Cambridge University Press

978-0-521-87546-2 - Reactive Systems: Modelling, Specification and Verification
Luca Aceto, Anna Ingolfsdottir, Kim G. Larsen and Jiri Srba

Excerpt

More information

Part |

A Classic Theory of Reactive Systems

Introduction

Aims of this book

The aim of the first part of this book is to introduce three basic notions that we
shall use to describe, specify and analyse reactive systems, namely

e Milner’s calculus of communicating systems (CCS) (Milner, 1989),

 the model known as labelled transition systems (LTSs) (Keller, 1976), and

e Hennessy—Milner logic (HML) (Hennessy and Milner, 1985) and its extension
with recursive definitions of formulae (Larsen, 1990).

We shall present a general theory of reactive systems and its applications. In
particular, we intend to show the following:

1. how to describe actual systems using terms in our chosen models (i.e. either
as terms in the process description language CCS or as labelled transition
systems);

2. how to offer specifications of the desired behaviour of systems either as terms
of our models or as formulae in HML; and

3. how to manipulate these descriptions, possibly (semi-)automatically, in order to
analyse the behaviour of the model of the system under consideration.

In the second part of the book, we shall introduce a similar trinity of basic
notions that will allow us to describe, specify and analyse real-time systems — that
is, systems whose behaviour depends crucially on timing constraints. There we
shall present the formalisms of timed automata (Alur and Dill, 1994) and timed
CCS (Yi, 1990, 1991a,b) to describe real-time systems, the model of timed

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521875463
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-87546-2 - Reactive Systems: Modelling, Specification and Verification
Luca Aceto, Anna Ingolfsdottir, Kim G. Larsen and Jiri Srba

Excerpt

More information

2 Introduction

labelled transition systems (TLTSs) and a real-time version of Hennessy—Milner
logic (Laroussinie, Larsen and Weise, 1995).

After having worked through the material in this book, you should be able to
describe non-trivial reactive systems and their specifications using the aforemen-
tioned models and verify the correctness of a model of a system with respect
to given specifications either manually or by using automatic verification tools
such as the Edinburgh Concurrency Workbench (Cleaveland, Parrow and Steffen,
1993) and the model checker for real-time systems UPPAAL (Behrmann, David
and Larsen, 2004).

Our, somewhat ambitious, aim is therefore to present a model of reactive
systems that supports their design, specification and verification. Moreover,
since many real-life systems are hard to analyse manually, we should like to
have computer support for our verification tasks. This means that all the models
and languages that we shall use in this book need to have a formal syntax and
semantics. (The syntax of a language consists of the rules governing the formation
of statements, whereas its semantics assigns meaning to each of the syntactically
correct statements in the language.) These requirements of formality are not only
necessary in order to be able to build computer tools for the analysis of system
descriptions but are also fundamental in agreeing upon what the terms in our
models are actually intended to describe in the first place. Moreover, as Donald
Knuth once wrote:

A person does not really understand something until after teaching it to
a computer, i.e. expressing it as an algorithm....An attempt to formalize
things as algorithms leads to a much deeper understanding than if we simply
try to comprehend things in the traditional way.

The pay-off from using formal models with an explicit formal semantics to
describe our systems will therefore be the possibility of devising algorithms for
the animation, simulation and verification of system models. These would be
impossible to obtain if our models were specified only in an informal notation.

Now that, it is hoped, you know what to expect from this book, it is time to
get to work. We shall begin our journey through the beautiful land of concurrency
theory by introducing a prototype description language for reactive systems and its
semantics. However, before setting off on such an enterprise, we should describe
in more detail what we actually mean by the term ‘reactive system’.

1.1 What are reactive systems?

The ‘standard’ view of computing systems is that, at a high level of abstrac-
tion, these may be considered as black boxes that take inputs and provide

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521875463
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-87546-2 - Reactive Systems: Modelling, Specification and Verification
Luca Aceto, Anna Ingolfsdottir, Kim G. Larsen and Jiri Srba

Excerpt

More information

1.1. What are reactive systems? 3

appropriate outputs. This view agrees with the description of algorithmic prob-
lems. An algorithmic problem is specified by a collection of legal inputs, and, for
each legal input, its expected output. In an imperative setting, an abstract view
of a computing system may therefore be given by describing how it transforms
an initial state — i.e. a function from variables to their values — to a final state.
This function will, in general, be partial, i.e. it may be undefined for some ini-
tial states, in order to capture that the behaviour of a computing system may be
non-terminating for some input states. For example, the effect of the program

S=z—xjx—yy—=z
is described by the function [S] from states to states, defined thus:
[S] = As. sla = s(y),y — s(2), 2 — s(a)],

where the new state s[z — s(y),y — s(x),z +— s(x)] is that in which the value
of variable x is the value of y in state s and that of variables y and z is the value of
x in state s. The values of all the other variables are those they had in state s. This
state transformation is a way of describing formally that the intended effect of S
is essentially to swap the values of the variables x and y.

However, the effect of the program

U = while true do skip,

where we use skip to stand for ‘no operation’, is described by the partial function
from states to states given by

[U] = As. undefined,

i.e. the always undefined function. This captures the fact that the computation of
U never produces a result (final state), irrespective of the initial state.

In this view of computing systems, non-termination is a highly undesirable phe-
nomenon. An algorithm that fails to terminate on some inputs is not one the users
of a computing system would expect to have to use. A moment of reflection, how-
ever, should make us realize that we already use many computing systems whose
behaviour cannot be readily described as a function from inputs to outputs — not
least because, at some level of abstraction, these systems are inherently meant to
be non-terminating. Examples of such computing systems are

* operating systems,

e communication protocols,

* control programs, and

 software running in embedded system devices such as mobile telephones.

At a high level of abstraction, the behaviour of a control program can be seen to
be governed by the following pseudocode algorithm skeleton:

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521875463
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-87546-2 - Reactive Systems: Modelling, Specification and Verification
Luca Aceto, Anna Ingolfsdottir, Kim G. Larsen and Jiri Srba

Excerpt

More information

4 Introduction

loop

read the sensors’ values at regular intervals

depending on the sensors’ values trigger the relevant actuators
forever

These and many others are examples of computing systems that interact with their
environment by exchanging information with it. Like the neurons in a human brain,
these systems react to stimuli from their computing environment (in the example
control program above, these are variations in the values of the sensors) by possibly
changing their state or mode of computation and, in turn, influence their environ-
ment by sending back some signals to it or initiating some operations that affect
the computing environment (this is the role played by the actuators in the example
control program). David Harel and Amir Pnueli coined the term reactive system
in Harel and Pnueli (1985) to describe a system that, like those mentioned above,
computes by reacting to stimuli from its environment.

As the above examples and discussion indicate, reactive systems are inherently
parallel systems and a key role in their behaviour is played by communication
and interaction with their computing environment. A ‘standard’ computing system
can also be viewed as a reactive system in which interaction with the environ-
ment takes place only at the beginning of the computation (when inputs are fed
to the computing device) and at the end (when the output is received). However,
all the example systems given before maintain a continuous interaction with their
environment, and we may think of the computing system and its environment as
parallel processes that communicate with each other. In addition, as again nicely
exemplified by the skeleton of a control program given above, non-termination is a
desirable feature of some reactive systems. In contrast to the setting of ‘standard’
computing systems, we certainly do not expect the operating systems running on
our computers or the control program monitoring a nuclear reactor to terminate!

Now that we have an idea of what reactive systems are, and of the key aspects
of their behaviour, we can begin to consider what an appropriate abstract model
for this class of systems should offer. In particular, such a model should allow
us to describe the behaviour of collections of (possibly non-terminating) parallel
processes that may compute independently or interact with one another. It should
provide us with facilities for the description of well-known phenomena that appear
in the presence of concurrency and are familiar to us from the world of operating
systems and parallel computation in general (e.g., deadlock, livelock, starvation
and so on). Finally, in order to abstract from implementation-dependent issues
having to do with, say, scheduling policies, the chosen model should permit a
clean description of non-determinism — a most useful modelling tool in computer
science.

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521875463
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-87546-2 - Reactive Systems: Modelling, Specification and Verification
Luca Aceto, Anna Ingolfsdottir, Kim G. Larsen and Jiri Srba

Excerpt

More information

1.2. Process algebras 5

Our aim in the remainder of this book will be to present a general-purpose
theory that can be used to describe, and reason about, any collection of interacting
processes. The approach that we shall present will make use of a collection of
models and formal techniques that is often referred to as process theory. The key
ingredients in this approach are

e (process) algebra,

e automata or labelled transition systems,
* structural operational semantics, and

* logic.

These ingredients give the foundations for the development of (semi-)automatic
verification tools for reactive systems that support various formal methods for val-
idation and verification, which can be applied to the analysis of highly non-trivial
computing systems. The development of these tools requires in turn advances in
algorithmics and via the increasing complexity of the analysed designs feeds back
to the theory-development phase by suggesting the invention of new languages and
models for the description of reactive systems.

Unlike in the setting of sequential programs, where we would often prefer to
believe that the development of correct programs can be done without any recourse
to ‘formalism’, it is a well-recognized fact of life that the behaviour of even very
short parallel programs may be very hard to analyse and understand. Indeed, ana-
lyzing these programs requires a careful consideration of issues related to the
interactions amongst their components, and even imagining these is often a mind-
boggling task. As a result, the techniques and tools that we shall present in this
book are becoming widely accepted in the academic and industrial communities
that develop reactive systems.

1.2 Process algebras

The first ingredient in the approach to the theory of reactive systems presented
in this book is a prototypical example of a process algebra. Process algebras are
prototype specification languages for reactive systems. They have evolved from
the insights of many outstanding researchers over the last 30 years, and a brief
history of the ideas that led to their development may be found in Baeten (2005).
(For an accessible, but more advanced, discussion of the role that algebra plays in
process theory, the reader could consult the survey paper Luttik (2006).) A crucial
initial observation at the heart of the notion of process algebra is due to Milner,
who noticed that concurrent processes have an algebraic structure. For example,
once we have built two separate processes P and (), we can form a new process by

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521875463
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-87546-2 - Reactive Systems: Modelling, Specification and Verification
Luca Aceto, Anna Ingolfsdottir, Kim G. Larsen and Jiri Srba

Excerpt

More information

6 Introduction

combining P and () sequentially or in parallel. The results of these combinations
will be new processes whose behaviour depends on that of P and () and on the
operation that we have used to compose them. This is the first sense in which these
description languages are algebraic: they consist of a collection of operations for
building new process descriptions from existing ones.

Since these languages aim at specifying parallel processes that may interact
with one another, a key issue that needs to be addressed is how to describe com-
munication or interaction between processes running at the same time. Commu-
nication amounts to information exchange between a process that produces the
information (the sender) and a process that consumes it (the receiver). We often
think of this communication of information as taking place via a medium that
connects the sender and the receiver. If we are to develop a theory of communi-
cating systems based on this view, we have to decide upon the communication
medium used in inter-process communication. Several possible choices immedi-
ately come to mind. Processes may communicate via, for example, (un)bounded
buffers, shared variables, some unspecified ether or the tuple spaces used by Linda-
like languages (Gelernter, 1985). Which one do we choose? The answer is not at all
clear, and each specific choice may in fact reduce the applicability of our language
and the models that support it. A language that can properly describe processes that
communicate via, say, FIFO buffers may not readily allow us to specify situations
in which processes interact via, say, shared variables.

The solution to this riddle is both conceptually simple and general. A crucial
original insight of figures such as Hoare and Milner was that we need not distin-
guish between active components, such as senders and receivers, and passive ones
such as the communication media mentioned above. They may all be viewed as
processes — i.e. as systems that exhibit behaviour. All these processes can interact
via message-passing modelled as synchronized communication, which is the only
basic mode of interaction. This is the key idea underlying Hoare’s Communicating
Sequential Processes (CSP) (Hoare, 1978, 1985), a highly influential proposal for
a programming language for parallel programs, and Milner’s Calculus of Commu-
nicating Systems (CCS) (Milner, 1989), the paradigmatic process algebra.

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521875463
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-87546-2 - Reactive Systems: Modelling, Specification and Verification
Luca Aceto, Anna Ingolfsdottir, Kim G. Larsen and Jiri Srba

Excerpt

More information

2
The language CCS

We shall now introduce Milner’s Calculus of Communicating Systems (CCS). We
begin by informally presenting the process constructions allowed in this language,
and their semantics, in Section 2.1. Then, in Section 2.2, we proceed to put our
developments on a more formal footing.

2.1 Some CCS process constructions

It is useful to begin by thinking of a CCS process as a black box. This black box
may have a name that identifies it, and it has a process interface. This interface
describes the collection of communication ports, also referred to as channels, that
the process may use to interact with other processes that reside in its environment,
together with an indication of whether it uses these ports for inputting or out-
putting information. For example, the drawing in Figure 2.1 pictures the interface
for a process whose name is CS (for computer scientist). This process may interact
with its environment via three ports, or communication channels, namely ‘coffee’,
‘coin’ and ‘pub’. The port ‘coffee’ is used by process CS for input, whereas the
ports ‘coin’ and ‘pub’ are used for output. In general, given a port name a we use
a for the output on port a. We shall often refer to labels such as coffee or coin as
actions.

A description like the one given in Figure 2.1 only gives static information about
a process. What we are most interested in is the behaviour of the process being
specified. The behaviour of a process is described by giving a ‘CCS program’.
The idea is that, as we shall soon see, the process constructions that are used in
building the program allow us to describe both the structure of the process and its
behaviour.

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521875463
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-87546-2 - Reactive Systems: Modelling, Specification and Verification
Luca Aceto, Anna Ingolfsdottir, Kim G. Larsen and Jiri Srba

Excerpt

More information

8 The language CCS

coffee CsS pub

coin

Figure 2.1 The interface for the process CS.

Inaction, prefixing and recursive definitions Let us begin by introducing the
constructs of the language CCS, by means of examples. The most basic process of
all is the process O (read ‘nil’). This performs no action whatsoever. The process
0 offers the prototypical example of a deadlocked behaviour — one that cannot
proceed any further in its computation.

The most basic process constructor in CCS is action prefixing. Two example
processes built using 0 and action prefixing are a match and a complex match,
described by the expressions

strike.0 and take.strike.O,

respectively. Intuitively, a match is a process that dies after it has been performed
(i.e. that becomes the process O after executing the action strike), and a complex
match is one that needs to be taken hold of before it can behave like a match. More
generally, the formation rule for action prefixing says that

if P is a process and a is a label then a. P is also a process.

The idea is that a label such as strike or pub will denote an input or output action
on a communication port and that the process a. P is one that begins by performing
action a and behaves like P thereafter.

We have already mentioned that processes can be given names, very much
as procedures can. This means that we can introduce names for (complex) pro-
cesses and that we can use these names in defining other process descriptions. For
instance, we can give the name Match to the complex match defined thus:

Match def take.strike.O.

The introduction of names for processes allows us to give recursive definitions
of process behaviours — compare with the recursive definition of procedures or
methods in your favourite programming language. For instance, we may define
the behaviour of an everlasting clock thus:

Clock & tick.Clock.

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521875463
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-87546-2 - Reactive Systems: Modelling, Specification and Verification
Luca Aceto, Anna Ingolfsdottir, Kim G. Larsen and Jiri Srba

Excerpt

More information

2.1. Some CCS process constructions 9

Note that, since the process name Clock is a short-hand for the term on the right-
hand side of the above equation, we may repeatedly replace the name Clock with
its definition to obtain that

Clock & tick.Clock
= tick.tick.Clock
= tick.tick.tick.Clock

= tick..... tick .Clock,
—_——

n times

for each positive integer n.
As another recursive process specification, consider that of a simple coffee
vending machine:

CM & coin.coffee.CM. 2.1)

This is a machine that is willing to accept a coin as input, deliver coffee to its
customer and thereafter return to its initial state.

Choice The CCS constructs that we have presented so far would not allow us
to describe the behaviour of a vending machine that allows its paying customer
to choose between tea and coffee, say. In order to allow for the description of
processes whose behaviour may follow different patterns of interaction with their
environment, CCS offers the choice operator, which is written ‘+’. For example,
a vending machine offering either tea or coffee may be described thus:

CTM & coin. (coffee.CTM + fea.CTM). 2.2)

The idea here is that, after having received a coin as input, the process CTM is will-
ing to deliver either coffee or tea, depending on its customer’s choice. In general,
the formation rule for choice states that

if P and () are processes then so is P + ().

The process P + (@ is one that has the initial capabilities of both P and). How-
ever, choosing to perform initially an action from P will pre-empt the further
execution of actions from (), and vice versa.

Exercise 2.1 Give a CCS process which describes a clock that ticks at least once
and may stop ticking after each clock tick. ¢

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521875463
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-87546-2 - Reactive Systems: Modelling, Specification and Verification
Luca Aceto, Anna Ingolfsdottir, Kim G. Larsen and Jiri Srba

Excerpt

More information

10 The language CCS

coffee

pub

coin coin

Figure 2.2 The interface for the process CM | CS.

Exercise 2.2 Give a CCS process which describes a coffee machine that may
behave like that given by (2.1) but may also steal the money it receives and fail
at any time. ¢

Exercise 2.3 A finite process graph T is a quadruple (Q, A, 6, qo), where

e Qs a finite set of states,

e Ais a finite set of labels,

e qo € Q is the start state, and

o §:Qx A— 229is the transition function.

Using the operators introduced so far, give a CCS process that describes T'. ¢

Parallel composition It is well known that a computer scientist working in a
research university is a machine for turning coffee into publications. The behaviour
of such an academic may be described by the CCS process

CS &' pub.coin.coffee.CS. 2.3)

As made explicit by the above description, a computer scientist is initially keen
to produce a publication — possibly straight from her doctoral dissertation — but
she needs coffee to produce her next publication. Coffee is only available through
interaction with the departmental coffee machine CM. In order to describe systems
consisting of two or more processes running in parallel, and possibly interacting
with each other, CCS offers the parallel composition operation, which is written
‘| . For example, the CCS expression CM | CS describes a system consisting of
two processes — the coffee machine CM and the computer scientist CS — that run
in parallel one with the other. These two processes may communicate via the com-
munication ports they share and use in complementary fashion, namely ‘coffee’
and ‘coin’. By complementary, we mean that one process uses the port for input
and the other for output. Potential communications are represented in Figure 2.2
by the solid lines linking complementary ports. The port ‘pub’, however, is used
by the computer scientist to communicate with her research environment or, more

© Cambridge University Press www.cambridge.org

http://www.cambridge.org/0521875463
http://www.cambridge.org
http://www.cambridge.org

