conditions of extreme temperatures, acidity, salinity, etc., which considerably broadens the range of habitats where we might hope to find life on other planets in our solar system and other planetary systems;
(iii) the rapid advances in genome sequencing that enable comparative analysis of large numbers of organisms at the whole genome level, thereby enabling the study of evolutionary relationships on the earliest branches of the tree of life; and
Preface

(iv) the enormous efforts being made by National Aeronautics and Space Agency (NASA) and European Space Agency (ESA) (and, more recently, the Canadian Space Agency (CSA)) to send robotic probes to search for water, biomolecules, and life on Mars and Titan and possibly the ice-covered, oceanic moon of Jupiter – Europa.

These are some of the major drivers of the emergent science of astrobiology and were the central themes explored during the two-week conference and workshop sponsored by the OI and held at McMaster University in Hamilton, Ontario, Canada, on 24 May–4 June 2005. Our conference featured invited review lectures as well as invited and contributed talks from many of the international leaders in the field (for a full list, please consult the conference internet site at http://origins.mcmaster.ca/astrobiology/).

How to use this book – a user’s manual

The chapters of this book are derived from invited, one-hour review talks, as well as a few invited shorter talks, given at the conference. These constitute an outstanding set of lectures delivered by masters of fields such as planetary science, evolutionary biology, and the interdisciplinary links between the two. One of our major goals was to create a volume that would be useful for teaching an interdisciplinary audience at the level of senior undergraduate or junior graduate students. Our intent was to capture the exciting interdisciplinary research atmosphere that attendees experienced at the conference and, thereby, create a volume that is an excellent resource for research. The OI plans to use this volume for a third year undergraduate course about the origins of life, which will be offered for the first time in 2006. The authors were all aware of these two aspects of the book as they prepared their manuscripts. To accommodate and educate a broad interdisciplinary audience, we have tried to ensure that technical jargon is kept to a minimum without compromising scientific accuracy and a clear analysis of the important principles and latest results at an advanced scientific level.

The editors made every effort to keep the authors of individual chapters informed of the content of related chapters. All of the chapters in this book were peer reviewed by arm’s-length experts in relevant fields. In addition to receiving useful referee reports, the authors also received comprehensive comments from the editors designed to help integrate their chapters with other related chapters. We hoped by these means to create an integrated book of the highest scientific standard and not just a collection of unrelated review talks that are typical of many conference proceedings. The users of this book will be the ultimate judges of how well we succeeded in attaining this goal.

There are three parts of this book. The first takes the reader from the domain of planetary systems and how they are formed, through the origins of biomolecules
and water and their delivery to terrestrial planets. It then focuses on general questions about how the genetic code may have appeared and how the first cells were assembled. These chapters marshal general arguments about the possible universality of basic processes that lead to the appearance of life, perhaps on planets around most stars in our Galaxy and others.

The second part – life on Earth – begins with an exploration of microbial life on our planet and how it has adapted to extreme environments. These are analogous to environments that will be explored on Mars and other worlds in the Solar System. The part then moves on to the results of genomics – as exploited by phylogenetic methods. This allows us to explore the interrelationships of organisms to try to create a tree of life. This is central to efforts designed to address what the earliest organisms might have been like, and two chapters are devoted to such issues. This part then moves on to explore ideas on how metazoans originated approximately 560 million years ago.

The topic of the final part of the book – the search for life in the Solar System – constitutes a synthesis of those from the first two parts and lies at the heart of modern ‘astrobiology’. Its four chapters review the latest results on the physical environments and the search for life in the Solar System, specifically on Mars, Titan, and Europa.

Acknowledgements

There are many people to thank for helping to put together the conference out of which this book originated. Financial support for sponsoring research conferences and workshops run by the OI comes ultimately from the Office of the Vice President Research at McMaster University – Professor Mamdouh Shoukri. We are indebted to him for his keen interest and support in helping us launch the OI and this first conference.

The scientific organizing committee for the conference consists of OI members – who are also faculty members in departments across the Faculty of Science. The list of organizers is:

- Professors Paul Higgs and James Wadsley of the Dept. of Physics and Astronomy
- Professors Brian Golding and Jonathon Stone (also the Associate Director of the OI) from the Dept. of Biology
- Professor Ralph Pudritz, the chair of the organizing committee, Director of the OI, and member of the Dept. of Physics and Astronomy

The hard work and scientific insights of these committee members were essential in driving the very successful conference programme, discussions, workshop, and, ultimately, the foundations of this book.
The enormous amount of work in actually organizing and running this international conference and workshop was carried out with great skill and dedication by two outstanding individuals:

- Ms Mara Esposto, administrator for the Dept. of Physics and Astronomy and part time administrator support for the OI and
- Ms Rosemary McNeice, the OI secretary and also secretary in the Dept. of Physics and Astronomy.

The design of the posters and website was carried out by:

- Mr Steve Janzen, graphic designer and media production services at McMaster, as well as by
- Mr Dan O’Donnell, an undergraduate physics and astronomy student. Dan also performed all of the many tasks needed to keep the conference website updated, and ran all of the audiovisual equipment at the conference.

Ultimately, the value of this book rests with the outstanding efforts and insights of our chapter authors, all of whom wrote admirable contributions and did a lot of extra work in addressing referee and editorial reports. The editors could not have finished this book without the outstanding services of Dan O’Donnell who performed all the LaTeX formatting required for this volume.

Finally, we wish to thank our excellent editors and assistants at Cambridge University Press for their interest in this volume, for their patience and many helpful suggestions, and for their quick responses to the many issues that came up in producing this volume. We thank in particular Miss Jacqueline Garget, who was the commissioning editor for astronomy and space science in charge of the Astrobiology series and whose early interest in our proposal helped to launch this volume. We also thank Vince Higgs, editor, astronomy and astrophysics who followed Jacqueline as well as his assistant, Ms Helen Morris (publishing assistant, physical sciences), for all of their help. Their continued support and help has been most welcome.

We close this preface with the hope that the reader of this volume will find much fascination, inspiration, and enjoyment in its pages. The scope and promise of this vibrant new area of science is extraordinary. We, as editors as well as authors, enjoyed our task and feel privileged to have worked with so many outstanding individuals during this project.