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Introduction

Making observations through the senses of the environment around us is
a natural activity of living species. The information acquired is diverse,
consisting for example of sound signals and images. The information
is processed and used to make a particular model of the environment
that is applicable to the situation at hand. This act of model building
based on observations is embedded in our human nature and plays an
important role in daily decision making.

Model building through observations also plays a very important role
in many branches of science. Despite the importance of making obser-
vations through our senses, scientific observations are often made via
measurement instruments or sensors. The measurement data that these
sensors acquire often need to be processed to judge or validate the exper-
iment, or to obtain more information on conducting the experiment.
Data are often used to build a mathematical model that describes the
dynamical properties of the experiment. System-identification methods
are systematic methods that can be used to build mathematical models
from measured data. One important use of such mathematical models
is in predicting model quantities by filtering acquired measurements.

A milestone in the history of filtering and system identification is
the method of least squares developed just before 1800 by Johann Carl
Friedrich Gauss (1777–1855). The use of least squares in filtering and
identification is a recurring theme in this book. What follows is a brief
sketch of the historical context that characterized the early development
of the least-squares method. It is based on an overview given by Bühler
(1981).

At the time Gauss first developed the least-squares method, he did
not consider it very important. The first publication on the least-squares
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2 Introduction

method was published by Adrien-Marie Legendre (1752–1833) in 1806,
when Gauss had already clearly and frequently used the method much
earlier. Gauss motivated and derived the method of least squares sub-
stantially in the papers Theoria combinationis observationum erroribus
minimis obnoxiae I and II of 1821 and 1823. Part I is devoted to the the-
ory and Part II contains applications, mostly to problems from astron-
omy. In Part I he developed a probability theory for accidental errors
(Zufallsfehler). Here Gauss defined a (probability distribution) function
φ(x) for the error in the observation x. On the basis of this function, the
product φ(x)dx is the probability that the error falls within the interval
between x and x+dx. The function φ(x) had to satisfy the normalization
condition ∫ ∞

−∞
φ(x)dx = 1.

The decisive requirement postulated by Gauss is that the integral
∫ ∞

−∞
x2φ(x)dx

attains a minimum. The selection of the square of the error as the most
suitable weight is why this method is called the method of least squares.
This selection was doubted by Pierre-Simon Laplace (1749–1827), who
had earlier tried to use the absolute value of the error. Computationally
the choice of the square is superior to Laplace’s original method.

After the development of the basic theory of the least-squares method,
Gauss had to find a suitable function φ(x). At this point Gauss intro-
duced, after some heuristics, the Gaussian distribution

φ(x) =
1
π

e−x2

as a “natural” way in which errors of observation occur. Gauss never
mentioned in his papers statistical distribution functions different from
the Gaussian one. He was caught in his own success; the applications
to which he applied his theory did not stimulate him to look for other
distribution functions. The least-squares method was, at the beginning of
the nineteenth century, his indispensable theoretical tool in experimental
research; and he saw it as the most important witness to the connection
between mathematics and Nature.

Still today, the ramifications of the least-squares method in mathemat-
ical modeling are tremendous and any book on this topic has to narrow
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Introduction 3

itself down to a restrictive class of problems. In this introductory text-
book on system identification we focus mainly on the identification of
linear state-space models from measured data sequences of inputs and
outputs of the engineering system that we want to model. Though this
focused approach may at first seem to rule out major contributions in the
field of system identification, the contrary is the case. It will be shown
in the book that the state-space approach chosen is capable of treating
many existing identification methods for estimating the parameters in a
difference equation as special cases. Examples are given for the widely
used ARX and ARMAX models (Ljung, 1999).

The central goal of the book is to help the reader discover how the
linear least-squares method can solve, or help in solving, different vari-
ants of the linear state-space model-identification problem. The linear
least-squares method can be formulated as a deterministic parameter-
optimization problem of the form

min
x

µTµ subject to y = Fx + µ, (1.1)

with the vector y ∈ R
N and the matrix F ∈ R

N×n given and with
x ∈ R

n the vector of unknown parameters to be determined. The solu-
tion of this optimization problem is the subject of a large number of
textbooks. Although its analytic solution can be given in a proof of only
a few lines, these textbooks analyze the least-squares solution from dif-
ferent perspectives. Examples are the statistical interpretation of the
solution under various assumptions on the entries of the matrix F and
the perturbation vector µ, or the numerical solution in a computation-
ally efficient manner by exploiting structure in the matrix F . For an
advanced study of the least-squares problem and its applications in
many signal-processing problems, we refer to the book of Kailath et al.
(2000).

The main course of this book is preceded by three introductory chap-
ters. In Chapter 2 a refreshment survey of matrix linear algebra is given.
Chapter 3 gives a brief overview of signal transforms and linear system
theory for deterministic signals and systems. Chapter 4 treats random
variables and random signals. Understanding the system-identification
methods discussed in this book depends on a profound mastering of the
background material presented in these three chapters.

Often, the starting point of identifying a dynamical model is the deter-
mination of a predictor. Therefore, in Chapter 5, we first study the
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4 Introduction

prediction of the state of a linear state-space model. The state-prediction
or state-observation problem requires, in addition to the inputs and out-
puts, knowledge of the dynamic model (in state-space form) and the
mean and covariance matrix of the stochastic perturbations. The goal
is to reconstruct the state sequence from this knowledge. The optimal-
ity of the state-reconstruction problem can be defined in a least-squares
sense. In Chapter 5, it is shown that the optimal predictor or Kalman-
filter problem can be formulated and solved as a (weighted) linear least-
squares problem. This formulation and solution of the Kalman-filter
problem was first proposed by Paige (1985). The main advantage of
this formulation is that a (recursive) solution can simply be derived
from elementary linear-algebra concepts, such as Gaussian elimination
for solving an overdetermined set of equations. We will briefly discuss
the application of Kalman filtering for estimating unknown inputs of a
dynamical system.

Chapter 6 discusses the estimation of input–output descriptions of lin-
ear state-space models in the frequency domain. The estimation of such
descriptions, like the frequency response function (FRF) is based on the
(discrete) Fourier transform of time sequences. The study in this chapter
includes the effect that the practical constraint of the finite duration of
the experiment has on the accuracy of the FRF estimate. A brief expo-
sition on the use of the fast Fourier transform (FFT) in deriving fast
algorithmic implementations is given. The availability of fast algorithms
is one of the main advantages of frequency-domain methods when deal-
ing with large amounts of data. In major parts of industry, such as the
automobile and aircraft industry, it is therefore still the main tool for
retrieving information about dynamic systems.

Chapter 7 discusses the estimation of the entries of the system matri-
ces of a state-space model, under the assumptions that the output obser-
vations are corrupted by additive white noise and the state vector of the
model has a fixed and known dimension. This problem gives rise to
the so-called output-error methods (Ljung, 1999). This elementary esti-
mation problem reveals a number of issues that are at the heart of a
wide variety of identification approaches. The key problem to start with
is that of how to express the entries of the system matrices as func-
tions of an unknown parameter vector. The choice of this parameter
vector is referred to in this textbook as the parameterization problem.
Various alternatives for parameterizing multivariable state-space models
are proposed. Once a parameterization has been chosen, the output-
error problem can also be formulated as the following least-squares
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Introduction 5

problem:

min
x1,x2

µTµ subject to y = F (x1)x2 + µ, (1.2)

where the unknown parameter vectors x1 and x2 need to be determined.
This type of least-squares problem is much harder to tackle than its lin-
ear variant (1.1), because the matrix F depends on the unknown param-
eters x1. It is usually solved iteratively and therefore requires starting
values of the parameter vectors x1 and x2. Furthermore, in general there
is no guarantee that such an iterative numerical procedure converges to
the global optimum of the cost function µTµ. In this chapter special
attention is paid to the numerical implementation of iterative proce-
dures for output-error optimization. After having obtained an estimate
of the unknown parameter vector, the problem of assessing the accuracy
of the obtained estimates is addressed via the evaluation of the covari-
ance matrices of the estimates under the assumption that the estimates
are unbiased. We end this chapter by discussing how to avoid biased
solutions when the additive noise is no longer white.

Chapter 8 presents the classical prediction-error method (PEM)
(Ljung, 1999) for the identification of a predictor model (Kalman filter)
with a fixed and known state dimension from measured input and output
data. The problem boils down to estimating the parameters of a predic-
tor model given by the innovation representation of the Kalman filter.
The problems and solutions presented in Chapter 7 for the output-error
case are adapted for these predictor models. In addition to the presenta-
tion of the prediction-error method for general multivariable state-space
models, special attention is given to single-input, single-output (SISO)
systems. This is done, first, to show that well-known model structures
such as the ARMAX model can be treated as a particular canonical
parameterization of a state-space model. Second, it enables a quali-
tative analysis of the bias when identifying a model that has a state
dimension or a noise model different from the system that generated the
data.

Chapter 9 treats the recently developed class of subspace identifica-
tion methods. These methods are capable of providing accurate esti-
mates of multivariable state-space models under general noise pertur-
bations by just solving a linear least-squares problem of the form (1.1).
The interest in subspace methods, both in academia and in industry,
stems partly from the fact that no model parameterization is neces-
sary to estimate a model and its order. This is achieved by relating key
subspaces defined from matrices of the model to structured matrices
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6 Introduction

constructed from the available observations. The central role the sub-
space plays explains the name given to these methods. A distinction is
made among different types of subspace methods, depending on how they
use the concept of instrumental variables to cope consistently with vari-
ous noise scenarios. Although, in practice, it has been demonstrated that
subspace methods immediately provide accurate models, they do not
optimize the prediction-error criterion as the prediction-error method
does. To achieve this statistical optimum, we could use the estimates
obtained with subspace methods as starting values for the prediction-
error method. This concept has been proposed by Ljung (MathWorks,
2000a), for example.

Chapter 10 establishes the link between model estimation algorithms
and their use in a real-life identification experiment. To set up, analyze,
and improve an identification experiment, a cyclic procedure such as
that outlined by Ljung (1999) is discussed. The cyclic procedure aims at
a systematic treatment of many choices that need to be made in system
identification. These choices include the selection of the experimental
circumstances (for example sampling frequency, experiment duration,
and type of input signal), the treatment of the recorded time sequences
(detrending, removing outliers, and filtering) and the selection of a model
structure (model order and delay) for the parameter-estimation algo-
rithms. Here we include a brief discussion on how the subspace meth-
ods of Chapter 9 and the parametric methods of Chapters 7 and 8 can
work together in assisting the system-identification practitioner to make
choices regarding the model structure. It is this merging of subspace and
prediction-error methods that makes the overall identification cycle fea-
sible for multivariable systems. When using the prediction-error method
in isolation, finding the appropriate model structure would require the
testing of an extremely large amount of possibilities. This is infeasible
in practice, since often not just one model needs to be identified, but a
series of models for different experimental conditions.

At the end of each chapter dedicated exercises are included to let
the reader experiment with the development and application of new
algorithms. To facilitate the use of the methods described, the authors
have developed a Matlab toolbox containing the identification meth-
ods described, together with a comprehensive software guide (Verhaegen
et al., 2003).

Filtering and system identification are excellent examples of multidis-
ciplinary science, not only because of their versatility of application in
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Introduction 7

many different fields, but also because they bring together fundamen-
tal knowledge from a wide number of (mathematical) disciplines. The
authors are convinced that the current outline of the textbook should
be considered as just an introduction to the fascinating field of system
identification. System identification is a branch of science that illustrates
very well the saying that the proof of the pudding is in the eating. Study
and master the material in this textbook, but, most importantly, use it!
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2

Linear algebra

After studying this chapter you will be able to

• apply basic operations to vectors and matrices;
• define a vector space;
• define a subspace of a vector space;
• compute the rank of a matrix;
• list the four fundamental subspaces defined by a linear trans-

formation;
• compute the inverse, determinant, eigenvalues, and eigenvec-

tors of a square matrix.
• describe what positive-definite matrices are;
• compute some important matrix decompositions, such as the

eigenvalue decomposition, the singular-value decomposition
and the QR factorization;

• solve linear equations using techniques from linear algebra;
• describe the deterministic least-squares problem; and
• solve the deterministic least-squares problem in numerically

sound ways.

2.1 Introduction

In this chapter we review some basic topics from linear algebra. The
material presented is frequently used in the subsequent chapters.

Since the 1960s linear algebra has gained a prominent role in engineer-
ing as a contributing factor to the success of technological breakthroughs.

8
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2.2 Vectors 9

Linear algebra provides tools for numerically solving system-theoretic
problems, such as filtering and control problems. The widespread use of
linear algebra tools in engineering has in its turn stimulated the devel-
opment of the field of linear algebra, especially the numerical analysis
of algorithms. A boost to the prominent role of linear algebra in engi-
neering has certainly been provided by the introduction and widespread
use of computer-aided-design packages such as Matlab (MathWorks,
2000b) and SciLab (Gomez, 1999). The user-friendliness of these pack-
ages allow us to program solutions for complex system-theoretic prob-
lems in just a few lines of code. Thus the prototyping of new algorithms
is greatly speeded-up. However, on the other hand, there is also need
for a word of caution: The coding in Matlab may give the user the
impression that one successful Matlab run is equivalent to a full proof
of a new theory. In order to avoid the cultivation of such a “proven-by-
Matlab” attitude, the refreshment survey in this chapter and the use
of linear algebra in later chapters concern primarily the derivation of
the algorithms rather than their use. The use of Matlab routines for
the class of filtering and identification problems analyzed in this book is
described in detail in the comprehensive software guide (Verhaegen et al.,
2003).

We start this chapter with a review of two basic elements of linear
algebra: vectors and matrices. Vectors are described in Section 2.2,
matrices in Section 2.3. For a special class of matrices, square matrices,
several important concepts exist, and these are described in
Section 2.4. Section 2.5 describes some matrix decompositions that have
proven to be useful in the context of filtering and estimation. Finally,
in Sections 2.6 and 2.7 we focus on least-squares problems in which an
overdetermined set of linear equations needs to be solved. These prob-
lems are of particular interest, since a lot of filtering, estimation, and
even control problems can be written as linear (weighted) least-squares
problems.

2.2 Vectors

A vector is an array of real or complex numbers. Throughout this book
we use R to denote the set of real numbers and C to denote the set of
complex numbers. Vectors come in two flavors, column vectors and row
vectors. The column vector that consists of the elements x1, x2, . . ., xn
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10 Linear algebra

with xi ∈ C will be denoted by x, that is,

x =

⎡
⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎦.

In this book a vector denoted by a lower-case character will always be a
column vector. Row vectors are denoted by xT, that is,

xT =
[
x1 x2 · · · xn

]
.

The row vector xT is also called the transpose of the column vector x.
The number of elements in a vector is called the dimension of the vector.
A vector having n elements is referred to as an n-dimensional vector.
We use the notation x ∈ C

n to denote an n-dimensional vector that
has complex-valued elements. Obviously, an n-dimensional vector with
real-valued elements is denoted by x ∈ R

n. In this book, most vectors
will be real-valued; therefore, in the remaining part of this chapter we
will restrict ourselves to real-valued vectors. However, most results can
readily be extended to complex-valued vectors.

The multiplication of a vector x ∈ R
n by a scalar α ∈ R is defined as

αx =

⎡
⎢⎢⎢⎣

αx1

αx2

...
αxn

⎤
⎥⎥⎥⎦.

The sum of two vectors x, y ∈ R
n is defined as

x + y =

⎡
⎢⎢⎢⎣

x1

x2

...
xn

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

y1

y2

...
yn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x1 + y1

x2 + y2

...
xn + yn

⎤
⎥⎥⎥⎦.

The standard inner product of two vectors x, y ∈ R
n is equal to

xTy = x1y1 + x2y2 + · · · + xnyn.

The 2 -norm of a vector x, denoted by ||x||2, is the square root of the
inner product of this vector with itself, that is,

||x||2 =
√
xTx.
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