DISORDERS OF HEMOGLOBIN

Genetics, Pathophysiology, and Clinical Management

SECOND EDITION

This book is a completely revised new edition of the definitive reference on disorders of hemoglobin. Authored by world-renowned experts, the book focuses on basic science aspects and clinical features of hemoglobinopathies, covering diagnosis, treatment, and future applications of current research. While the second edition continues to address the important molecular, cellular, and genetic components, coverage of clinical issues has been significantly expanded, and there is more practical emphasis on diagnosis and management throughout.

The book opens with a review of the scientific underpinnings. Pathophysiology of common hemoglobin disorders is discussed next in an entirely new section devoted to vascular biology, the erythrocyte membrane, nitric oxide biology, and hemolysis. Four sections deal with α and β thalassemia, sickle cell disease, and related conditions, followed by special topics. The second edition concludes with current and developing approaches to treatment, incorporating new agents for iron chelation, methods to induce fetal hemoglobin production, novel treatment approaches, stem cell transplantation, and progress in gene therapy.

Martin H. Steinberg is Professor of Medicine, Pediatrics, Pathology and Laboratory Medicine at Boston University School of Medicine and Director of the Center of Excellence in Sickle Cell Disease at Boston Medical Center. He received his BA from Cornell University and an MD from Tufts University School of Medicine. Dr. Steinberg is a diplomat of the American Board of Internal Medicine in the subspecialty of Hematology, a Fellow of the American Association for the Advancement of Science and a member of the American Society for Clinical Investigation and Association of American Physicians.

Dr. Steinberg’s research and clinical interests are focused on disorders of the red blood cell with a special emphasis on sickle cell disease and inherited disorders of hemoglobin. His current work focuses on genotype-phenotype relationships in sickle cell disease and thalassemia, and how multiple genes influence the phenotype of disease. Dr. Steinberg has published nearly 300 articles in his areas of interest and has edited three textbooks that focus on the basic science and clinical aspects of sickle cell disease and other disorders of the hemoglobin molecule.

He has served as a scientific consultant for the American Heart Association, FDA, NIH, NSF Doris Duke Charitable Foundation, US-Israel Binational Science Foundation, Wellcome Trust, Telethon2002, ISERM, Accreditation Council for Graduate Medical Education, and the Department of Veterans Affairs, and served on the editorial boards of the American Journal of Hematology, American Journal of the Medical Sciences, BMC Medical Genetics, Haematologica, Journal of Laboratory and Clinical Medicine and Hemoglobin.

Bernard G. Forget is a distinguished physician scientist in Hematology, nationally and internationally recognized for research accomplishments in the field of Molecular Hematology pertaining to the molecular biology of gene expression in blood cells and the molecular basis of hereditary disorders of the red blood cell, including hemoglobinopathies. He is the co-author with Dr. H. F. Bunn of a highly respected textbook entitled Hemoglobin: Molecular, Genetic and Clinical Aspects, (WB Saunders Co., Philadelphia, 1986). He is the senior author of a large number of scientific publications in the field of Molecular Hematology and red blood cell disorders, published in leading journals.

Douglas R. Higgs qualified in medicine at King’s College Hospital Medical School in 1974 and trained as a haematologist. He joined the MRC Molecular Haematology Unit (Oxford) in 1977 and is currently Professor of Molecular Haematology at the University of Oxford and Director of the MRC Molecular Haematology Unit. The current interests of the Unit are (i) to understand the processes of lineage commitment in haemopoiesis with particular emphasis on erythropoiesis (ii) to understand how the globin genes are activated and regulated during normal erythropoiesis (iii) to study the human genetic diseases affecting these processes. The main interest of his own laboratory has been to understand how the human alpha globin genes are regulated from their natural chromosomal environment in the telomeric region of 16p13.3. Recently the group has characterised the terminal 2 Mb of chromosome 16 and concentrated on understanding how gene expression is influenced by epigenetic modifications of this region (e.g. chromatin structure, histone acetylation, methylation, timing of replication, nuclear positioning) and the proteins that mediate these processes.

David J. Weatherall is currently Regius Professor of Medicine Emeritus, University of Oxford and Chancellor, Keele University, Keele, UK. His major research contributions have been in the elucidation of the clinical, biochemical and molecular characteristics of the thalassaemias and their related disorders, the population genetics of these conditions, and the application of this information to the development of programmes for the prevention and management of these diseases in the developing countries.
DISORDERS OF HEMOGLOBIN

Genetics, Pathophysiology, and Clinical Management

SECOND EDITION

Edited by

Martin H. Steinberg
Boston University School of Medicine

Bernard G. Forget
Yale University School of Medicine

Douglas R. Higgs
University of Oxford

David J. Weatherall
University of Oxford
Contents

List of Contributors ix
Foreword, by H. Franklin Bunn xv
Preface xvii
Introduction, by David J. Weatherall xix

SECTION ONE. THE MOLECULAR, CELLULAR, AND GENETIC BASIS OF HEMOGLOBIN DISORDERS

1 A Developmental Approach to Hematopoiesis 3
 Elaine Dzierzak

2 Erythropoiesis 24
 Sjaak Philipsen and William G. Wood

3 The Normal Structure and Regulation of Human Globin Gene Clusters 46
 Bernard G. Forget and Ross C. Hardison

4 Nuclear Factors That Regulate Erythropoiesis 62
 Gerd A. Blobel and Mitchell J. Weiss

5 Molecular and Cellular Basis of Hemoglobin Switching 86
 George Stamatoyannopoulos, Patrick A. Navas, and Qiliang Li

6 Structure and Function of Hemoglobin and Its Dysfunction in Sickle Cell Disease 101
 Daniel B. Kim-Shapiro

7 Hemoglobins of the Embryo, Fetus, and Adult 119
 Martin H. Steinberg and Ronald L. Nagel

SECTION TWO. PATHOPHYSIOLOGY OF HEMOGLOBIN AND ITS DISORDERS

8 Rheology and Vascular Pathobiology in Sickle Cell Disease and Thalassemia 139
 Dhananjay K. Kaul

9 The Erythrocyte Membrane 158
 Patrick G. Gallagher and Clinton H. Joiner
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>The Biology of Vascular Nitric Oxide</td>
<td>Jane A. Leopold and Joseph Loscalzo</td>
<td>185</td>
</tr>
<tr>
<td>11</td>
<td>Mechanisms and Clinical Complications of Hemolysis in Sickle Cell Disease and Thalassemia</td>
<td>Gregory J. Kato and Mark T. Gladwin</td>
<td>201</td>
</tr>
<tr>
<td>12</td>
<td>Animal Models of Hemoglobinopathies and Thalassemia</td>
<td>Mary Fabry</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>SECTION THREE. α THALASSEMIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>The Molecular Basis of α Thalassemia</td>
<td>Douglas R. Higgs</td>
<td>241</td>
</tr>
<tr>
<td>14</td>
<td>The Pathophysiology and Clinical Features of α Thalassaemia</td>
<td>Douglas R. Higgs</td>
<td>266</td>
</tr>
<tr>
<td>15</td>
<td>Unusual Types of α Thalassemia</td>
<td>Douglas R. Higgs, Veronica J. Buckle, Richard Gibbons, and David Steensma</td>
<td>296</td>
</tr>
<tr>
<td></td>
<td>SECTION FOUR. THE β THALASSEMIAIANS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>The Molecular Basis of β Thalassemia, δβ Thalassemia, and Hereditary Persistence of Fetal Hemoglobin</td>
<td>Swee Lay Thein and William G. Wood</td>
<td>323</td>
</tr>
<tr>
<td>17</td>
<td>Clinical Aspects of β Thalassemia and Related Disorders</td>
<td>Nancy F. Olivieri and David J. Weatherall</td>
<td>357</td>
</tr>
<tr>
<td>18</td>
<td>Hemoglobin E Disorders</td>
<td>Suthat Fucharoen and David J. Weatherall</td>
<td>417</td>
</tr>
<tr>
<td></td>
<td>SECTION FIVE. SICKLE CELL DISEASE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Clinical and Pathophysiological Aspects of Sickle Cell Anemia</td>
<td>Martin H. Steinberg, Kwaku Ohene-Frempong, and Matthew M. Heeney</td>
<td>437</td>
</tr>
<tr>
<td>20</td>
<td>Sickle Cell Pain: Biology, Etiology, and Treatment</td>
<td>Samir K. Ballas and James R. Eckman</td>
<td>497</td>
</tr>
<tr>
<td>21</td>
<td>Hemoglobin SC Disease and Hemoglobin C Disorders</td>
<td>Martin H. Steinberg and Ronald L. Nagel</td>
<td>525</td>
</tr>
<tr>
<td>22</td>
<td>Sickle Cell Trait</td>
<td>Martin H. Steinberg</td>
<td>549</td>
</tr>
<tr>
<td>23</td>
<td>Other Sickle Hemoglobinopathies</td>
<td>Martin H. Steinberg</td>
<td>564</td>
</tr>
<tr>
<td></td>
<td>SECTION SIX. OTHER CLINICALLY IMPORTANT DISORDERS OF HEMOGLOBIN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Unstable Hemoglobins, Hemoglobins with Altered Oxygen Affinity, Hemoglobin M, and Other Variants of Clinical and Biological Interest</td>
<td>Martin H. Steinberg and Ronald L. Nagel</td>
<td>589</td>
</tr>
</tbody>
</table>
Contents

25 Dyshemoglobinemias 607
 Neeraj Agarwal, Ronald L. Nagel, and Josef T. Prchal

SECTION SEVEN. SPECIAL TOPICS IN HEMOGLOBINOPATHIES
 Martin H. Steinberg

26 Population Genetics and Global Health Burden 625
 David J. Weatherall and Thomas N. Williams

27 Genetic Modulation of Sickle Cell Disease and Thalassemia 638
 Martin H. Steinberg and Ronald L. Nagel

28 Laboratory Methods for Diagnosis and Evaluation of Hemoglobin Disorders 658
 Mary Fabry and John M. Old

SECTION EIGHT. NEW APPROACHES TO THE TREATMENT OF HEMOGLOBINOPATHIES AND
 THALASSEMA
 Martin H. Steinberg

29 Transfusion and Iron Chelation Therapy in Thalassemia and Sickle Cell Disease 689
 Janet L. Kwiatkowski and John B. Porter

30 Induction of Fetal Hemoglobin in the Treatment of Sickle Cell Disease
 and β-Thalassemia 745
 Yogen Saunthararajah and George F. Atweh

31 Novel Approaches to Treatment 755
 Kirkwood A. Pritchard Jr., Alicia Rivera, Cheryl Hillery, and Carlo Brugnara

32 Stem Cell Transplantation 774
 Emanuele Angelucci and Mark Walters

33 Prospects for Gene Therapy of Sickle Cell Disease and Thalassemia 791
 Derek A. Persons, Brian P. Sorrentino, and Arthur W. Nienhuis

Index 815
List of Contributors

Foreword
H. Franklin Bunn, MD
Professor of Medicine
Division of Hematology
Brigham and Women’s Hospital
Harvard Medical School
Boston, MA

Preface
Martin H. Steinberg, MD

Bernard G. Forget, MD

Douglas R. Higgs, MD, FRS

Sir David J. Weatherall, MD, FRS

Introduction
Sir David J. Weatherall, MD, FRS
Emeritus Professor of Medicine (University of Oxford)
Weatherall Institute of Molecular Medicine
University of Oxford
John Radcliffe Hospital
Headington, Oxford, UK

SECTION ONE. The Molecular, Cellular, and Genetic Basis of Hemoglobin Disorders
Douglas R. Higgs, MD, FRS
Professor of Molecular Haematology and Director of the MRC Molecular Haematology Unit (University of Oxford)
MRC Molecular Haematology Unit
Weatherall Institute of Molecular Medicine
University of Oxford
John Radcliffe Hospital
Headington, Oxford, UK

Chapter 1: A Developmental Approach to Hematopoiesis
Elaine Dzierzak, PhD
Professor of Developmental Biology
Erasmus Stem Cell Institute
Erasmus Medical Center
Rotterdam, The Netherlands

Chapter 2: Erythropoiesis
Sjaak Philipsen, PhD
Professor of Genomics of Cell Differentiation
Department of Cell Biology
Erasmus University Medical Center
Rotterdam, The Netherlands
William G. Wood, PhD
Professor of Haematology
MRC Molecular Haematology Unit
Weatherall Institute of Molecular Medicine
University of Oxford
John Radcliffe Hospital
Headington, Oxford, UK

Chapter 3: The Normal Structure and Regulation of Human Globin Gene Clusters
Bernard G. Forget, MD.
Ross C. Hardison, PhD
T. Ming Chu Professor of Biochemistry and Molecular Biology
The Pennsylvania State University
University Park, PA

Chapter 4: Nuclear Factors That Regulate Erythropoiesis
Gerd A. Blobel, MD, PhD
Professor of Pediatrics
Division of Hematology
The Children’s Hospital of Philadelphia
University of Pennsylvania School of Medicine
Philadelphia, PA
M Mitchell J. Weiss, MD, PhD
Associate Professor of Pediatrics
Division of Hematology
The Children's Hospital of Philadelphia
University of Pennsylvania School of Medicine
Philadelphia, PA
Chapter 5: Molecular and Cellular Basis of Hemoglobin Switching
George Stamatoyannopoulos, MD, Dr Sci
Professor of Medicine and Genome Sciences
Director, Markey Molecular Medicine Center
University of Washington School of Medicine
Seattle, WA

Patrick A. Navas, PhD
Research Assistant Professor
Division of Medical Genetics
Department of Medicine
University of Washington School of Medicine
Seattle, WA

Qiliang Li, PhD
Research Professor of Medicine
Division of Medical Genetics
Department of Medicine
University of Washington School of Medicine
Seattle, WA

Chapter 6: Structure and Function of Hemoglobin and Its Dysfunction in Sickle Cell Disease
Daniel B. Kim-Shapiro, PhD
Professor of Physics
Department of Physics
Wake Forest University
Olin Physical Laboratory
Winston Salem, NC

Chapter 7: Hemoglobins of the Embryo, Fetus, and Adult
Martin H. Steinberg, MD
Professor of Medicine
Pediatrics, Pathology and Laboratory Medicine
Boston University School of Medicine
Boston, MA

Ronald L. Nagel, MD
New York, NY

SECTION TWO. Pathophysiology of Hemoglobin and Its Disorders
Martin H. Steinberg, MD

Chapter 8: Rheology and Vascular Pathobiology in Sickle Cell Disease and Thalassemia
Dhananjay K. Kaul, PhD
Professor of Medicine
Division of Hematology
Albert Einstein College of Medicine
Bronx, NY

Chapter 9: The Erythrocyte Membrane
Patrick G. Gallagher, MD
Professor of Pediatrics
Section of Perinatal Medicine
Yale University School of Medicine
New Haven, CT

Clinton H. Joiner, MD, PhD
Professor of Pediatrics
Children’s Hospital Medical Center
Cincinnati, OH

Chapter 10: The Biology of Vascular Nitric Oxide
Jane A. Leopold, MD
Associate Professor of Medicine
Cardiovascular Medicine Division
Department of Medicine
Brigham and Women’s Hospital
Boston, MA

Joseph Loscalzo, MD, PhD
Hersey Professor of the Theory and Practice of Medicine
Chairman, Department of Medicine
Brigham and Women’s Hospital
Boston, MA

Chapter 11: Mechanisms and Clinical Complications of Hemolysis in Sickle Cell Disease and Thalassemia
Gregory J. Kato, MD
Director, Sickle Cell Vascular Disease Unit
Vascular Therapeutic Section
Vascular Medicine Branch
National Institutes of Health
Bethesda, MD

Mark T. Gladwin, MD
Professor of Medicine
Division Chief, Pulmonary, Allergy, and Critical Care Medicine
University of Pittsburgh Medical Center
Director, Hemostasis and Vascular Biology Research Institute
University of Pittsburgh
Pittsburgh, PA

Chapter 12: Animal Models of Hemoglobinopathies and Thalassemia
Mary Fabry, PhD
Professor of Medicine
Division of Hematology
Albert Einstein College of Medicine
Bronx, NY
Contributors

SECTION THREE. \(\alpha\) Thalassemia

Douglas R. Higgs, MD, FRS

Chapter 13: The Molecular Basis of \(\alpha\) Thalassemia

Douglas R. Higgs, MD, FRS

Chapter 14: The Pathophysiology and Clinical Features of \(\alpha\) Thalassemia

Douglas R. Higgs, MD, FRS

Chapter 15: Unusual Types of \(\alpha\) Thalassemia

Douglas R. Higgs, MD, FRS.

Veronica J. Buckle, MD
MRC Senior Scientist
MRC Molecular Haematology Unit
Weatherall Institute of Molecular Medicine
University of Oxford
John Radcliffe Hospital
Headington, Oxford, UK

Richard Gibbons, MD
University Lecturer and Honorary Consultant Clinical Geneticist
Weatherall Institute of Molecular Medicine
University of Oxford
John Radcliffe Hospital
Headington, Oxford, UK

David Steensma, MD
Associate Professor of Medicine and Oncology Consultant, Division of Hematology
Mayo Clinic
Rochester, MN

SECTION FOUR. The \(\beta\) Thalassemias

Bernard G. Forget, MD

Chapter 16: The Molecular Basis of \(\beta\) Thalassemia, \(\delta\beta\) Thalassemia, and Hereditary Persistence of Fetal Hemoglobin

Swee Lay Thein, MD
Professor of Molecular Haematology
Head, Division of Gene and Cell Based Therapy
King's College London School of Medicine and King's College Hospital
London, UK

William G. Wood, PhD

Chapter 17: Clinical Aspects of \(\beta\) Thalassemia and Related Disorders

Nancy E. Olivieri, MD
Senior Scientist

Division of Clinical Investigation and Human Physiology
University Health Network
Toronto General Hospital
Toronto, ON, Canada

Sir David J. Weatherall, MD, FRS

Chapter 18: Hemoglobin E Disorders

Suthat Fucharoen, MD
Director, Thalassemia Research Center
Institute of Science and Technology for Research and Development
Mahidol University
Salay Campus
Puttamonthon, Nakornpathom, Thailand

Sir David J. Weatherall, MD, FRS

SECTION FIVE. Sickle Cell Disease

Martin H. Steinberg, MD

Chapter 19: Clinical and Pathophysiological Aspects of Sickle Cell Anemia

Martin H. Steinberg, MD.

Kwaku Ohene-Frempong, MD
Professor of Pediatrics Hematology
The Children's Hospital of Philadelphia
Philadelphia, PA

Matthew M. Heeney, MD
Instructor in Pediatrics
Harvard Medical School
Boston, MA

Chapter 20: Sickle Cell Pain: Biology, Etiology, and Treatment

Samir K. Ballas, MD
Professor of Medicine and Pediatrics
Thomas Jefferson University
Philadelphia, PA

James R. Eckman, MD
Professor of Medicine
Comprehensive Sickle Cell Center
Emory University School of Medicine
Atlanta, GA

Chapter 21: Hemoglobin SC Disease and Hemoglobin C Disorders

Martin H. Steinberg, MD

Ronald L. Nagel, MD
Chapter 22: Sickle Cell Trait
Martin H. Steinberg, MD

Chapter 23: Other Sickle Hemoglobinopathies
Martin H. Steinberg, MD

SECTION SIX. Other Clinically Important Disorders of Hemoglobin
Martin H. Steinberg, MD

Chapter 24: Unstable Hemoglobins, Hemoglobins with Altered Oxygen Affinity, Hemoglobin M, and Other Variants of Clinical and Biological Interest
Martin H. Steinberg, MD
Ronald L. Nagel, MD

Chapter 25: Dyshemoglobinemias
Neeraj Agarwal, MD
Assistant Professor, Oncology Division
University of Utah, School of Medicine
Salt Lake City, UT
Ronald L. Nagel, MD
Josef T. Prchal, MD
Professor of Medicine
Internal Medicine
Hematology Division
University of Utah
Salt Lake City, UT

SECTION SEVEN. Special Topics in Hemoglobinopathies
Martin H. Steinberg, MD

Chapter 26: Population Genetics and Global Health Burden
Sir David J. Weatherall, MD, FRS
Thomas N. Williams, PhD
Wellcome Trust Senior Clinical Fellow
Kenya Medical Research Institute/Wellcome Trust Programme
Centre for Geographic Medical Research
Kilifi District Hospital
Kilifi, Kenya

Chapter 27: Genetic Modulation of Sickle Cell Disease and Thalassemia
Martin H. Steinberg, MD
Ronald L. Nagel, MD

Chapter 28: Laboratory Methods for Diagnosis and Evaluation of Hemoglobin Disorders
Mary Fabry, PhD
John M. Old, MD
Consultant Clinical Scientist
National Haemoglobinopathy Reference Laboratory
Oxford Haemophilia Centre
Churchill Hospital
Oxford, UK

SECTION EIGHT. New Approaches to the Treatment of Hemoglobinopathies and Thalassemia
Martin H. Steinberg, MD

Chapter 29: Transfusion and Iron Chelation Therapy in Thalassemia and Sickle Cell Disease
Janet L. Kwiatkowski, MD
Assistant Professor of Pediatrics
Division of Hematology
The Children’s Hospital of Philadelphia
Philadelphia, PA
John B. Porter, MA, MD, FRCP, FRCPath
Professor of Haematology
Department of Haematology
University College London
London, UK

Chapter 30: Induction of Fetal Hemoglobin in the Treatment of Sickle Cell Disease and β Thalassemia
Yogen Saunthararajah, MD
Associate Professor
Cleveland Clinic/University of Illinois at Chicago
Twissing Cancer Institute
Cleveland, OH
George F. Atweh, MD
Koch Professor of Medicine
Director, Division of Hematology/Oncology
Director, Barrett Cancer Center
University of Cincinnati College of Medicine
Cincinnati, OH

Chapter 31: Novel Approaches to Treatment
Kirkwood A. Pritchard Jr., PhD
Professor of Pediatric Surgery
Medical College of Wisconsin
Milwaukee, WI
Alicia Rivera, PhD
Instructor of Pediatrics
Harvard Medical School
Boston, MA
Contributors

Cheryl Hillery, MD
Blood Center of Wisconsin
Associate Professor
Pediatrics and Medicine
Medical College of Wisconsin
Milwaukee, WI

Carlo Brugnara, MD
Professor of Pathology
Harvard Medical School
Children’s Hospital
Boston, MA

Chapter 32: Stem Cell Transplantation
Emanuele Angelucci, MD
Associate Professor
Head, Hematology Department and BMT Centre
Armando Businco Cancer Centre
Cagliari, Italy

Mark Walters, MD
Director, Blood and Marrow Transplantation Program
Children’s Hospital Oakland Research Institute
Oakland, CA

Chapter 33: Prospects for Gene Therapy of Sickle Cell Disease and Thalassemia
Derek A. Persons, MD
Assistant Member
Department of Hematology
Division of Experimental Hematology
St. Jude Children’s Research Hospital
Memphis, TN

Brian P. Sorrentino, MD
Member
Department of Hematology
Director, Division of Experimental Hematology
St. Jude Children’s Research Hospital
Memphis, TN

Arthur W. Nienhuis, MD
Member
Department of Hematology
Division of Experimental Hematology
St. Jude Children’s Research Hospital
Memphis, TN
Foreword

H. Franklin Bunn

The study of hemoglobin continues to be a rewarding endeavor. Cumulative progress since the turn of the last century has laid cornerstones in protein chemistry and molecular genetics and has provided a wealth of insight into the pathogenesis of some of the world’s most prevalent and devastating disorders. The first edition of Disorders of Hemoglobin, published 8 years ago, was a comprehensive compilation and analysis of the basic science of hemoglobin and its application to the thalassemias, sickle cell disease, and other globin mutants that spawned a wide range of clinical phenotypes. This second edition now presents an updated overview of all aspects of the hemoglobin story as well as a detailed account of the impressive advances that have been made in biochemistry, genetics, and clinical investigation.

Hemoglobin boasts a proud history. By the end of the nineteenth century, it was well established that hemoglobin was a composite of protein and heme that could reversibly bind oxygen and that this substance was found in almost all living creatures. Entry into the twentieth century marked the dawn of quantitative physiology, biochemistry, and the application of the scientific method to medicine. All three of these developing disciplines owe their early impetus to hemoglobin and the lessons learned from this remarkable molecule. Physiologists from Scandinavia (Bohr and Krogh) and England (Barcroft, the Haldanes, and Roughton) made accurate equilibrium and kinetic measurements of oxygen–hemoglobin binding as a function of pH and thereby provided a mechanistic understanding of the reciprocal transport of oxygen from lung to tissues and of acid waste from tissues to lung. These early contributions set the stage for an appreciation of how the homeostasis of the organism depends on the orderly integration of its organ systems.

The fledgling science of biochemistry was given a jump start by the studies of Adair and Svedberg, which established that hemoglobin is a uniform protein with a large but narrowly defined molecular weight and was therefore, like sodium chloride and glucose, a bona fide molecule. Hemoglobin and its cousin myoglobin were the first proteins whose structures were solved at high resolution by X-ray crystallography by Perutz and Kendrew, respectively, thereby, providing an opportunity for detailed exploration of structure–function relationships. Hemoglobin was the first multisubunit protein to be understood at the molecular level and therefore was the model system used by Monod, Changeux, and Wyman for establishing the principles of allostery, which dictate the regulation of a broad range of enzymes, receptors, transcription factors, and so on.

The linkage of specific diseases to abnormalities of specific molecules began with Pauling’s demonstration in 1949 that patients with sickle cells have hemoglobin with an altered surface charge. Within 8 years, Ingram demonstrated that sickle hemoglobin differs from normal hemoglobin only by a substitution of valine for glutamic acid in the sixth residue of the β-globin subunit. This was the first example of how an abnormal gene can change the structure of a protein and, therefore, verified in a most satisfying way the Beadle–Tatum one gene–one enzyme hypothesis.

During the last quarter of the twentieth century, with the development of recombinant DNA technology and genomics, hemoglobin again became primus inter pares among biological molecules. Indeed, the human globin genes were among the first to be molecularly cloned and sequenced. This soon led to the identification of a wide range of globin gene mutants responsible for the α and β thalassemias. Understanding the mechanisms by which these genotypes impair globin biosynthesis provided insight into the diverse clinical manifestations encountered in patients with different types of thalassemia. In addition, the evolving knowledge of human globin genes enabled the development of molecular techniques for antenatal diagnosis and polymorphism-based population studies, both of which were then applied to many other disorders.

To date, more than 1,000 hemoglobin variants have been discovered and characterized. Study of these variants, so amply documented in this book, established the principle of how a mutant genotype alters the function of the protein it encodes, which in turn can lead to a distinct clinical phenotype. This linkage is at the heart of how molecular genetics impacts our understanding of pathophysiological mechanisms.

Thus, hemoglobin held center stage in the biomedical discoveries of the twentieth century, and, in the new millennium, there is no indication that the pace has slackened. This book begins with authoritative and up-to-date coverage of all aspects of hemoglobin, beginning with overviews of erythropoiesis, globin gene regulation, and structure–function relationships. Subsequent sections of the book are devoted to in-depth coverage of the thalassemias, sickle cell disease, and other hemoglobinopathies. A recurrent theme is how understanding pathophysiology at the molecular
level has informed the design and development of novel, rationally based therapy.

This second edition incorporates a number of advances that have been made in the past 8 years. Chapter 4 describes the important insights that have accrued from the discovery of α-hemoglobin stabilizing protein (AHSP), the chaperone that protects the α-hemoglobin subunit during assembly of the tetramer. Chapters 6, 10, and 11 include new information on nitric oxide and its controversial roles in allosteric modulation of hemoglobin function and in the pathophysiology of sickle cell disease and other types of hemolytic anemia. Chapter 27 presents recent information on the contribution of genetic polymorphisms to the clinical phenotypes of sickle cell disease and thalassemia. The last 4 chapters cover the development of oral iron chelators as well as bolder therapeutic strategies, including impressive progress in globin gene therapy.

The creative energy that continues to bear down on all aspects of hemoglobin research is well represented by the impressive list of basic and clinical investigators who have contributed to this book. In any field at the cutting edge of science, controversies enrich the scientific dialogue among hemoglobinologists. In carefully reading chapters on closely related topics, the thoughtful reader will adopt a policy of caveat emptor, appreciating that strongly held opinions need to be vetted by both experimentation and alternative hypotheses. This proviso notwithstanding, Disorders of Hemoglobin offers authoritative and comprehensive coverage of one of the most exciting and fruitful areas at the interface of bioscience and clinical medicine.
Preface

Eight years have passed since this monograph first appeared, and the advances in basic, translational, and clinical research during this interval justify a new edition. To conserve space and avoid duplicating our first edition, we review very briefly historical aspects, summarize established older information, and focus on the progress of the past 8 years. Although some older references are retained, we have tried to focus on the literature since 2001. In expanding our coverage of clinical issues, we also have decreased the length of the book by considering together pathophysiological features common to many hemoglobin disorders such as vasculopathy, erythrocyte membrane damage, and mechanisms of hemolysis. More than half of the contributors to this volume are either new authors or previous authors addressing different topics; David Weatherall has joined the editorial team.

Hemoglobin has been an interest of basic and translational scientists, clinicians, and clinical diagnostic laboratories. So, we continue to address the molecular, cellular, genetic, diagnostic, and clinical aspects of hemoglobin disorders. When applicable, we provide practical recommendations for diagnosis and treatment. The first section of the book again focuses on molecular, cellular, and genetic aspects of hemoglobin and includes discussions of developmental hematopoiesis, erythropoiesis, globin genes and their regulation, minor normal hemoglobins, and an update on new structural and functional features of normal and variant hemoglobins. Pathophysiology of hemoglobin disorders follows, with new chapters on vascular biology, the erythrocyte membrane, the biology of nitric oxide, mechanisms of hemolysis, and how animal models of disease provide new pathophysiological insights. Four sections deal with diagnosis, complications, and treatment of α thalassemia, β thalassemia, and related conditions, including hemoglobin E diseases, sickle cell disease, and less common genetic and acquired hemoglobin disorders. This is followed by special topics such as population genetics and the health burden of hemoglobin disorders, the genetic modulation of sickle cell disease and thalassemia, and developments in laboratory detection, including antenatal diagnosis. Finally, current and developing approaches to treatment, incorporating new agents for iron chelation, methods to induce fetal hemoglobin production, novel treatment approaches such as antioxidants, antiinflammatory agents, enhancement of nitric oxide effects, and agents that modulate membrane cation and water transport are discussed, concluding with the use of stem cell transplantation and progress in gene therapy.

Ronald L. Nagel (pictured), a coeditor of the first edition, has retired as Irving D. Karpas Professor of Medicine, Physiology and Biophysics and Head of the Division of Hematology at Albert Einstein College of Medicine. Although no longer a coeditor of this monograph, his influence in the field is felt in most chapters. His contributions to the structure, function, pathophysiology, and genetics of hemoglobin disorders are vast and time tested. The editors, and the field of hematology, will miss his scientific insight and originality.

The Editors
Introduction

David J. Weatherall

A few years ago, an eminent British professor of medicine, while reviewing a new edition of a well-known textbook of medicine, suggested that works of this type were becoming valueless because they were already out of date by the time they were published. His derogatory comments went further: Having taken the trouble to weigh the book, he suggested that volumes of this type would suffer the same fate as dinosaurs and become extinct by collapsing under their excessive weight. Even allowing for this bizarre and completely erroneous view of the biological fate of the dinosaurs, does this argument carry any weight beyond its metaphorical context?

Undoubtedly, there is feeling rife among medical publishers that the day of the major monograph in the biological sciences may be coming to an end. They argue that there is so much information online that the need for works of this type is becoming increasingly limited. Is this really the case? Although it is impossible to deny that the long gestation of monographs of this type may lead to the omission of the occasional “breakthrough” in a field, it seems very important that in any rapidly moving area of the biomedical sciences there is a regular and broad critical review of where it has got to and how it has been modified by recent advances. Not uncommonly in medical research and practice, today’s breakthrough is tomorrow’s breakdown.

Is the hemoglobin field moving rapidly? This was another question that had to be considered by the editors of this new edition. As judged by the amount of space given to disorders of the red cell in current journals, the volume of work in this field seems to have declined considerably over recent years. A visitor from outer space, browsing through the journals, might be excused for wondering how Homo sapiens transfers oxygen to their tissues. Hence, it might have been perceived that there is insufficient material to warrant this new edition.

A broader review of the field over recent years suggests, however, that this is not the case. There undoubtedly have been major advances in our understanding of the regulation of hematopoiesis, some of which have important implications for a better understanding of the pathophysiology of the hemoglobin disorders that may, in the longer term, lead to more definitive approaches to their management. Furthermore, there have also been dramatic developments in many areas of genome technology that have direct application to the many unanswered questions of the hemoglobin field, not in the least the reasons for the remarkable phenotypic variation of its diseases. Of even greater importance, there has been a genuine increase in the appreciation of the major public health burden that these diseases are likely to cause in the future. This is particularly relevant to the poorer countries of the world in which the epidemiological transition following improvements in nutrition and basic public health is resulting in a reduction in neonatal and childhood mortality; many babies with severe hemoglobin disorders who would previously have died in early life are now surviving to present for diagnosis and management.

It is only in the last few years that these public health issues have been recognized by the major international health agencies. In 2002, the World Health Organization (WHO) published a report, *Genomics and World Health*, in which the hemoglobin disorders were described as a prime example of how the new technology of molecular genetics can be applied for the benefit of poorer countries. At the 118th session of the WHO Executive Board, held in 2006, the sickle cell disorders and thalassemias were formally recognized as major health burdens that required immediate action. In 2007, it was decided to include the hemoglobin disorders in the Global Burden of Disease Program, an international study conducted under the auspices of several universities, the WHO, the Bill and Melinda Gates Foundation, the World Bank, and others that attempts to define the relative global burden posed by each of the major diseases. Previous versions of this work have undoubtedly had a major influence in developing healthcare policies by governments and international healthcare agencies.

Clearly, this new edition is appearing at the same time as a major drive to define the most appropriate ways of controlling and managing the hemoglobin disorders, particularly in the developing countries, and to determine the most cost-effective and efficient ways of approaching this problem. We hope, therefore, that this updated distillation of knowledge about the scientific, clinical, and epidemiological aspects of this field will be of value to scientists and clinicians, not only to those in wealthier countries but particularly to those who are attempting to cope with these diseases with limited resources in the developing countries of the world.

There is also an important message for our younger readers. There are still some extraordinarily exciting areas of this field to be pursued, not in the least a better understanding of the reasons for the remarkable clinical
diversity of all the hemoglobin disorders; a better appreciation of their pathophysiology at the molecular level with respect to novel approaches for their more definitive management; and an understanding of the long-neglected role of the environment in their clinical diversity, the cellular mechanisms whereby protection against malaria has resulted in their extremely high frequency, how current knowledge of their diagnosis and control may be applied in the poorer countries of the world, and many other stimulating questions. Currently, the hemoglobin field offers challenges ranging from basic cell and molecular biology through clinical research at the bedside to epidemiology, public health, and the social sciences.

Finally, we thank Cambridge University Press and particularly Beth Barry and more recently Larry Fox for continued support of this project. We are also extremely grateful to the authors from many parts of the world who have willingly given their time to writing parts of this new edition, and for the personal help that we have received from Liz Rose, during its preparation. It is particularly gratifying to be able to report that the marriages of the four editors have survived another edition.