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Basic Concepts

1.0 renewable, nonrenewable, and
environmental resources

Economics might be defined as the study of how society allocates scarce
resources. The field of resource economics, would then be the study of
how society allocates scarce natural resources, such as stocks of fish,
stands of trees, fresh water, oil, and other naturally occurring resources.
A distinction is sometimes made between resource and environmental
economics, where the latter field is concerned with the way wastes are
disposed and the resulting quality of air, water, and soil serving as waste
receptors. In addition, environmental economics is concerned with the
conservation of natural environments and biodiversity.

Natural resources are often categorized as being renewable or
nonrenewable. A renewable resource must display a significant rate
of growth or renewal on a relevant economic time scale. An economic
time scale is a time interval for which planning and management are
meaningful. The notion of an economic time scale can make the clas-
sification of natural resources a bit tricky. For example, how should
we classify a stand of old-growth coast redwood or an aquifer with
an insignificant rate of recharge? While the redwood tree is a plant
and can be grown commercially, old-growth redwoods may be 800
to 1,000 years old, and the remaining stands may be more appro-
priately viewed as a nonrenewable resource. While the water cycle
provides precipitation that will replenish lakes and streams, the water
contained in an aquifer with little or no recharge may be economi-
cally more similar to a pool of oil (a nonrenewable resource) than
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2 Resource Economics

to a lake or reservoir that receives significant recharge from rain or
melting snow.

A critical question in the allocation of natural resources is, “How
much of the resource should be harvested (extracted) today?” Finding
the “best” allocation of natural resources over time can be regarded
as a dynamic optimization problem. What makes a problem a dynamic
optimization problem? The critical variable in a dynamic optimization
problem is a stock or state variable that requires a difference or dif-
ferential equation to describe its evolution over time. The other key
feature of a dynamic optimization problem is that a decision taken
today, in period t, will change the amount or level of the state variable
that is available in the next period, t + 1.

In a dynamic optimization problem, it is common to try to maximize
some measure of net economic value, over some future horizon, sub-
ject to the dynamics of the harvested resource and any other relevant
constraints. The solution to a natural resource dynamic optimization
problem would be a schedule or “time path” indicating the optimal
amount to be harvested (extracted) in each period or a “policy” indi-
cating how harvest depends on the size of the resource stock. The
optimal rate of harvest or extraction in a particular time period may
be zero. For example, if a fish stock has been historically mismanaged,
and the current stock is below what is deemed optimal, then zero har-
vest (a moratorium on fishing) may be best until the stock recovers to
a size where a positive level of harvest is optimal.

Aspects of natural resource allocation are illustrated in Figure 1.1.
On the right-hand side (RHS) of this figure I depict a trawler harvest-
ing tuna. The tuna stock at the beginning of period t is denoted by
the variable Xt , measured in metric tons. In each period, the level of
net growth is assumed to depend on the size of the fish stock and is
given by the function F(Xt). I will postpone a detailed discussion of
the properties of F(Xt) until Chapter 3. For now, simply assume that
if the tuna stock is bounded by some environmental carrying capacity,
denoted K, so that K ≥ Xt ≥ 0, then F(Xt) might be increasing as Xt

goes from a low but positive level to where F(Xt) reaches a maximum,
at Xt = XMSY, and then F(Xt) declines as Xt goes from XMSY to K.

Let Yt denote the harvest of tuna in period t, also measured in
metric tons, and assume that net growth occurs before harvest. Then
the change in the tuna stock, going from period t to period t + 1, is the
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Basic Concepts 3

Rt = the stock of a nonrenewable resource (coal) Xt = the fish stock (tuna)
qt = the extraction rate of the nonrenewable resource Yt = the rate of harvest
aqt = the flow of waste when qt is consumed, 1 > a > 0 F(Xt) = the net growth function

Zt = a stock pollutant (CO2)

gzt = amount of pollutant removed via degradation

Extraction of a
nonrenewable
resource:  coal

The economy
Harvest of a 
renewable

resource: tuna 

Rt+1 − Rt = −qt

Ytqt

Xt+1 − Xt = F(Xt)−Yt

αqt

Zt+1 − Zt = −γZt + aqt

Figure 1.1. Renewable, nonrenewable, and environmental resources.

difference Xt+1 − Xt and is given by the difference equation

Xt+1 − Xt = F(Xt) − Yt (1.1)

If harvest exceeds net growth, Yt > F(Xt), the tuna stock declines,
and Xt+1 − Xt < 0. If harvest is less than net growth, Yt < F(Xt), the
tuna stock increases, and Xt+1 − Xt > 0.

We might rewrite Equation (1.1) in iterative form as Xt+1 = Xt−Yt+
F(Xt). As we will see, the iterative form is often used in spreadsheets
and computer programs. During period t, harvest Yt flows to the econ-
omy, where it yields a net benefit to various firms and individuals. The
portion of the stock that is not harvested, Xt − Yt ≥ 0, is sometimes
referred to as escapement. Escapement plus net growth F(Xt) deter-
mine the inventory of tuna at the start of period t + 1. The stock Xt

also conveys a benefit to the economy because it provides the basis for
growth, and it is often the case that larger stocks will lower the cost of
harvest in period t. Thus, implicit in the harvest decision is a balancing
of current net benefit from Yt and future benefit from a slightly larger
stock Xt+1.

In some fishery models, growth depends on escapement, where
escapement is calculated as St = Xt − Yt ≥ 0. The fish stock avail-
able for harvest in period t +1 is determined according to the equation
Xt+1 = St+F(St). Given an initial stock level X0 and a harvest schedule
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4 Resource Economics

or harvest policy (where Yt depends on Xt), it is relatively simple to
use a spreadsheet to simulate the dynamics of our tuna stock.

On the left-hand side (LHS) of Figure 1.1 I depict miners extracting
a nonrenewable resource, say, coal. The remaining reserves of coal
in period t are denoted by Rt , and the current rate of extraction is
denoted by qt . With no growth or renewal, the change in the stock is
the negative of the amount extracted in period t, so

Rt+1 − Rt = −qt (1.2)

In iterative form, we might write Rt+1 = Rt − qt .
The amount of coal extracted also flows into the economy, where it

generates net benefits, but in contrast to harvest from the tuna stock,
consumption of the nonrenewable resource generates a residual waste
flow αqt , say, CO2, assumed to be proportional to the rate of extraction
(1 > α > 0).

This residual waste can accumulate as a stock pollutant, denoted
Zt . The change in the stock pollutant might depend on the relative
magnitudes of the waste flow and the rate at which the stock pollutant is
assimilated into the environment, say, carbon sequestration by plants.
Let the stock pollutant be reduced by an amount given by the term
−γ Zt , where the parameter γ is called the assimilation or degradation
coefficient, and it is usually assumed that 1 > γ > 0. The change in the
stock pollutant then would be given by the difference equation

Zt+1 − Zt = −γ Zt + αqt (1.3)

If the waste flow exceeds the amount degraded, Zt+1 − Zt > 0. If
the amount degraded exceeds the waste flow, Zt+1−Zt < 0. In iterative
form, this equation might be written as Zt+1 = (1 − γ )Zt + αqt .

Not shown in Figure 1.1 are the consequences of different levels of
Zt . Presumably, there would be some social or external cost imposed
on the economy (society). This is sometimes represented through a
damage function D(Zt). Damage functions will be discussed in greater
detail in Chapter 6.

If the economy is represented by the cityscape in Figure 1.1, then
the natural environment, surrounding the economy, can be thought
of as providing a flow of renewable and nonrenewable resources, as
well as various media for the disposal of unwanted (negatively valued)
wastes. Missing from Figure 1.1, however, is one additional service,
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Basic Concepts 5

usually referred to as amenity value. A wilderness, a pristine stretch of
beach, or a lake with “swimmable” water quality provides individuals
in the economy with places for observing flora and fauna, relaxation,
and recreation that are fundamentally different from comparable ser-
vices provided at a city zoo, an exclusive beach hotel, or a backyard
swimming pool. The amenity value provided by various natural envi-
ronments may depend on the location of economic activities (including
the harvest and extraction of resources) and the disposal of wastes.
Thus the optimal rates of harvest, extraction, and disposal should take
into account any reduction in amenity values. In general, current net
benefit from, say, Yt or qt must be balanced with the discounted future
costs from reduced resource stocks Xt+1 and Rt+1 and any reduc-
tion in amenity values caused by harvest, extraction, or disposal of
associated wastes.

1.1 population dynamics: simulation,
steady state, and local stability

In this section I will illustrate the use of the iterative form of Equation
(1.1) to simulate the dynamics of a fish stock. I will use a spreadsheet to
perform the simulation, and in the process, I will define what is meant
by a steady-state equilibrium and the local stability for such equilibria
for a single, first-order difference equation. A steady state is said to
be locally stable if neighboring states are attracted to it and unstable
if the converse is true.

In iterative form, Equation (1.1) was written as Xt+1 = Xt +F(Xt)−
Yt . To make things more concrete, suppose that the net-growth func-
tion takes the form F(Xt) = rXt(1 − Xt/K), where I will call r > 0
the intrinsic growth rate and K > 0 the environmental carrying capac-
ity. This net-growth function is drawn as the concave (from below)
symmetric curve in Figure 1.2.

We will assume that fishery managers have a simple rule for
determining total allowable catch Yt , where the harvest rule takes
the form

Yt = αXt (1.4)

We will assume that r > α > 0 for reasons that will become apparent
in a moment. Equations that express harvest or total allowable catch
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6 Resource Economics

Y

YMSY = rK /4
Y = aX

YSS

Y = F(X) = rX(1−X /K )

0 X
XMSY = K /2 XSS K

Figure 1.2. Steady-state equilibrium for Equation (1.6).

as a function of stock size are also called feedback harvest policies. This
particular harvest policy is simply a line through the origin and is also
drawn in Figure 1.2. Substituting the specific forms for our net-growth
function and the feedback harvest policy into the iterative form of
Equation (1.1) yields

Xt+1 = Xt + rXt(1 − Xt/K) − αXt = (1 + r − α − rXt/K)Xt (1.5)

We can see that Equation (1.5) is almost begging for a spreadsheet.
If we had parameter values for r, α, and K and an initial condition X0,
we could program Equation (1.5) and have the spreadsheet calculate
X1. With the same parameters and X1, we could then calculate X2, and
so on. The fill-down feature on a spreadsheet means that we need only
type Equation (1.5) once.

Before constructing our spreadsheet and doing some simulations,
we might ask the following question: “Would it ever be the case that
the feedback harvest policy would lead to a steady-state equilibrium
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Basic Concepts 7

where Xt+1 = Xt = XSS and Yt+1 = Yt = YSS?” The unknowns
XSS and YSS are constant levels for the fish stock and harvest rate,
respectively, that are sustainable ad infinitum. The short answer to our
question is, “Maybe.” If the steady-state equilibrium is locally stable,
and if X0 is in what is called the basin of attraction, then, over time,
Xt → XSS.

We might rewrite Equation (1.5) one last time as

Xt+1 = (1 + r − α − rXt/K)Xt = G(Xt)

For equations such as Xt+1 = G(Xt), steady-state equilibria, also
called fixed points, must satisfy X = G(X). For our net-growth func-
tion and harvest policy, there will be a single (unique) steady-state
equilibrium at

XSS = K(r − α)

r
(1.6)

For XSS > 0, we need r > α > 0. Graphically, XSS occurs at the
intersection of Y = αX and Y = rX(1 − X/K) in Figure 1.2. It can
be shown that XSS will be locally stable if and only if

∣
∣G′(XSS)

∣
∣ < 1.

We refer to Equation (1.6) as an analytic expression for XSS because
our algebra allowed us to obtain an expression where XSS is isolated
on the LHS, whereas on the RHS we have nothing but parameters (K,
r, and α).

In Figure 1.2 I also have included the reference values XMSY = K/2
and YMSY = rXMSY(1 − XMSY/K) = rK/4. XMSY = K/2 is called the
stock level that supports maximum sustainable yield. When XMSY =
K/2 is substituted into the net-growth function and the expression
is simplified, it will imply that the maximum sustainable yield is
YMSY = rK/4.

We are almost ready to build our spreadsheet to simulate a fish
population whose dynamics are described by Equation (1.5). Know-
ing Equation (1.6) and the necessary and sufficient condition for local
stability will allow us to calculate XSS and know whether Xt → XSS if
X0 is in the basin of attraction. With G(Xt) = (1 + r − α − rXt/K)Xt ,
we can take a derivative and show that G′(Xt) = 1 + r − α − 2rXt/K.
With XSS = K(r − α)/r, we then can show that G′(XSS) = 1 − r + α.
Recall that the local stability of XSS required that

∣
∣G′(XSS)

∣
∣ < 1, so if

|1 − r + α| < 1, we would expect that Xt → XSS.
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8 Resource Economics
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Spreadsheet S1.1

r = 1

K = 1

a  = 0.5
Xss = 0.5

Yss = 0.25

|G'(Xss)| = 0.5

Xo = 0.1

t Xt Yt

0 0.1 0.05

1 0.14 0.07

2 0.1904 0.0952

3 0.24934784 0.12467392

4 0.311847415 0.155923707

5 0.370522312 0.185261156

6 0.418496684 0.209248342

7 0.452605552 0.226302776

8 0.474056542 0.237028271

9 0.486355208 0.243177604

10 0.492991424 0.246495712

11 0.496446592 0.248223296

12 0.498210669 0.249105335

13 0.499102133 0.249551066

14 0.49955026 0.24977513

15 0.499774928 0.249887464

16 0.499887413 0.249943707

17 0.499943694 0.249971847

18 0.499971844 0.249985922

19 0.499985921 0.249992961

Time Paths for  Xt  and  Yt

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20
t

Spreadsheet S1.1

In Spreadsheet S1.1, I have set r = 1, K = 1, and α = 0.5. For
consistency throughout this text, I will put parameter labels in column
A of the spreadsheets and their specific values in the same row but in
column B. In cells A6, A7, A8, and A9, I also enter labels for XSS,
YSS, |G′(XSS)|, and the initial condition X0. In cell B6, I program =
$B$4∗ ($B$3 − $B$5)/$B$3. In cell B7, I program = $B$3∗ $B$6∗
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Basic Concepts 9

(1 − $B$6/$B$4). In cell B8, I program = ABS(1 − $B$3 + $B$5).
In cell B9, I simply enter the number 0.1. With the carrying capacity
normalized so that K = 1, an X0 = 0.1 might be symptomatic of a bad
case of overfishing that has resulted in a stock level that is only 1/10 its
carrying capacity, which would be the stock level in the unexploited
fishery.

In row 12, columns A, B, and C, I type the labels for t, Xt ,
and Yt . In cell A13, I enter 0 and do a series fill-downs ending
in 19 in cell A32. In cell B13, I type = $B$9. In cell C13, I
type = $B$5∗ B13. Note: I omit the dollar sign ($) when I want
a variable to iterate when using a fill-down or a fill-across. This
allows me to program an iterative equation only once. In cell B14,
I program = (1 + $B$3 − $B$5 − $B$3∗ B13/$B$4)∗ B13. I then
do a one-cell fill-down from cell C13 to cell C14, and then I do
a fill-down from B14:C14 to B32:C32. If you do this correctly, you
should get = (1 + $B$3 − $B$5 − $B$3∗ B31/$B$4)∗ B31 in cell B32
and = $B$5∗ B32 in cell C32. I finally select cells A13:C13 through
A32:C32, click on the “Chart Wizard,” and select the scatter dia-
gram with lines. After entering the chart title and placing t on the
x axis, we end up with the chart in the lower right-hand corner of
Spreadsheet S1.1. We see from our previous calculations for XSS,
YSS, and |G′(XSS)| that when we simulate the fish population from
X0 = 0.1, Xt in fact converges to XSS = 0.5, whereas Yt converges to
YSS = 0.25.

One of the great things about setting up the spreadsheet in this
manner is that we can change a parameter, and the spreadsheet
instantly recomputes and replots variables and charts. What happens
if we change r to r = 2.6? In this case, the spreadsheet computes
XSS = 0.80769231 and YSS = 0.40384615, but the local stability con-
dition is not satisfied because

∣
∣G′(XSS)

∣
∣ = 1.1 > 1. From the plot

of Xt and Yt we see that we will never converge to the steady-state
equilibrium. Looking at the numerical values for Xt and Yt , we see
that they have locked into what is called a two-point cycle. We will
see that a single nonlinear difference equation or two or more non-
linear difference equations (called a dynamical system) are capable
of complex dynamic behavior, including deterministic chaos, where
the steady-state equilibrium, calculated in advance of simulation, is
never reached.
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10 Resource Economics

1.2 extraction of a nonrenewable resource

In Section 1.5 I will present a nonrenewable-resource model where the
optimal extraction policy, in feedback form, is given by the equation

q∗
t = [δ/(1 + δ)]Rt (1.7)
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Spreadsheet S1.2

δ  = 0.02

R0 = 1

t Rt qt

0 1 0.019607843

1 0.980392157 0.019223376

2 0.961168781 0.018846447

3 0.942322335 0.018476909

4 0.923845426 0.018114616

5 0.90573081 0.017759428

6 0.887971382 0.017411204

7 0.870560179 0.017069807

8 0.853490371 0.016735105

9 0.836755266 0.016406966

10 0.8203483 0.016085261

11 0.804263039 0.015769864

12 0.788493176 0.015460651

13 0.773032525 0.0151575

14 0.757875025 0.014860295

15 0.74301473 0.014568916

16 0.728445814 0.014283251

17 0.714162562 0.014003187

18 0.700159375 0.013728615

19 0.68643076 0.013459427

20 0.672971333 0.013195516

21 0.659775817 0.012936781

22 0.646839036 0.012683118

23 0.634155918 0.01243443

24 0.621721488 0.012190617

25 0.609530871 0.011951586

26 0.597579285 0.011717241

27 0.585862044 0.011487491

28 0.574374553 0.011262246

29 0.563112307 0.011041418

30 0.552070889 0.010824919

31 0.54124597 0.010612666

32 0.530633304 0.010404575

33 0.520228729 0.010200563

34 0.510028166 0.010000552

35 0.500027613 0.009804463

36 0.49022315 0.009612219

37 0.480610932 0.009423744

38 0.471187188 0.009238964

39 0.461948223 0.009057808

40 0.452890415 0.008880204

41 0.444010211 0.008706083

42 0.435304128 0.008535375

43 0.426768753 0.008368015

44 0.418400739 0.008203936

45 0.410196803 0.008043075

Optimal Time Path for Rt

0
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1
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0 10 20 30 40 50

t

Spreadsheet S1.2
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