Index

Acapulco Trench 150, 151, 257–8, 261
actualism 176–7
aeolian sandstones 15 see also paleowind studies
Africa
fit with South America 156, 157
further paleomagnetic poles (1959–64) 85–92
Rift Valleys 306–7
Airy phases (seismology) 371
Aki, K. 414
Akimoto, S. 76–9
Albatross Plateau, Pacific Ocean 151
Albritton, C. C. 285–6
Allwardt, A. O. 211, 217–18, 237, 240, 245
Almond, M. 165
Alps 232
American Miscellaneous Society 201, 237, 239–43
Andrews, H. N. 56–7, 181
Antarctica
APW paths 76–7
Operation Highjump expedition 281
paleomagnetic studies 66–7
Appalachians 155, 205, 209
APW (apparent polar wander) paths 12 and the GAD hypothesis 177
Australia 177
Bullard’s interpretations 160–3
Creer’s pioneering work 122, 165, 192
difficulty-free status of mobilism solution 180
Europe 72–3
Holmes’ view on 177–8
in Rock Magnetism (1961) 76–7
Japan 76
Kay and Colbert’s interpretation 72
North America 72
paleopoles from Australia (1958–64) 81–5
views on polar wandering 33–6
Arctic, megashears 70
Argand, E. 72, 306–7
Arkell, W. J. 182
Arrhenius, G. 329
asteroid and meteorite impacts
Dietz’s argument for (1946–64) 284–8
proposal for ocean basin formation 298–300
astroblemes (Dietz) 286–8
Sudbury, Canada 287–8
atolls, and seafloor spreading 252–3
Atwater, T. 27
Australia
APW path 177
further paleomagnetic poles (1958–64) 81–5
Irving’s conglomerate test 158
Permo-Carboniferous glaciations 107–9
Tasmanian dolerites 158
Australian National University (ANU) 109
ANU group 174–5
convergence of paleomagnetics and paleoclimatology 92
convergence of paleomagnetics and paleontology 101–7
work on paleomagnetic poles (1958–1964) 81–5
Backlund, H. 217
Bacon, Francis (1561–1628) 173
Bahamas, gravity measurement 200
Bailey, E. B. 167, 171–2
Balme, B. E. 182
Balsley, J. R. 37
Barbados Ridge 232
Barghoorn, E. S. 39, 41, 182
Bartlett Trough, Caribbean Sea 202, 203–5
Bateman, A. 199
bathyscaphe Trieste 281–2
Belousov, V. V. 78
Benioff, H. 26, 27, 28–9, 255, 261, 262, 263, 414, 271
Benioff zones 119
Benson, W. E. 37
Index

Newcastle NATO conference (1963) 36–7, 38, 39, 41–7
review of Descriptive Palaeoclimatology 13–14
Buddington, A. F. 199–200, 236, 274
Bullard, E. C. 6–7, 93, 95, 141, 181, 193, 194, 220–1, 257–8, 362, 363–4
accepts the paleomagnetic case for mobilism 157–65
becomes a mobilist 157–65

disputes with geologists about the mobilism debate 165–73
early life and career 143–7
journey to mobilism 143–7
measurement of ocean floor heat flow 146, 147–52
response to Ewing’s Vetlesen Prize talk 414–16
serious consideration of mobilism 152–6
testing the mantle convection hypothesis 147–52
use of Cox and Doell GSA review 157–60, 162–4
Bullen, K. E. 117, 139
Bunster Sandstones 172
Burbidge, N. T. 182
Buwalda, J. P. 323

Caledonian belt 155, 172
Caledonide disjuncts 48, 172, 217
Californian tectonics 27–8
Callant, R. L. 298
Cambridge/Newcastle group 174–5
Cambridge University College 101–2
Canberra University College 101–2
Capricorn Expedition (1952–3) 327, 338, 341
Capricorn guyot/seamount 258–9, 269
carbonates, as indicators of past climate 97–8, 101
Carey, R. 182
Caribbean Basin, origin of trenches (Officer) 264–5
Caribbean Sea, gravity measurements 200, 202, 203–5
Cayman Trench 260
Chadwick, P. 26, 30
Chaloner, W. G. 52–4, 57–8, 63, 181
Chamalauan, F. 109
Chamalauan, T. 26, 29–30
Chamberlin, T. C. 140
Chandrasekhar, S. 21–2, 248–9
Chany, R. 182
Newcastle NATO conference (1963) 38, 39, 41
chemical remanent magnetization (CRM) 79
Chile Trench 271
Clarion Fracture Zone 326–9
Clark, S. 95
Clegg, J. A. 45, 165
climatic indicators 96–101

Bentley, C. 184–5
Bernard Price Institute, Johannesburg 85–9
Bernard, E. A. 39
Betz, F., Jr., 211–12
Bidgood, D. E. T. 48–9, 52
Bigarella, J. J. 38, 181
Bigganjarga tillites 50
Bijlaard, P. P. 329–30, 332
Billings, M. P. 11, 47, 62, 182, 185–6, 322
biogeographers, opinions on the paleomagnetic case for mobilism 52–65
Biot, M. A. 372
biotic disjuncts, Jeffreys’ view 141
Birch, F. 129, 183, 188, 222
comparison of paleoclimatic and paleomagnetic data 31
indicators of past climate 31
model of climatic zones 31–2
Blake, William 173
Blanco Fracture Zone 347
Boltwood, B. B. 42
Bond, G. 46
Boon, J. D. 285–6
Born, M. 117
Botucatu´Sandstone, Brazil and Uruguay 38
Bourgeois, J. 284, 287–8, 298
Bowen, N. L. 205, 225
Bowin, C. O. 245
brachiopods (Permian) 180
Bradley, J. 178
Branca, W. 284–5, 286
Briden, J. C. 7, 82, 93–5
Newcastle NATO conference (1963) 38, 96–101
work with Irving 95–101
Brilliant, R. 360
Brook, A. 85, 86, 88
Brooks, C. E. P. 171
Brooks, H. 330, 332–3
Brouwer, H. A. 293
Brown, D. A. 7, 101–2, 141, 181, 183
work with Irving on paleolatitudes 101–7
Brown, B. C. 145–6
Brown, W. R. 182
Bryan, K. 323
Brynjolfsson, A. 44–5, 186
Bucher, W. H. 5–6, 62, 182, 185–6, 264, 284–6, 287
criticisms of mobilism 41–7
criticisms of the GAD hypothesis 44–7
debate with King 184
Harland’s response to 50–1
influence on Ewing 364–6
Dietz, R. S. (cont.)
shatter cones 286–8
Sudbury, Canada astrobleme site 287–8
use of standard research strategies (RS) 316
views on religion and philosophy 282–4
dip-slip faulting 271
Doell, R. R. 73, 185
see also Cox and Doell
Donn, W. L. 360, 361, 363, 364
Dorf, E. 39, 41, 182, 220
Dott, R. H., Jr., 14, 16–17, 43, 74, 183–5, 186
education and career 2
reexamination of Squantum Tillite 1–7
downbuckling hypothesis see tectogene hypothesis
Drake, C. 360
Drift diagrams 9
drift test 80–1
Du Bois, P. M. 79, 165
du Toit, A. L. 5, 74, 90–1, 101–2, 106, 107–9, 180, 204–5
Durham, J. W. 182
Dwyka glaciation 89–90
Earth expansion theories 163, 168–9, 175, 308–9, 358–9
and seafloor spreading 254
Heezen 393–408, 418–20
Kay and Colbert 74–5
Earth’s core
liquid core hypothesis (Jeffreys) 139
segregation from the mantle 248–9
earthquake magnitude, Richter scale 117
earthquake slip vectors 42–3
earthquakes
beneath island arcs 271
circum-Pacific faults and earthquakes 28–9
deep-focus 117, 119–20, 202, 222
distinction from underground nuclear tests 28
first motion studies 28
Grand Banks earthquake of 1929 2–3, 376–8
mapping 117
time-travel tables for seismic waves 117, 139
East Indies 205, 208
East Pacific Rise 151, 306–7, 348–52
Eckart, C. 353, 354
Edwards, R. S. 264–5
Eguyed, L. 169, 394, 399, 417–18
Einarsrud, T. 158–9
Einstein, Albert 115–16
elipsoid of revolution 130
Elsasser, W. M. 333, 353–5
Emery, K. O. 280–1
Emperor Chain 290
Emperor Seamounts 281, 292–3
Eo-Cambrian tillites 48
Ereison, D. B. 2, 40, 376–8
Euler’s point theorem 42–3, 143
European APW path 72–3
Evans, D. A. D. 183
evaporite deposits
distribution of 12–13
indicators of past climate 31, 95–6, 97–8, 101
Everett, J. E. 143, 156
Ewing, J. 238, 244, 261, 264–5, 335, 362, 408–10
anti-mobilist attitude (early 1950s) 364–6
discovery of the median rift valley 383–93
drive and ambition 361–3
education and career 359–64
explanation of ocean ridges (1959) 408–10
extent of the median rift valley 390–3
fixist explanation of the Atlantic Basin 410–13
founding director of Lamont 360–1
influence of Bucher 364–6
Newcastle NATO conference (1963) 38, 39, 40–1
objection to the paleomagnetic case for mobilism 40–1
ocean basin sediments (1962) 429–31
on relative merits of fixism and mobilism (1962) 429–31
origin of the Mid-Atlantic Ridge 366–73
recognition for achievements 361
reluctance to speculate on wider questions 363–4
responses to his Vetlesen Prize talk (1960) 413–18
rift with Heezen 420–1, 426–9
Vetlesen Prize talk (1960) 410–13
work with Tolstoy 366–73
expanding core hypothesis 22–3, 44
Fairbridge, R. W. 38, 39, 416–18
Feather, N. 145
Feynman, R. P. 183
field stability tests 80
Field, R. M. 145–6, 199–200, 274, 359
first motion studies 270–1
Fischer, A. G. 181
review of Descriptive Palaeoclimatology 14–17
Newcastle NATO conference (1963) 38
Fisher, R. L. 143, 198, 230, 254
disagreement with Vening Meinesz tectogene hypothesis 263
education and career 255–9
joint paper on trenches with Hess 265–71
opposition to Lamont view of trenches 262–3
Ph.D. dissertation 261
subduction 261
work on ocean trenches 254–9, 261
work on the Middle America Trench 261
work with Hess 254–5, 257
fixism 358–9
dominance in North America 75–6
denial of mobilism’s paleomagnetic support 181–5
influence of new paleomagnetic findings (1960s) 67–76
reassessment of mobilism (1960s) 67–76
unreasonable responses of fixists 185
Flavill, L. 145
Fleissetheorie (Gutenberg) 117–20, 121–3
Flint, R. F. 9
fold test 159
Forster, H. 384–5
fossil floras
Axelrod’s interpretation 62–5
factors affecting distribution 64–5
Gigantopteris flora distribution 91
Nothofagus distribution 55
see also Glossopteris flora distribution
fossils
distribution of land-living vertebrate fossils 39–40
distribution of Permian marine fossils 40, 180
labyrinthodont distribution 101, 103–7
Mesosaurus distribution 68–9
Fraas, F. 284–5, 286
fracture zones 325–33, 338–43, 348
Frautchy, J. 314
Friend, P. F. 48
fusilinids (Permian) 180
GAD (geocentric axial dipole) hypothesis 7, 62, 89–90, 159–60, 163, 165, 167–8, 174–5, 177, 186
application prior to the Miocene 93
coral reef evidence 97
criticism by Bucher 44–7
paleomagnetic support for 97, 100
paleomagnetic support for 76–9, 80
Schwarzbach’s view 11
support from labyrinthodont data 103
validation by paleomagnetists 180
Galileo 28
Gaskell, T. G. 26, 92–3, 145–6
geoid anomalies (geoid undulations) 130–6, 139
Geology (Read, 1949) 170
geology
lack of a global view 75–6
regionism in 75–6
geomagnetic field
nature of 45–7
polarity reversals 44–5, 78–9, 165, 176
Geophysical Journal 137
George, W. 58–9, 183
Georgi, J. 30
geosynclines and mountain building 208–9, 211, 218
Gigantopteris flora distribution 91
Gill, E. D. 9
Gill, W. D. 167, 168
Gilluly, J. 182
Girdler, R. W. 24, 25, 26, 38, 151–2, 154
glacial tills, distinction from turbidites 2–3, 13–14, 16–17, 43–4
glacial tills
distinction from turbidites and slumps 2–3
distinction from turbidity current effects 13–14, 16–17
 glaciations
and turbidity currents 37
indicators of past climate 31
see also Permo-Carboniferous glaciations
Glaessner, M. 182
global paleomagnetic test of continental drift 165
paleomagnetic poles from Africa (1959–64) 85–92
paleomagnetic poles from Australia (1958–64) 81–5
Glossopteris flora distribution 9–10, 54, 56, 63, 65, 68, 82, 89, 90–1, 107, 157, 164
Goddard Institute for Space Studies, 1966 symposium on mobilism 187–8
Goethe, J. W. von 173, 174
Gold, T. 36
Gondwana/Gondwanaland 15–16, 17, 68, 73–4
migration of paleopoles 107–9
Permo-Carboniferous glaciations 107–9
Good, R. 56, 181
Gorda Ridge 347
Göteborg Oceanographic Institute 220–1
Gough, D. I. 85–92, 109, 165
Graham, J. W. 34, 73, 122, 123, 185
magnetostriiction 159, 177, 180
Graham, K. W. T. 39, 85–9, 165
Grand Banks earthquake of 1929 2–3, 376–8
gravity anomalies 130–6, 139
sea floor features 202 at island arcs 203–12, 229–31
gravity measurements
Caribbean Sea 200, 202
satellite data 30–1
Great Catastrophe (Hess) 248–9
great circles 326–8
Great Dyke, Southern Rhodesia 205
Great Glen Fault, Scotland 70, 212, 293
Great Infra-Cambrian ice age (Harland) 48–52
Green, Robert 9, 12–13
Green, Ronald 23, 78, 82, 165, 182
Greenland 48, 172, 217
Greenwood, J. E. G. W. 167
Griggs, D. 23, 217–19, 221
Guatemala Trench 261
Gulf of Alaska 214, 290
Gunn, R. 261, 262, 263, 265, 268
Gutenberg, B. 181, 188, 255–6, 322, 323, 329, 387–9
appeal to paleomagnetism 121–3
career 115–17
eyear support for mobilism (1920s and 1930s) 117–20
Fliesstheorie 117–20, 121–3
modifications to Wegener’s theory 117–20
reconsiders mobilism (1950s) 121–3
Guyot, A. 213
guyots 291–3, 363
absence of pre-Cretaceous seamounts 300–2
and continental drift 300–2
and seafloor spreading 252–3, 309–10
Capricorn guyot/seamount 258–9, 269
discovery by Hess 212–17
discovery of Cretaceous fossils on 226, 252, 281, 290
Emperor Seamounts 281
formation of 225–9
origin of 202, 212–17, 238–9, 295–6
see also seamounts
Hair, J. B. 54–5, 181
Hales, A. L. 39, 85–9, 92, 165, 181
Halm, J. K. E. 398–9
Hamilton, E. L. 220, 226, 251, 252, 281, 290, 291, 295–6, 301, 310, 324
Hamilton, G. 360
Hamilton, W. 181
on Cox and Doell GSA review (1960) 65–7, 73
on paleomagnetic support for mobilism 65–7
response to Axelrod 63–4
Harland, W. B. 38, 47–8, 181
fieldwork in Spitzbergen 47–8
Great Infra-Cambrian ice age 48–52
Newcastle NATO conference paper (1963) 51
support for continental drift 48–9, 51–2
Harold Jeffreys Lecture 137–8, 140–3
Hastie, L. 82
Hawaiian Islands 211–12, 294, 295, 332–3
heat flow measurement, ocean floor 146, 147–52
beginning of work with Tharp 380
correspondence with Holmes on Earth expansion 397–400
defense and later abandonment of Earth expansion 418–20
discovery of the median rift valley 380, 381, 383–93
early work with Ewing 374
Earth expansion theory (1957–1959) 393–7
effects of the Ewing–Heezen split 423–9
emphasis on collecting own data 421–3
making of a marine geologist 374–8
Newcastle NATO conference (1963) 38
paleomagnetism as support for Earth expansion 400–8
Ph.D. thesis 376–8
resentment of Hess and others 421–9
response to Ewing’s Vetlesen Prize talk 416, 417–18
rift with Ewing 420–1, 426–9
work at WHOI 375–6
work on turbidity currents 376–8
Heirtzler, J. R. 92
Helsley, C. E. 39, 40
Hepworth, J. V. 167
Hercynian belt 155, 172
Hersey, B. 264
ability to work outside his specializations 274–5
access to oceanographic data 220–1, 274–5
account of the primordial Earth 247–9
adoption of mantle convection 217–19
AMSOC paper (1959) 237, 239–43
approach to scientific research and hypothesizing 201–2, 271–5
career at Princeton 200
Caribbean gravity measurements 200, 202
continental accretion theory 233
continental drift and seafloor spreading 249–51
continued opposition to mobilism (1955) 232–3
correspondence with Dietz 295–6
development of seafloor spreading hypothesis 198–9
difficulties with the tectogene hypothesis 229–32
discovery and origin of guyots 212–17
eyear career (1932–50) 202
eyear life and education 199–200
eyear rejection of mantle convection 210–11
early rejection of mobilism 219–20
evolution of the ocean basins 198
generalist approach 274–5
global outlook 274–5
Great Catastrophe 248–9
guyots and seafloor spreading 252–3
Heezen’s resentment of 421–9
influences on his switch to mobilism (1959) 233–7
interest in a number of problems 271–3
interest in serpentinization 202
island arcs and mountain formation 202, 203–12, 229–32
island arcs and seafloor spreading 253–4
joint paper on trenches with Fisher 265–71
mantle convection and seafloor spreading 249–51
mega-cell concept in mantle convection 221
middle career (1950–1959) 220–1
mid-ocean ridges and seafloor spreading 250–1
naval career 201
oceanic ridges and seafloor spreading 251–2
Index

olivine-serpentine transformation 225–9
on mantle convection 221
origin and evolution of island arcs 202, 203–12
origin and nature of mid-ocean ridges 224, 228–9, 238–9, 241–2
origin and nature of oceanic crust 222–4
origin of guyots 202, 238–9
origin of mountain belts 202
origin of ocean deeps 202
origin of the Mid-Atlantic Ridge 209, 228–9
paleomagnetic case for mobilism 233–7
priority muddle over seafloor spreading 310–16
problems solved by seafloor spreading 247–54
Project Mohole 201
reevaluation of views about ocean basins (1959, 1960) 237–43
relation between convection and mid-ocean ridges 242–3
revised theory of mountain formation 229–32
revisionist history 198–9
role in the American Miscellaneous Society 201
role of serpentinization in the oceanic crust 269–70, 271
scientific honors 201
seafloor sediments and seafloor spreading 251–2, 253–4
seafloor sediments problem 240–1
seafloor spreading hypothesis (1960) 24, 71, 243–7
serpentinitization and seafloor features 200, 225–9, 243, 244–7, 335–6
support for mantle convection 202
switch to mobilism 198
tectogene (downbuckling) hypothesis 202, 203–12
two-cell convection model of the Earth 248–9
uniformitarian approach 247–9
use of standard research strategies (RS) 273–4
willingness to embrace new findings 275
work with Betz in the Hawaiian islands 211–12
work with Fisher on trenches 254–5, 257
Hibberd, F. H. 77, 180
Hide, R. 193
Hill, D. 182
Hill, M. N. 266, 380, 381, 382–3, 389
Hills, E. S. 182
Hills, G. F. S 20–1
Himalayas 232
Hobart symposium (1956) 35, 235, 256
Hodgson, J. H. 26, 27, 28, 270–1
Hollingworth, S. E. 49, 167, 170–1, 172
Hollister, C. 38, 43–4
correspondence with Heezen on Earth expansion 397–400
mantle convection theory 308
on evidence from fixists 365–6
Principles of Physical Geology (1944) 166, 170
Principles of Physical Geology (1965) 173–8
view on the paleomagnetic case for mobilism 173–8
Holmes (Reynolds), D. L. 140, 166, 169, 172–3
Holstvedal, O. 172
Hospers, J. 47, 122, 165, 186
Hubbert, M. K. 215
Hulley, J. C. L. 38
Icelandic rocks 158–9, 165
igneous contact test 158–9, 174
impact craters
on the Earth 284–8
on the Moon 284
Imperial College group, views on polar wandering 33–6
India 165
Indian Ocean Rise 306–7
Infra-Cambrian ice age (Harland) 48–52
Infra-Cambrian tillites 50–1
Introduction to Geology (Bailey and Weir, 1939) 172
Iredale, T. 182
Ireland, Paleozoic mountain ranges 233
Irving, E. 7, 23, 26, 81–5, 123, 147, 152–3, 165, 180, 181, 182, 194
APW paths 161–2
belief in continental drift 178–9
comparison of paleomagnetic and paleoclimatic data 92
conglomerate test 158
election to the Royal Society 193–4
GAD hypothesis 177
move to Canada (1964) 109
nature of the geomagnetic field 47
Newcastle NATO conference (1963) 38, 96–101
on Creer’s accomplishments 192–3
on Opdyke’s move to Lamont 92
on polar wandering 34
on the non-dipole hypothesis 46–7
Paleomagnetism 79
recognition for his work 190–4
response to Graham 177
review of Descriptive Palaeoclimatolgy 17
Runcorn’s delay in publishing results 188–94
Runcorn’s influence on his career 190–4
summary of paleomagnetic data (Geophysical Journal 1959) 234
work with Briden 95–101
Iselin, C. 360
island arcs
and mountain formation 229–32
and seafloor spreading 253–4
Caribbean Basin 264–5
cause of earthquakes beneath 271
island arcs (cont.)
contraction hypothesis 147–8
convection hypothesis 148
gravity anomalies 203–12, 229–31
origins and evolution 71–2, 202, 203–12
Pacific Ocean 29
isostasy, significance to mobilism 19–20
isthmian connections 337–8
Jaeger, J. C. 82, 95, 183, 190
Japanese rock magnetists, and the paleomagnetic case for mobilism 76–81
Jeffreys, H. 102, 117, 145, 183, 219
argument against mantle convection 130–1
attack on mobilism 140–3, 180
attacks on mobilism’s paleomagnetic support 182
contraction hypothesis 147–8
contribution to seismology 139
criticism of convection 129
early life and career 137–40
explanation of geoid anomalies 130–1, 134–6
Harold Jeffreys Lecture 137–8, 140–3
influence in the mobilism debate 170–1
map of geoid anomalies 130–1
opposition to mobilism 18–21, 26
rejection of mantle convection and drift 30–1
Runcorn’s response to 18–21
The Earth 138, 140, 180
work on geoid anomalies 139
Johnson, H. R. 264–5
Joly, J. 19, 20, 129
Jones, D. L. 74, 85, 86
Jones, O. T. 167
Juan de Fuca Ridge 347
Kanamori, H. 79–81
Katz, S. 360
Kay, M. 67–76, 182–3, 185, 264, 265, 431
Kearst, A. 182
Kelvin, Lord (William Thomson) 41, 42, 170
Kennedy, W. Q. 293
Kershner, R. 131
Kham, P. 86, 89
Khramov, A. N. 165, 179
King, L. 5–6, 9–10, 15–16, 17, 35, 107–9, 180, 181, 185–6
debate with Bucher 184
Knoph, A. 199
Kobayashi, K. 73, 76–9, 185
Kobayashi, T. 9
Köppen, W. 3, 82, 85, 100, 107–9
Koppe, S. 284, 287–8, 298
Krantz, W. 286
Krausse, R. 9, 38
Krumbein, W. C. 256
Kuenen, Ph. H. 2, 202, 205, 206
Kuiper, G. 286
Kullenberg, B. 214
Kuno, H. 76
labyrinthodont amphibians, distribution 101, 103–7
Lamb, H. H. 9, 38
Lamont/Lamont–Doherty Geological Observatory 14, 37, 38, 40–1, 69–70, 92, 109, 202, 220–1, 238, 274, 358–9
conditions in the late 1960s 372
Ewing as founding director 360–1
Ewing–Heezen rift 420–1
Ewing’s drive and ambition 361–3
extent of the median rift valley 390–3
lack of discoveries 363–4
leading center for seafloor investigation 363
median rift valley discovery 380, 381, 383–90
news release for the median rift valley discovery 390–3
reluctance to hypothesise from data 363–4
view on origin of trenches 254–5, 259–61
Lamplugh, G. W. 171–2
landbridges hypothesis 216–17, 219–20
latitudinal zonation of climate 31, 93, 95–101
Lawson, A. 217
Lexon-Conyngham, G. 145
London group 174–5
Longwell, C. R. 182, 185, 199, 219, 254
Lotze, F. 39, 41, 182
Lovis, J. D. 55, 181
Lowenstam, H. A. 39, 182
Lüders’ lines 329–30, 332
Luskin, B. 360
Ma, Ting Ying 38
Maack, R. 38, 181
MacDonald, G. J. F. 141, 142, 143, 162–3, 164, 182, 183, 185, 352
attack on mobilism 180
denial of mantle convection 129–36
objections to the paleomagnetic case for mobilism 187–8
renewed attack on paleomagnetic case for mobilism 136–7
review of *Continental Drift* (1962) 25–31
Magellan Seamounts 290, 292–3
magnetic anomalies 42–3, 155
magnetic cleaning techniques 80, 81, 85, 180
magnetic lineations in the NE Pacific 338–43
magnetic surveys of the Atlantic 69–70
magnetometer surveys Scripps 338–43
seaborn surveys 338–43
magnetostriatigraphy studies 165
magnetostriiction 79, 80–1, 159, 177, 180
Major, A. 82
Manchester/London group 174–5
Mantle
radioactivity in 151
segregation from the core 248–9
mantle convection 53
and gravity anomalies 130–6
and island arc formation 148
and seafloor spreading 198–9, 249–51
and the tectogene hypothesis 202
as mechanism of drift 18–25, 36
Deutsch’s view 36
effects at descending limbs 253–4
evidence from geoid anomalies 130–6
Hess’s support for 202
Holmes’ theory 71
Jeffreys’ rejection of 30–1
MacDonald’s view 29–31, 129–36
mathematical model 29–30
mega-cell concept (Hess) 221
ocean floor heat flow measurements 146, 147–52
Vening Meinesz theory 124, 127–9
Mariana Trench 290, 292–3
dive to the bottom 281–2
Marvin, U. 287
Mason, R. G. 155, 230, 258–9, 262–3, 338–43
Massey, H. S. W. 145
Matthews, D. H. 26, 143, 193 see also Vine–Matthews hypothesis
Mega-shears 70, 174
Middle America Trench 257–8, 261, 268–9, 271
magnetic lineations near fracture zones 341–2, 343
Mendocino escarpment studies 324–6
Mendocino Fracture Zone 326–9
Murray Fracture Zone 326–9
on the Ewing–Heezen rift 420, 421
origin of mid-oceanic elevations (1958) 333–6
pre-1950 view of mobilism 322
priority muddle over seafloor spreading 310–16
rejection of mobilism (1958) 337–8
seafloor stretching hypothesis (1960) 348–52
shifting views on mobilism 352, 355–6
two models of fracture zones (1955) 329–33
use of standard research strategies (RS) 352–3
views in flux (1959) 343–6
willingness to adapt hypotheses 352
work with Dietz 290–6
Mendocino escarpment 293–4, 295, 324–6
Mendocino Fracture Zone 326–9, 342
Mesosaurus distribution 68–9
Meteor expeditions 385–7, 389
meteorite and asteroid impacts
Dietz’s argument for (1946–1964) 284–8
proposal for ocean basin formation 298–300
Meyerhoff, A. A. 314
Mid-Atlantic Ridge 224, 228–9, 238–9, 241–2, 351
Earth expansion hypothesis 74–5
Ewings’ explanation (1959) 408–10
MIDPAC Expedition (1950) 226, 289–300
Mindanao (Philippine) Deep 260
Mobilism
difficulties with mechanism 70–1
reassessment by fixists (1960s) 67–76
views at the Newcastle NATO conference (1963) 36–41
views in Descriptive Palaeoclimatology (1961) 8–13
mobilism’s solution to APW paths, difficulty-free
status 180
Moho project 155–6, 201
magnetic lineations near fracture zones 341–2, 343
mantle convection 53
and gravity anomalies 130–6
and island arc formation 148
and seafloor spreading 198–9, 249–51
and the tectogene hypothesis 202
as mechanism of drift 18–25, 36
Deutsch’s view 36
effects at descending limbs 253–4
evidence from geoid anomalies 130–6
Hess’s support for 202
Holmes’ theory 71
Jeffreys’ rejection of 30–1
MacDonald’s view 29–31, 129–36
mathematical model 29–30
mega-cell concept (Hess) 221
ocean floor heat flow measurements 146, 147–52
Vening Meinesz theory 124, 127–9
Mariana Trench 290, 292–3
dive to the bottom 281–2
Marvin, U. 287
Mason, R. G. 155, 230, 258–9, 262–3, 338–43
Massey, H. S. W. 145
Matthews, D. H. 26, 143, 193 see also Vine–Matthews hypothesis
Mega-shears 70, 174
Middle America Trench 257–8, 261, 268–9, 271
magnetic lineations near fracture zones 341–2, 343
Mendocino escarpment studies 324–6
Mendocino Fracture Zone 326–9
Murray Fracture Zone 326–9
on the Ewing–Heezen rift 420, 421
origin of mid-oceanic elevations (1958) 333–6
pre-1950 view of mobilism 322
priority muddle over seafloor spreading 310–16
rejection of mobilism (1958) 337–8
seafloor stretching hypothesis (1960) 348–52
shifting views on mobilism 352, 355–6
two models of fracture zones (1955) 329–33
use of standard research strategies (RS) 352–3
views in flux (1959) 343–6
willingness to adapt hypotheses 352
work with Dietz 290–6
Mendocino escarpment 293–4, 295, 324–6
Mendocino Fracture Zone 326–9, 342
Mesosaurus distribution 68–9
Meteor expeditions 385–7, 389
meteorite and asteroid impacts
Dietz’s argument for (1946–1964) 284–8
proposal for ocean basin formation 298–300
Meyerhoff, A. A. 314
Mid-Atlantic Ridge 224, 228–9, 238–9, 241–2, 351
Earth expansion hypothesis 74–5
Ewings’ explanation (1959) 408–10
MIDPAC Expedition (1950) 226, 289–300
Mindanao (Philippine) Deep 260
Mobilism
difficulties with mechanism 70–1
reassessment by fixists (1960s) 67–76
views at the Newcastle NATO conference (1963) 36–41
views in Descriptive Palaeoclimatology (1961) 8–13
mobilism’s solution to APW paths, difficulty-free
status 180
Moho project 155–6, 201
Mohorovičić discontinuity
Moon, impact craters (Dietz)
Morgan, E. M.
Morgan, J. 328
Moulton, F. R.
mountain building
contraction hypothesis
convection hypothesis
Hess’s island arc theory
theories of
Mumme, W. G.
Murray, H. W.
Murray Fracture Zone
Nadai, A. L.
Nagata, T.
Nairn, A. E. M.
Descriptive Palaeoclimatology (1961)
Fisher’s review of Descriptive Palaeoclimatology
Irving’s review of Descriptive Palaeoclimatology
Newcastle NATO conference (1963)
Newcastle symposium (1959, 1960)
natural remanent magnetization (NRM)
NEL see US Navy Electronics Laboratory (NEL), San Diego
Newcastle group
Newcastle NATO conference (1963)
Briden 38, 96–101
Bucher 36–7, 38, 39, 41–7
Chaney 38, 39, 41
Colbert 38, 39–40, 67
Ewing 38, 39, 40–1
Fischer 38
Harland 51
Heezen 38
Irving 38, 96–101
Nairn 37, 38
Poole 70
Rudwick 49–50
Runcorn 36–41
Stehli 38, 39, 40
views on mobilism
Newcastle symposium (1959)
Newfoundland
Grand Banks earthquake of 1929
Paleozoic mountain ranges
transcurrent faults
non-dipolar geomagnetic field hypothesis
North America
APW path
continental accretion theory
Hess’s views on offset fault 75–6
influence of regionalism
Late Paleozoic glaciations
Northeast Atlantic
reassessment of arguments for mobilism 69–72
stratigraphic disjuncts 69–70
Norway
Nothofagus distribution, fossil evidence
nuclear tests underground, distinction from earthquakes
ocean basin formation, asteroid impact proposal
ocean basins, Hess’s reevaluation of views on (1959, 1960)
ocean deeps, downbuckling hypothesis
ocean floor
heat flow measurement, Bullard
sedimentation rates
oceanic crust, nature of
oceanic ridges
age of
and seafloor spreading
Ewing’s explanation (1959)
Hess’s theory
remnant magnetization
serpentinization at
theories about origins
oceanic trenches
Benioff zones
Fisher’s opposition to the Lamont view
Officer’s view of origin
work of Fisher
see also tectogene (downbuckling) theory
oceanographic research organizations (1940s and 1950s)
Officer, C. B.
oil deposits, paleolatitude
Oliver, J.
olivine-serpentine transformation
Opdyke, N. D.
Paleozoic mountain ranges
transcurrent faults
arrival in Canberra (1959)
criticism by MacDonald
move to Lamont (1963)
Index

Öpik, A. A. 182
Our Wandering Continents (du Toit, 1937) 5, 101–2
Oxburgh, E. R. 167–8
oxygen isotope ratios, paleotemperature determination 9, 39, 167–8
Pacific Ocean floor
circum-Pacific earthquakes 28–9
displacements off California 27–8, 155
island arcs 29
magnetic anomalies 29
surveys in the northeast (1950s, 1960s) 320
see also specific features
paleobiogeography studies 164
paleobotanists, on the paleomagnetic case for mobilism 52–65
paleoclimatic zones
Blackett’s study 31–3
indicators of 31, 96–101
paleoclimatology 164, 175
comparison with paleomagnetic data 7–13
consilience with paleomagnetic data 177
convergence with paleomagnetism at Canberra 92
Das Klima der Vorzeit (Schwarzbach) 10–11
Descriptive Palaeoclimatology (1961) 8–13
Stehli’s attack on Irving and Brown’s work 104–7
support for mobilism 14–19
work of Irving and Brown 101–7
paleogeographic reconstructions 41, 180
paleolatitudes
and climatic zonation 93, 95–101
climatic indicators 31
of oil deposits 92–3
Stehli’s attack on Irving and Brown’s work 104–7
work of Irving and Brown 101–7
paleomagnetic case for mobilism
avoidance by Japanese rock magnetists 76–81
biogeographers’ opinions 52–65
Blackett’s paleoclimatic comparison 31
Bucher’s criticism (Newcastle NATO conference) 41–7
Bullard’s support for 157–73
comparison with paleoclimatic evidence 7–13
Continental Drift anthology (1962) 25–31
courage to consider new ideas 194–5
Deutsch rejects polar wandering 33–6
Dietz learns about 296–8
differing responses to 355–6
difficulty-free solution for APW paths 180
extension in the 1960s 15–19
failure to recognise difficulty-free status 181–5
fixist responses 185
Gutenberg’s view 121–3
Hamilton’s view 65–7
Holmes’ view 173–8
influence on Hess 233–7
Jeffreys’ attack on mobilism 140–3
Kay and Colbert’s reassessment 67–76
MacDonald’s renewed attack (early 1960s) 136–7
paleopoles from Australia (1958–9164) 81–5
reassessment by fixists (1960s) 67–76
reexamination of Squantum Tillite 1–7
responses to scientific controversy 194–5
reviews of Descriptive Palaeoclimatology 13–17
revisionist accounts 186–8
Runcorn’s tactical error in presentation 188–94
search for a mechanism 18–25
tactical delay in publication of results 188–94
taking it seriously 194–5
unreasonableness of fixist responses 185
Yening Meinesz’s view 126–9
Paleomagnetism (Irving) 79
Paleomagnetism
convergence with paleoclimatology at Canberra 92
Kay and Colbert’s view 72–5
paleomagnetists, views on mobilism by 1964 73–4
paleontology and paleomagnetism 7, 101–7
paleopoles, migration across Gondwana 107–9
paleotemperature determination, oxygen isotope method 9, 39, 167–8
paleowind studies 7, 9, 10, 15, 32, 38, 56–7, 175
Paleozoic mountain ranges, matching across the Atlantic 233
Pangea 73–4
break-up of 23–5
Paramonov, S. J. 182
Parker, R. L. 27, 143
Paterson, M. S. 95
Permian marine fossils
brachiopods 180
distribution 40
fusilinids 180
Permocarboniferous glaciations 4–5, 8, 9–10
13–14, 16–17, 41, 43–4, 48–9, 50–2, 60, 61, 68,
97–8, 107–9, 164, 171–2
Permio-Triassic red beds 11–12
indicators of past climate 31, 97–8, 101
Peru-Chile Trench 268–9
Pettersson, H. 149, 214
Phillips, A. H. 200
Philosophical Transactions of the Royal Society of London 152–3, 188
Phinney, R. A. 187–8
Physical Basis of Geography (Woodridge and Morgan, 1937) 170
Piccard, Jacques 281–2
Pioneer Fracture Zone 342
planetesimal theory 140
Index

472

plate tectonics 28, 42–3, 271, 328, 408, 431
Plumstead, E. P. 54, 63, 68, 90–1, 107, 164, 181
podocarps (primitive conifers) 54–5
polar wandering 33–6, 177–8 see also APW (apparent polar wander) paths
polarity reversals 176
pollen, fossil traces 55
Poole, F. G. 38, 70
Popper, K. 47, 180
Press, F. 125, 220, 360, 363, 379–80, 414, 416
pressure remanent magnetization (PRM) 79
Prey, A. 21–2, 242
Principles of Physical Geology (Holmes, 1944) 166, 170
Principles of Physical Geology (Holmes, 1965) 173–8
proto-Atlantic (Argand) 72
Prowse, William J. 173, 174
Puerto Rico Trench 231, 232, 259–61, 262–3, 264–5, 268–9, 431
Raasch, G. O. 181
Radforth, N. W. 57–8, 64–5
radioactivity in the mantle 151
radiometric dating 81
radiometric timescale 42, 43
Raff, A. 155, 339, 340–3
Raiti, R. W. 220, 230, 238, 239, 244, 256–7, 258–9, 262–3, 268, 340
rapid polar wandering (Hibberd) 77
Rast, N. 167
Reading, H. 94
red beds (Permio-Triassic) 11–12
indicators of past climate 31, 97–8, 101
Red Sea 152, 153–4
Regionalism and fixist dominance in North America 75–6 in geological literature 75–6
remanent magnetism in rocks at ocean ridges 23–5
stability of 158–9
Research Strategy 1 (RS1) xvi
alternatives to Mendocino escarpment theories 325
assumptions underlying the paleomagnetic method 176
Bucher on the role of turbidity currents 13–14
changing hypotheses in light of difficulties 202
comparison of biogeographical and paleomagnetic data 58
consilience among data from different sources 53, 58, 60, 63, 66, 175, 181
consilience of independent paleolatitude results 103
consilience of paleomagnetic data with other evidence 122
Ewing on mantle convection 413
explanation for ocean floor heat flow 333
features explained by seafloor spreading 305, 306, 310
fixist alternatives to mobilism 69
fixist explanation of ocean ridges 338
gravity anomalies over trenches 333
justification for mantle convection 222
justifying controversial assumptions 209
mantle convection and deep-focus earthquakes 222
mantle convection theory development (Vening Meinesz) 129
mantle counter-currents 333
mechanism of continental drift 308
Menard’s seafloor stretching hypothesis 349
modification of the shear net hypothesis 331
mountain building and continental drift 307
paleomagnetists disposal of difficulties 180
proposed evolution of trenches into island arcs 260
Runcorn’s convection hypothesis 18–19
Runcorn’s counterargument to MacDonald 132
theory modification to accommodate new findings 231
use by Dietz 316
use by Menard 352–3
use of this strategy by Hess 273–4
Vaquier on evidence for mobilism 27–8
Research Strategy 2 (RS2) 16
attacks on mobilism’s paleomagnetic support 182
biased selection of evidence 29
criticism of Wegener’s theories 71
Deutsch’s rejection of polar wandering 35
difficulties faced by hypotheses 202
difficulties if the GAD hypothesis is denied 177
difficulties in denying paleomagnetic assumptions 176
difficulties with continental drift 392, 396, 397, 407
difficulties with contraction theory 148, 333
difficulties with Cox and Doell’s results 419
difficulties with descending Benioff zones 270
difficulties with Earth expansion 254, 308
difficulties with Ewing’s theory of ridge origin 335
difficulties with fixism 310
difficulties with guyot theory of Hess 217
difficulties with island arc formation theory 222
difficulties with Lamont view on trenches 263, 269
difficulties with mantle convection 263
difficulties with Mendocino escarpment theories 325, 329
difficulties with mobilism 338
difficulties with mobilist reconstructions 69
difficulties with San Andreas Fault theories 325
difficulties with seafloor spreading	429
difficulties with single-tier convection	222
difficulties with the mechanism of mobilism	70
difficulties with the paleomagnetic case for	
mobilism	39, 40
difficulties with the shear net hypothesis	331
difficulties with the tectogene hypothesis	229–31
difficulties with vertically displaced faults	325
difficulties with Wegenerian drift	342
difficulties with worldwide stress hypothesis	331
misuse of RS2 approach	186
nature of the Mid-Atlantic Ridge	224
non-dipole hypothesis	46–7
Opdyke's response to Axelrod	91
rejection of geocentric axial dipole (GAD) hypothesis	40
rejection of Permian paleomagnetic poles	40
reliability difficulty in paleowind studies	15
Runcorn on Jeffreys' methodology	19–20
Schwarzbach on the GAD hypothesis	11
Schwarzbach's criticism of Stehli	10
use by Dietz	316
use by Hess	273–4
use by Menard	352–3

Research Strategy 3 (RS3) 16
alternative explanation for fracture zones 333
alternative theory for the origin of trenches 269
alternative to the tectogene hypothesis 260
alternative version of mantle convection 336
difficulties with fixist arguments 63
extplanation for the Mendocino escarpment 325
Heezen's argument for Earth expansion 395, 396
seafloor spreading as a better solution 310
superior hypothesis to Earth expansion 254
use by Dietz 316
use by Hess 273–4
use by Menard 352–3
APW paths 161–2
criticism by MacDonald 29
election to the Royal Society 193–4
ideason the mechanism of continental drift 18–25
impacts on Irving and Creer's careers 190–4
mantle convection and geoid anomalies 131–6
mantle convection hypothesis 18–25
nature of the geomagnetic field 46–7
Newcastle NATO conference (1963) 36–41
response to Jeffreys' geoid anomalies explanation 134–6
response to Jeffreys' opposition to mobilism 18–21
response to MacDonald on mantle convection 131–6
tactical error in presentation of the paleomagnetic case 188–94
use of satellite geoid data 131–6
Rutland, R. W. R. 167, 168
Rutten, M. 106, 181
Salamuni, R. 38, 181
Salisbury, Rhodesia (Harare, Zimbabwe) group 85–92
Sandford, K. S. 94
satellite geoid, and mantle convection 130–6
satellite gravity measurements 30–1
and mantle convection 130–6
Scandinavia, Caledonide fragments 172
Scheidegger, A. E. 78
Schwarzbach, M. 9, 10–11, 38, 181
scientific controversy, individual responses to 194–5
Scotland
Caledonide belt 172
Great Glen Fault 70, 212, 293
Paleozoic mountain ranges 233
Scripps Institution of Oceanography 85, 146, 149, 150, 151, 155, 220–1, 230, 238, 254–9, 267, 274, 280–1, 320, 321, 323, 335, 338–43, 352, 363
seafloor displacements off California 155
seafloor sediments 240–1
and seafloor spreading 251–2, 253–4
Ewing’s comparison of fixism and mobilism 429–31
sedimentation rates 155–6
seafloor spreading 36, 71, 165
alternative hypotheses 320–1
and age of seafloor rocks 251–2
and continental drift 249–51, 307–10
and Earth expansion 254
and guyots 252–3, 309–10
and island arcs 253–4
and mantle convection 249–51
and mid-ocean ridges 250–1
and ocean trenches 269–70
and seafloor sediments 251–2, 253–4
and seamounts 251–2, 253–4, 309–10
and subduction 198
Hess (1960) hypothesis 24, 71, 243–7
priority muddle over 310–16
problems solved by 247–54
seafloor stretching hypothesis, Menard (1960) 348–52
seamounts 291–3
absence of pre-Cretaceous seamounts 300–2
age of 290
and continental drift 300–2
and seafloor spreading 251–2, 253–4, 309–10
Capricorn seamount 258–9
Emperor Seamounts 281
origin of 202
Pacific Ocean 290
see also guyots
Sears, M. 214
sedimentology see Squantum Tillite; turbidites
seismic profiling
Bullard 145–6
Ewing 145–6
seismic refraction studies 69–70, 255, 264–5, 271
seismic slip vectors 28
seismology
Airy phases 371
Jeffreys’ contribution 139
seismic wave time-travel tables 117
T-waves 371–2
self-exciting dynamo hypothesis 62
serpentinization
and formation of guyots 225–9
and formation of mid-ocean ridges 228–9
and mountain building 205–11
and seafloor features 200, 205–11, 335–6
at ocean ridges 243, 244–7
in the oceanic crust 238, 239–43, 269–70, 271
Sewell, R. B. S. 380–1
shatter cones (Dietz) 286–8
Shaw, N. 139
Shepard, F. P. 256, 280–1
Shikama, T. 9
Shimizu, Y. 76–9
Shirley, J. 39, 182
Shoemaker, C. 284
Shoemaker, E. 284, 286
Shor, G. G. 256–7, 261–3, 268, 335
Shotton, F. W. 38, 41, 171, 172
Shurbet, L. 259–61
sial-sima theory 58
Sigurgeirsson, T. 158–9
Siletz River Volcanics 163, 180
Simpson, G. G. 58, 61–2, 141, 183, 185
Smith, A. 143
Smuts, J. C. 106
snails, South Pacific islands 216
Snodgrass, J. 341
solid state physics, significance to mobilism 18, 19–20
South America, fit with Africa 156, 157
South Atlantic, reassessment of arguments for mobilism 68–9
South Pacific islands 216
spherical harmonics 233–4, 242, 247, 248–9
Spitzbergen, Harland’s fieldwork 47–8
Quantum strata 43
dating of 3–4
Quantum Tillite 10, 16–17, 74
reexamination by Dott 1–7
Stacey, F. D. 79, 82, 123, 159
Steenland, N. C. 360
Stehli, F. G. 10, 29, 102, 103, 164, 180, 182
attack on Irving and Brown’s paleolatitudes 104–7
Newcastle NATO conference (1963) 38, 39, 40
technological belt hypothesis 106–7
Steinheim Basin, Germany 284–5, 286
Stetson, H. 321, 323
Stillwater Complex, Montana 205
Stott, P. M. 81–5, 123, 159
Stratigraphy and Life History (Kay and Colbert, 1965) 67–76
strike-slip faulting 271
Stubbs 45, 165
Subduction and seafloor spreading 198
work of R. L. Fisher 261
Sudbury, Canada, astrobleme site 287–8
Suess, F. E. 42
Sunda Trench 271
Sutton, D. 83–4
Sutton, G. H. 261
Swallow, J. C. 380, 381, 382–3
T-waves (seismology) 371–2
Takeuchi, H. 73, 79–81, 185
Talwani, M. 261, 421
Index

Tarling, D. 82
Taylor, F. B. 127–8
technological belt hypothesis 106–7
tectogene (downbuckling) hypothesis 202, 203–12, 254–5, 258–9, 271
difficulties with 229–32
Fisher’s disagreement with 263
Lamont opposition to 259–61, 265
Teichert, C. 182
Tharp, M. 152, 356, 363, 373
beginning of work with Heezen 380
discovery of the median rift valley 380, 381, 383–91, 393
Ewing–Heezen rift 420–1
making of an oceanographic cartographer 378–80
The Earth (Jeffreys) 130–1, 138, 140, 180
The Earth’s Crust and Mantle (Vening Meinesz, 1964) 127–8
The Geography of the Flowering Plants (Good, 1964) 56
The Rotation of the Earth (Munk and MacDonald) 130, 137, 180, 352
Thorley, N. 9
tidal theories 140
tillites 68
distinction from turbidites and slumps 2–3, 13–14, 16–17, 43–4
Eo-Cambrian 48
Infra-Cambrian 50–1
time-averaged GAD field 45–7, 186
Tolstoy, I. 220, 260
work with Ewing 366–73
Tonga Trench 230, 231, 257, 258–9, 262, 268–9, 271
transcurrent faults 70, 174, 211–12, 293–5
transform faults 166
Traylor, M. A. 256
Troughton, E. Le G. 182
turbidites 2–3, 41
distinction from glacial tillites 2–3, 13–14, 16–17, 43–4
turbidity currents 2–3, 13–14, 37, 376–8
Turkmenia 165
Turner, H. H. 119
Tuttle, O. F. 225
Tuve, M. 121
two-cell convection model of the Earth 248–9
Umbgrove, J. H. F. 202, 247–9
uniformitarianism 176
Urey, H. C. 18, 22–3, 39, 44, 247
US Geological Survey (USGS) 321
Uyeda, S. 73, 76, 79–81, 185
Vacquier, V. 26, 27–8, 155, 341–3
van Hiltien, D. 169, 175, 178
Van Houten, F. B. 9, 11–12, 17, 38
van Nickerk, C. B. 86, 87
van Steenis, C. G. G. J. 62, 182, 185–6, 217
van Zijl 87
appeal to paleomagnetism 124–6
downbuckling (tectogene) hypothesis 203–12, 254–5, 258–9, 271
Fisher’s disagreement with tectogene hypothesis 263
Lamont attacks on tectogene hypothesis 259–61, 265
mantle convection theory 124, 127–9
reconsiders mobilism 123
response to Ewing’s Vetlesen Prize talk 413–14
shear net hypothesis 330–1
supports the paleomagnetic case for mobilism 126–9
Verhoogen, J. 191
Vine, A. C. 359, 360
Vine, F. J. 26, 143, 193
Vine–Matthews hypothesis 25, 43, 63, 109, 165, 166, 184, 363, 431
volcanic seamounts, and seafloor spreading 251–2
Volgodin, A. 217
von Herzen, R. P. 151–2, 238, 347
von Neumann, J. 145
Voorsmit, A. 264
Wadati, K. 117, 119
Wadati zones 119
Wade, A. 118
Walsh, D. 282
Ward, M. 82
Warren, R. E. 341
Waters, A. C. 182
Webster-Smith, B. 167, 172
Wegener, A. 1, 3, 21, 29, 30, 42, 59, 67, 73–4, 82, 85, 100, 102, 107–9, 127–8, 129, 166, 180, 242, 274, 284, 308, 322, 366
fiftieth anniversary anthology (Continental Drift, 1962) 22–31, 126–7, 131, 134, 155, 161–2, 303–4, 305
Gutenberg’s proposed modifications 117–20
island arc formation 71–2
MacDonald’s view of 26
mountain-building theory 71–2
nature of oceanic crust 71
Weir, J. 172
Wellman, H. W. 293
West Indies 205, 208
Westoll, S. 38, 181
WHOI see Woods Hole Oceanographic Institution
476

Index

Wiechert, E. 116, 117
Willis, B. 216, 217, 322
Wilson, H. A. 359–64
Wilson, J. T. 27, 37, 81, 149, 156, 215, 233, 307, 331, 333, 408, 421
Wiseman, J. D. H. 215, 380–1
Woods Hole Oceanographic Institution (WHOI) 214, 220–1, 264–5, 274, 321, 360, 375–6

Wooldridge, S. W. 170
Woollard, G. P. 359
Wuenschel, P. 360
Wüst, G. 414

Youngaist, W. 374