
1 Water resources management

1.1 GENERAL

The water resource has a major influence on human activities.

It is a major input in almost all sectors of human endeavor.

Water serves essential biological functions and no human can

survive in its complete absence. Water’s contributions to

human welfare include its role as a basic element of social

and economic infrastructure. Also important are water’s nat-

ural attributes that contribute to human aesthetic enjoyment

and general psychological welfare. But water also has negative

impacts on human well-being. Floods, inundations, and water-

borne diseases are also associated with water.

Water has played a major role in socio-economic develop-

ment due to the magnitude and widespread occurrence of

its positive and negative impacts. The quality of human life

is directly dependent on how well these resources are man-

aged. Water management activities are intended to enhance

the positive contributions of water or control its negative

impacts.

Ancient civilizations grew up in the river valleys of the

Tigris and Euphrates, Nile, Indus, Yellow River, etc., where

there was plenty of water. Water management activities, par-

ticularly irrigation, played a central role in the development of

these civilizations. In those days the planning and manage-

ment of the water resources were primarily for single uses. The

continuing growth of the human population, especially since

the nineteenth century, together with rapid industrial develop-

ment and rising expectations of a better life necessitated more

complex and consistent water resources management. These

competing demands and uncontrolled use, along with the

pollution of water, have made it a scarce resource.

Water resources problems are going to be more complex

worldwide in the future (Simonovic, 2000). Population

growth, climate variability, regulatory requirements, project

planning horizons, temporal and spatial scales, social and

environmental considerations, transboundary consider-

ations, etc., all contribute to the complexity of water resources

planning and management problems. Traditional engineering

has gradually been overchallenged by the multitude of

claims, constraints, and opportunities. Since the Second

World War, systems analysis has emerged as one of the

tools for solving such complex water resources management

problems (Dantzing, 1963; Hillier and Lieberman, 1990;

Loucks et al., 1981).

Systems analysis can generally be defined as a group of

methods developed for identifying, describing, and screening

a system, its performance and behavior under different con-

ditions and with different goals to be pursued. It provides a

decision maker with a broad information base about the

system and gives the opportunity of estimating the system

behavior to compare several feasible alternatives. In its pro-

cess, a variety of initial assumptions, objectives, constraints,

and decision variables are specified and their influence on the

system operation is evaluated. Hence, systems analysis tech-

niques can be very valuable tools for solving planning and

operating tasks in water resources management based on the

systematic and efficient organization and analysis of relevant

information.

There are a number of terms which are used synonymously

with the systems approach; these include systems engineering,

operations research, operations analysis, management sci-

ence, cybernetics, and policy analysis. Hall and Dracup

(1970) defined systems engineering as the art and science of

selecting, from a large number of feasible alternatives involv-

ing substantial engineering content, that particular set of

actions which will accomplish the overall objectives of the

decisions makers, within the constraints of law, morality,

economics, resources, political and social pressures, and

laws governing physical life and other natural sciences.

Together with the determination of physical elements of a

system, the operation policy of the system is equally impor-

tant in finding the best performance of the system to serve its

purpose. The operation policy of a water resources system can

be defined on a short-term or a long-term time base. This
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classification implies not only the time base (e.g., hourly or

daily for short-term and monthly or seasonal for long-term

operation) but also the uncertainty of the system and its

components. For short-term operation, uncertainty may be

neglected, and all the phenomena can be considered as deter-

ministic. However, for long-term operation the stochasticity,

inherent both in a system and in its environment, must not be

neglected. The complexity of a system itself, together with the

uncertainty of all the phenomena involved including the goals

to be achieved, raises the need for effective methods for deriv-

ing such operation policies that would provide an expected

‘‘optimal’’ response of the system under a number of different

conditions. A variety of methods in systems analysis or oper-

ations research have been developed for analyzing water

resources systems. In general, systems analysis implies two

basic strategies in operational assessment: simulation and

optimization approaches.

Simulation is used to analyze the effects of proposed man-

agement plans: achievement regarding system performance is

evaluated based on selected sets of decisions. By definition,

the simulation method does not claim that a particular com-

bination of decisions represents the optimal one. The diffi-

culty inherent in this approach is the large number of feasible

operation plans (combinations of decisions) to be checked. If

simulation alone were used, the search for the ‘‘best’’ solution

might not only be very tedious, but also could lead to alter-

natives far from the optimal one.

Optimization models are used to narrow down the

search for promising combinations of decision variables.

Optimization eliminates all the undesirable operation plans

and proposes policies which are close to the global optimal

solution. However, optimization usually relies on a very sim-

ple representation of a water resources system. Therefore,

optimized alternatives may be further refined by applying

simulation techniques. The most frequently used optim-

ization techniques in water resources management can be

classified into three major groups: (1) linear programming

(LP), (2) dynamic programming (DP), and (3) nonlinear pro-

gramming (NLP). This general classification, in addition to

simulation models, represents the basic methods used in plan-

ning andmanagement of water resources systems (Yeh, 1985).

An extremely large number of simulation and optimization

models providing a broad range of analysis capabilities for

evaluating reservoir operations have been built over the past

several decades. Wurbs (1993) sorted through these numer-

ous models and reached a better understanding of which

method might be the most useful in various types of deci-

sion support situations. Since most of the water resources

systems display considerable nonlinearities and sequential

nature, operational assessment – especially in the case of

reservoirs – is usually based on DP. The more so, since DP

lends itself to a relatively easy incorporation of stochasticity

(Loucks et al., 1981).

1.2 ROLE OF RESERVOIRS

According to Takeuchi (2002), there are presently nearly

40 000 large reservoirs in the world impounding approxi-

mately 6000km3 of water and inundating an aggregate area

of 400 000 km2.Recent surveys show that this number increases

at a rate of approximately 250 new reservoirs each year. These

figures clearly reflect the fact that reservoirs, irrespective of

their interference in the aquatic ecosystem of the respective

watercourse, have a firmly established position in our striving

to harness and manage the available water resources.

The history of man-made reservoirs can be traced back to

antiquity. Perhaps at the beginning the ‘‘water reservoir’’ was

nomore than a huge tank to store water during the wet season

for use during the dry season. Today, with the development of

civilization, reservoirs can be found all over the world. The

reservoirs can serve single or multiple purposes including

hydropower generation, water supply for irrigation, indus-

trial and domestic use, flood control, improvement of water

quality, recreation, wildlife conservation, and navigation.

The effective use of reservoir systems has become increasingly

important. Next to the exigence of the rational use of a

limited resource, a better-managed reservoir may make the

physical extension of the system – to add new reservoirs –

unnecessary. The operation of a single reservoir for a single

function does not present many analytical problems, but the

same is not true when a reservoir fulfils a number of poten-

tially conflicting objectives or where several reservoirs are

operated conjunctively. Through a global review of perform-

ance of dams/reservoirs, the World Commission on Dams

(2000) presented an integrated assessment of when, how, and

why dams/reservoirs succeed or fail in meeting development

objectives.

Reservoir construction was most intensive during the

period 1950–70 in many well-developed regions where river

runoff was finally almost fully regulated. Subsequently, the

rates of reservoir construction have decreased considerably

although they are still high in those countries with rich natural

resources of river runoff. This is caused partly by the increas-

ing role of hydropower engineering where there are liquid and

solid fuel deficits. In addition, reservoirs provide the greater

part of the water consumed by industry, power stations, and

agriculture. They are the basis for large-scale water manage-

ment systems regulating river runoff as well as protecting

populated areas from floods and inundations.
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1.3 OPTIMAL RESERVOIR OPERATION

Reservoirs have to be best operated to achieve maximum

benefits from them. For many years the rule curves, which

define ideal reservoir storage levels at each season or month,

have been the essential operational tool. Reservoir opera-

tors are expected to maintain these pre-fixed water levels

as closely as possible while generally trying to satisfy

various water needs downstream. If the levels of reservoir

storage are above the target or desired levels, the release

rates are increased. Conversely, if the levels are below the

targets, the release rates are decreased. Sometimes opera-

tion rules are defined to include not only storage target

levels, but also various storage allocation zones, such as

conservation, flood control, spill or surcharge, buffer, and

inactive or dead storage zones. Those zones also may vary

throughout the year and the advised release range for each

zone is provided by the rules. The desired storage levels and

allocation zones mentioned above are usually defined based

on historical operating practice and experience. Having only

these target levels for each reservoir, the reservoir operator

has considerable responsibility in day-to-day operation with

respect to the appropriate trade-off between storage levels and

discharge deviations from ideal conditions. Hence, such an

operation requires experienced operators with sound judg-

ment. Needless to say, predetermined operation rules have

proven to be quite inflexible when dealing with unexpected

situations.

To counteract the inefficiency in operating a reservoir sys-

tem only by the ‘‘rule curves,’’ additional policies for opera-

tion have now been incorporated intomost reservoir operation

rules. These operation guidelines define precisely when condi-

tions are not ideal (e.g., when maintenance of the ideal storage

levels becomes impractical), and the decisions to be made for

various combinations of hydrological and reservoir storage

conditions. For some reservoir systems, this type of operation

policy has already taken over the rule curves and is acting as the

principal rule for reservoir operation.

Over the past several decades, increasing attention has been

given to systems analysis techniques for deriving opera-

tion rules for reservoir systems. As the references reveal, the

1980s and 1990s were the most productive period in this

respect. As a result, a variety of methods are now avail-

able for analyzing the operation of reservoir systems. In

general, these techniques lead to models which can be classi-

fied into two categories: optimization models and simula-

tion models. Simulation models can effectively analyze

the consequences of various proposed operation rules and

indicate where marginal improvements in operation policy

might be made. However, the simulation technique is not

very appropriate in selecting the best rule from the set of

possible alternatives.

Optimization models can eliminate the clearly undesirable

alternatives. Yeh (1985) reviewed the state-of-the-art of the

mathematical models developed for reservoir operations. The

alternatives that are found to be most promising based on

optimization methods can then be further analyzed and

improved using simulation techniques.

Although both optimization and simulation can be, and at

times are, used independently to analyze an operational pro-

blem, they are essentially two complementary methods. In

fact, optimization and simulation are used conjunctively to

derive and to assess alternative operating strategies of single

andmultiple reservoir systems (e.g., Jacoby and Loucks, 1972;

Mawer and Thorn, 1974; Gal, 1979; Karamouz and Houck,

1982, 1987; Stedinger et al., 1984; Tejada-Guibert et al., 1993;

Harboe et al., 1995; Liang et al., 1996).

Linear programming (LP) and dynamic programming

(DP) have been the most popular among the optimization

models in deriving optimum operation rules for reservoir

systems. Linear programming is concerned with solving

problems in which all relations among the variables are

linear, both in the constraints and in the objective function

to be optimized. The fact that most of the functions encoun-

tered in problems with reservoir operation are nonlinear has

been the main obstacle to the successful and practically rele-

vant use of LP in this area. Although linearization techniques

can be employed, this might not be satisfactory. The degree

of the approximation required in the linearization process

can seriously affect the reliability associated with this techni-

que. However, LP has been used in optimal reservoir oper-

ation and the following are some applications: Gablinger and

Loucks (1970), Roefs and Bodin (1970), Gilbert and Shane

(1982), Shane and Gilbert (1982), Palmer and Holmes (1988),

Randall et al. (1990), Reznicek and Simonovic (1990, 1992).

Due to this favorable coincidence the authors are convinced

that dynamic programming and its derivative techniques

have a superior applicability to serve as the basis for the

operation of real-world reservoir systems. Hence this book

is dedicated to exploring this potential. More than two dec-

ades after the large-scale introduction of DP based reservoir

operational studies, the time has come to review the develop-

ment and to outline, supported with practical case studies,

the vast field of applicability of DP based rules in reservoir

system operation.

Dynamic programming, a method that breaks down a

multidecision problem into a sequence of subproblems

with few decisions, is ideally suited for time-sequential

decision problems such as deriving operation policies for

reservoirs.
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1.4 CONVENTIONAL DYNAMIC

PROGRAMMING

Dynamic programming is a technique used for optimizing a

multistage process. It is a ‘‘solution-seeking’’ concept which

replaces a problem of n decision variables by n subproblems

having preferably one decision variable each. Such an

approach allows analysts to make decisions stage-by-stage,

until the final result is obtained. Hence the original problem

needs to be decomposed into subproblems and each subpro-

blem is referred to as a stage. This decomposition could be

defined either in space or in time. Each stage is characterized

by different system states expressed by the numerical value of

selected state variable(s). Transition of the state from one

stage to the next is expressed by a particular course of action

(or the decision what to do), which is represented by a decision

variable. Changes of the system’s state influenced by the

decision taken at the previous stage are described by the

state transformation equation. This transition of the state is

possible only if certain rules are followed: both system state

and decision variable can take values within particular

domains. These limits form a set of constraints which must

be met at every stage during the optimization process.

The computational routine for deriving the optimal policy

follows Bellman’s recursive equation (Eq. 1.1), which is

described diagrammatically in Figure 1.1. This can be solved

by either moving forward (forward DP) or moving backward

(backward DP) stage by stage.

For every state s at stage j the optimal policy is given by

(subscripts denote backward computational procedure)

f �
j sj
� � ¼ min

max CSjXj
þ f �

jþ1 sjþ1

� �n o
xj

; (1:1)

where

CSjXj
¼ costs or contribution of the decision Xj given state Sj

at the actual stage,

f �jþ1 ¼ accumulated suboptimal costs (or contribution) for

following stages jþ 1, jþ 2, . . . , N,

N ¼ total number of stages,

sj ¼ system state at stage j,

sjþ 1¼ t(sj, xj) ¼ state transformation equation,

j ¼ stage, and

xj ¼ decision taken at stage j.

In other words the above equation reflects Bellman’s

principle of optimality. Generally, the DP procedure starts

by setting the objective function’s value (cost or benefit) at the

initial stage to zero, or any other arbitrary value. Subsequently,

suboptimal policy derived at the last computational stage is

actually the global optimum of the problem. The optimal

policy can then be derived as a set of decisions, each of which

is taken at a subsequent stage with respect to the corresponding

suboptimal decisions derived at the preceding stage.

It is essential to point out that DP models require problem-

specific formulations. This is due to differences that appear

among the variety of problems that can be solved using DP:

objective functions can have different forms; some problems

have one and some of them can have several state variables;

state transformation equations are not the same in all cases;

decision variables can vary among different problems, etc.

1.5 INCREMENTAL DYNAMIC

PROGRAMMING

Simultaneous derivation of operation policies for all the res-

ervoirs in a multi-reservoir system is important, because the

optimum conditions of the system cannot be investigated by

considering reservoirs in isolation. In conventional DP, the

state variables (reservoir storage) are normally discretized.

Dense discretization is preferred over a coarse one to obtain

an operation policy close to the global optimum. These two

factors, simultaneous investigation of all the reservoirs of the

system (state variables) and dense discretization of these state

variables, exponentially increase the total number of state

variables to be considered. This phenomenon is termed the

‘‘curse of dimensionality’’ of DP problems.

Larson (1968) introduced incremental dynamic program-

ming (IDP), a successive approximation method, to overcome

high dimensionality problems. This chapter presents the IDP

technique. Several applications of the IDP technique in reser-

voir management are presented in subsequent chapters.

Incremental dynamic programming is one of the techniques

used in alleviating the problems of excessive time and com-

puter storage requirements. The general scheme of IDP proce-

dure is concisely presented in Figure 1.2. IDP uses the recursive

equation of DP to search for an improved trajectory starting

with an assumed feasible solution, which can be visualized as a

trial trajectory. The improved trajectory is then sought within

the pre-specified range, defined as the ‘‘corridor.’’

Figure 1.1 Basic structure of dynamic programming
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The computation cycle is complete when the search process

has converged to the optimal trajectory according to a pre-

specified convergence criterion. New iteration steps are

needed as long as the convergence criterion is not satisfied.

In the next iteration the locally improved trajectory obtained

from the previous iteration serves as the new initial trial

trajectory.

The IDP procedure begins with selection of a trial trajec-

tory. A trajectory is the sequence of admissible transforma-

tions of the state vectors throughout the entire period of

consideration. It also defines the initial value of the objective

function. A trajectory is feasible if it satisfies all constraints. It

is optimal if it is associated with the best possible achievement

of the objective criterion of the system performance.

The basic idea behind the selection of an initial trajectory is

to provide, for the search process for the optimal trajectory,

both a starting point and a region called the ‘‘corridor’’

around the trial trajectory. The initial trial trajectory should

therefore be feasible since it serves as the first approximation

of the optimal trajectory.

The next step of the IDP procedure after determining an

initial trial trajectory is construction of a corridor around it as

shown in Figure 1.3.

The corridor specifies the values of state variables to be

considered at each time step in the optimization process. For a

given corridor, the difference between adjacent values of a

state variable is the width of corridor. In general, a corridor

for a single-reservoir system consisting of three state variables

is defined symmetrically around the trial trajectory of state

variable Sj as follows:

UBC ¼ Sj þ�; (1:2)

Figure 1.3 Construction of the corridor for IDP

Figure 1.2 Incremental dynamic programming optimization

procedure
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LBC ¼ Sj ��; (1:3)

where

UBC ¼ upper bound of corridor,

LBC ¼ lower bound of corridor,

� ¼ half corridor width, and

Sj ¼ state variable at the beginning of stage j based on the

initial policy (first trial).

However, nonsymmetrical corridors may result if any of the

boundaries of the corridor exceed the feasible state space of

the system.

After the construction of a corridor around the trial trajec-

tory, an improved trajectory and the corresponding objective

function value within the corridor are sought. This is done by

using the recursive equation of the conventional DP algorithm

restricting computations of the state transformations to pre-

fixed values of state variables within the pre-specified corridor.

Convergence behavior of the IDP algorithm to reach the

global optimum is an essential issue. Selection of the feasible

initial trial trajectory is entirely an arbitrary process. But in

standard practice the initial corridor width is a coarse one.

This technique follows the principle of choosing the initial

corridor width sufficiently large to cover a considerable

range of potential storage volume for the first cycle of the

IDP procedure. The corridor width is decreased progressively

as the iteration proceeds (Turgeon, 1982).

In general, the larger the initial corridor width around the

initial trajectory, the smaller the number of iterations required

to reach the optimal solution. Use of a large corridor width in

earlier iterations is to ensure that the improved trajectories for

such iterations are really obtained. Moreover, since the initial

trajectory for any later iteration is the improved trajectory

compared to the preceding one and it is closer to optimality,

smaller corridor widths can be used in later iterations to

search for the optimal trajectory.

The iterative process is then continued until a convergence

criterion, explained later, is fulfilled. The objective function

value obtained after termination of the IDP is considered as

the optimum value. To ensure that the final solution is a true

optimum value, a fewmore sets of IDP computation runs with

different initial corridor widths may be attempted and the

results compared to check whether the solution obtained

remains the same.

According to the IDP procedure, each iteration of search

for the improved trajectory results in a trajectory which is

associated with a better value of the objective function

than that of the trajectory for the preceding iteration. The

convergence of the IDP solution exhibits a monotonic

nature. Thus, a point convergence cannot be attained unless

the cycle of computation is allowed infinitely. Therefore, the

convergence criteria should be defined to limit the computer

time used.

The iterative process of IDP is repeated until there is no

further significant improvement of objective function value.

As a criterion to terminate the computation, the following

expression can be applied. That is, whenever

OFi �OFi�1ð Þ
OFi�1ð Þ � 0:0001 (1:4)

then the computation cycle should be terminated.

Here, OFi is the objective function’s value with respect to

the set of constraints for iteration, i¼ 1, 2, 3, . . .

Instead of searching for the optimal solution over the

entire state-space domain as in the classical DP, only three

states of storage volume are involved in the analysis at any

iteration in the case of a single reservoir. Similarly, IDP can

tackle multiunit reservoir systems by taking a limited state

space for every individual reservoir in the system. Thus, this

technique can overcome the problem of dimensionality.

Computer storage and computer time requirements can be

reduced considerably.

1.6 STOCHASTIC DYNAMIC

PROGRAMMING

Stochastic dynamic programming (SDP) is very common in

reservoir operation. Since uncertainty is the inherent charac-

teristic of water resources systems, it is often inadequate to opt

for deterministic decisionmodels, at both planning and opera-

tional stages.

The stochastic nature of inflows can be handled by two

approaches: an implicit or an explicit approach. In the implicit

approach, a time series model is used to generate a number of

synthetic inflow sequences. The system is optimized for each

streamflow sequence and operating rules are found by multi-

ple regression. During the optimization the synthetic data

series are considered as deterministic series. The implicit

approach optimizes the system operation under a large num-

ber of streamflow sequences, at the expense of computer time.

The explicit approach considers the probability distribu-

tion of the inflows rather than specific flow sequences. This

approach generates an operation policy comprising storage

targets or release decisions for every possible reservoir storage

and inflow state combination in each time step, rather than a

mere single schedule of reservoir releases.

Future states or outcomes of any stochastic process such as

rainfall and streamflow cannot be predicted with certainty.

However, based on past performance, probability associated
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with any particular outcome may be estimated. Hydrological

uncertainty of streamflows is explicitly taken into considera-

tion in the explicit SDP models. These models incorporate

discrete probability distributions in the optimization process.

They describe the extent of uncertainty of future occurrences

of streamflows and correlations of streamflows in time and

space that may be present among streamflow time series to

different reservoirs of the same water resources management

system.

Assuming that the unconditional steady-state probability

distributions for monthly streamflows are not changing from

one year to the next, a Markov chain could be defined for

streamflow. Since there are 12months in a year there would be

a lag-one Markov chain with 12 transitional probability

matrices. The elements of it could be denoted as Pj
p;q, the

probability of occurrence of a streamflow class q in month

( jþ 1) given a streamflow state p in month j. In the model

presented, first order (lag-one) Markov chains are used

to estimate the discrete conditional (transition) probabilities

that represent the stochasticity inherent in streamflows.

Discrete transition probabilities are estimated for a number

of representative inflow values for each month, using the

available historical streamflow records.

In a DP formulation of a reservoir operational problem,

time periods are often considered as stages. The stored vol-

umes of water in reservoirs at the beginning of the time

periods represent the state of the system. The decisions to be

taken at each stage are the quantities of water to be released.

These can be implicitly identified by specifying the storage

volumes at the next stage (identifying the storage volumes at

the end of the time step considered). To incorporate the

markovian nature of the streamflow, it is also defined as a

state variable in SDP formulations. Therefore, a SDP formu-

lation of a reservoir operational problem will have a two-

dimensional state space representing the storage volumes

and inflows to the reservoirs.

Use of SDP requires discretization of state variables and

representation of them by a finite number of characteristic

values. Sets of characteristic (representative) storage volumes

and streamflows are chosen to cover the entire range of pos-

sible storage volumes and streamflows.

The domain of inflows, which must be wide enough to

represent the entire range of potential inflows, is divided into

a certain number of intervals or classes. These intervals or

classes could be equally spaced or of variable size. In general,

averages of the inflows that fall into these intervals are chosen

as discrete values to represent inflow classes. The values rep-

resent the entire interval in the subsequent computations.

Means and variances of inflows during each month can be

used to checkwhether they are reproduced by the discretization.

If they are found to be not reproducing these statistics satisfac-

torily, a trial-and-error selection of the class margins and repre-

sentative values may be used. Frequency diagrams can be of

help in the selection procedure.

Interval (Sj,min, Sj,max) is divided intoNS� 1 equally spaced

storage intervals, where Sj,min and Sj,max are the minimum and

maximum limits of live storage of the reservoir at the begin-

ning of month j. NS is the number of reservoir space classes.

Then the boundary values of these equally spaced intervals are

used as discrete values of storage.

The backward stochastic dynamic programming algorithm

(Loucks et al., 1981) is used for optimizing reservoir opera-

tion. The forward algorithm has no sense in the case of SDP,

as the expectation over the future states has to be considered.

The SDP optimization process derives the optimum operating

strategy of the reservoir from Bellman’s backward recursive

relationship:

Fn
j ðSjÞ ¼ Opt

Xj
B Sj;Sjþ1; Ij
� �þP

q
Pj
p;q � Fn�1

jþ1 ðSjþ1Þ
( )

;

(1:5)

where

B(Sj, Sjþ 1, Ij) ¼ cost or contribution of the decision Xj given

state Sj at the initial stage,

Fn�1
jþ1 ¼ accumulated suboptimal cost (or contribution) by opti-

mal operation of the reservoir over the last n� 1 stages,

Ij ¼ inflow during period j,

Pj
p;q ¼ transition probabilities of inflows (defined previously),

Sj ¼ system state at stage j,

Sjþ 1¼ t(Sj,Xj) ¼ state transformation equation,

j ¼ stage, and

Xj ¼ decision taken at stage j.

The outline of the SDP procedure is displayed in Figure 1.4.

The SDP procedure starts by initiating the values of the

objective function at the last stage (a month in the future) to

zero, or any other arbitrary value, for each combination of the

discrete values of the two state variables at some time step in

the future. Thereafter the process continues by traversing

backwards along the temporal stages (i.e., months). The opti-

mization consists of a number of iterations, each having 12

monthly stages representing one annual cycle. Usually one

iteration cycle comprises 12 stages (months) of computation

but more refined temporal stages (decades, etc.) can also be

envisaged. The aggregate of the objective function’s expect-

ation grows by setting its value at the beginning of each

iteration (i.e., a year) to the respective accumulated value of

the objective function at the end of the last stage of the

previous iteration. After a few iterations, the increase in

value for any state over a period of one year becomes constant
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and independent of the state. This is the expected annual

return from the operation of the system.

There are two criteria that determine the convergence.

(a) Stabilization of the expected annual increment of the

optimum value obtained by Bellman’s recursive formula

(Loucks et al., 1981).

During continued backward computation of the SDP algo-

rithm, the optimum expected return for all possible initial

states will be determined for each stage (month). When the

expected return for a period of one year becomes constant for

all state transformations in each stage (month), the conver-

gence criterion of constant expected annual objective achieve-

ment is satisfied.

(b) Stabilization of the operation policy (Chow et al., 1975).

At each stage (month) of the SDP algorithm, an operation

policy for that stage is determined. After continuing backward

Discretize inflow to reservoir and compute inflow
transition probability matrices for each stage

Discretize storage space of reservoir

Compute benefit for all feasible
state transformations

Next cycle

Stop

Yes

No

Convergence
criteria satisfied?

Formulate table of decisions for all sets of conditions
(storage and inflow classes in each stage)

Optimize benefit for remaining stages

Repeat, starting at last
stage and proceeding

towards first

Start

Perform recursion

+ ∑ Pp,q × Fj+ 1 (Sj+1)
Xj

Fj (Sj ) = Optn (Sj,Sj +1,Ij)B j

q

n–1

Figure 1.4 Flow diagram for the stochastic dynamic programming model

8 WATER RESOURCES MANAGEMENT

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-87408-3 - Dynamic Programming Based Operation of Reservoirs: Applicability and Limits
K. D. W. Nandalal and Janos J. Bogardi
Excerpt
More information

http://www.cambridge.org/0521874084
http://www.cambridge.org
http://www.cambridge.org


computation for a couple of annual cycles, a stable operation

policy can be obtained. This implies that once stabilized the

operation policy for a specific month will not change from

year to year. When this condition is reached the convergence

criterion of stabilization of the operation policy is achieved.

Operation policy designated by SDP is a set of rules specify-

ing the storage level at the beginning of the next month for

each combination of storage levels at the beginning of the

current month and inflow during the current month. Due to

the discrete nature of the SDP algorithm, the number of state

transformations in any stage shows an exponential growth

with increase of the number of state variables. A polynomial

growth of the number of state transformations at each stage

can be noted with increase of the number of state discretiza-

tions. This is reflected in the excessive computer time and

memory requirements necessary to run a SDP model with a

comparatively fine discretization of state variables.

1.7 DYNAMIC PROGRAMMING IN

RESERVOIR OPERATIONS

Dynamic programming is an approach developed to solve

sequential, or multistage, decision problems; hence the name

‘‘dynamic’’ programming. But this approach is equally appli-

cable for decision problems where the sequential property is

induced solely for computational convenience.

The DP technique is efficient in making a sequence of

interrelated decisions. It is based on Bellman’s principle

of optimality (Bellman, 1957): ‘‘An optimal policy has the

property that whatever the initial state and the initial deci-

sions are, the remaining decisions must constitute an optimal

policy with regard to the state resulting from the first deci-

sion.’’ That implies a sequential decision process in which a

problem involving several variables is broken down into a

sequence of simpler problems, each having preferably a single

variable. DP is very well suited to studying reservoir opera-

tional problems. Since its development, the number of appli-

cations of DP in studying reservoir operational problems has

increased enormously. The DP technique is not restricted to

any particular problem structure. It can handle nonlinear

objective functions and nonlinear constraints. For most res-

ervoir problems, if DP is applied to determine reservoir

releases, the state variable is storage, the decision variable is

release and the stage is represented by time period.

Hall and Buras (1961) were the first to apply the DP tech-

nique in water resources systems analysis. They used DP to

solve a problem of capacity allocation among several reservoir

sites. Yakowitz (1982) presented state-of-the-art reviews with

extensive lists of references on DP and its applications for

several water resources problems and Yeh (1985) did the

same for optimal reservoir operation. Models developed for

solving reservoir operation problems can be classified by

how they characterize the streamflow process. One group of

models, called deterministic models, uses a specific sequence

of streamflow – either historical or synthetically generated – in

deriving operation rules. The other group of models, called

stochastic models, uses a statistical description of the stream-

flow process instead of a specific streamflow sequence.

1.7.1 Deterministic dynamic programming based

reservoir operation models

Meier and Beightler (1967) illustrated the applicability of DP

in optimizing branched multistage systems in water resources

planning. Hall and Shepard (1967) developed a DP-LP tech-

nique for optimizing a reservoir system in which the multiple-

reservoir system is decomposed into a master-problem and

subproblems. Themaster-problem could be seen as the task to

be solved by a system coordinating agency and the subprob-

lems by single-reservoir managers. In that work the subprob-

lems were solved by DP. The schedule of releases and energy

production were reported to the system coordinating agency

which was modeled by LP.

Larson (1968) introduced the concept of incremental

dynamic programming (IDP), putting DP into an iterative

context. IDP uses the incremental concept for the state vari-

ables. Only a limited state space is considered for a given

iteration run. It starts with a feasible initial solution, which

can be visualized as a trajectory along the subsequent stages.

Traditional DP is then applied in the neighborhood of this

trajectory. At the end of each iteration step an improved

trajectory is obtained, which is used as the trial trajectory

for the next iteration step.

Considering only a limited state space vastly reduces com-

puter time and memory requirements. However, the major

setback of using this technique is the possibility of ending up

at a local optimum (Turgeon, 1982). That can be avoided by

starting with large increments to define the imaginary corridor

around the actual trajectory and reducing them gradually as

the iteration proceeds. Another way to avoid getting trapped

at a local optimum is to repeat the iteration with different

initial conditions. Finally, both approaches, i.e., varying

increments and different starting solutions, can be coupled

(Nandalal, 1986).

Heidari et al. (1971) systematized the use of IDP and

referred to it as discrete differential dynamic programming

(DDDP). Nopmongcol and Askew (1976) analyzed the differ-

ence between IDP and DDDP and concluded that DDDP is a

generalization of IDP.
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Trott and Yeh (1973) developed a method to determine the

optimal planning of a reservoir system with cascade and

parallel reservoir configurations. The policy was obtained by

decomposing the original problem into a series of subprob-

lems of one state variable each and by applying Bellman’s

method of successive approximations in such a manner that

the series of optimizations over the subproblems converge to a

solution of the original problem. Each subproblem was ana-

lyzed using the DDDP technique.

Murray andYakowitz (1979) developed a successive approx-

imation dynamic programming technique using differential

dynamic programming principles, constraining a sequential

decision variable as applicable to multireservoir control prob-

lems in some cases. This approach is known as the constrained

differential dynamic programming (CDDP) algorithm.

Karamouz and Houck (1987) formulated two dynamic

programming models, one deterministic and one stochastic,

to generate operating rules for a single reservoir. The deter-

ministic model comprises a deterministic dynamic program,

regression analysis, and simulation. The stochastic model is a

stochastic dynamic program. It describes streamflow with a

discrete lag-one Markov process. It was concluded that the

deterministic model generated rules were effective in the oper-

ation of medium to very large reservoirs. The stochastic

dynamic programming generated rules were more effective

for the operation of small reservoirs.

Harboe (1987) applied DP to a system of reservoirs in

which low-flow augmentation was the main purpose. The

objective function used in the optimization is to maximize

the minimum flow. A sequential optimization starting from

upstream and considering one reservoir at a time is employed.

The optimum results of one reservoir are used as the inputs

to the downstream reservoir. The local optimum obtained was

very close to the global optimum due to the high cross-

correlation among monthly flows at different locations in

the basin.

1.7.2 Stochastic dynamic programming based

reservoir operation models

Under real-world conditions the time sequence of the stream-

flow time series or demands is not known in advance.

Therefore, deterministic optimization models are often inade-

quate for effective water resources systems analysis due to

the uncertainties inherent in the prediction of hydrological,

economic, and other factors. The stochastic nature of the

inflows can be handled by two approaches: implicit or explicit.

In the implicit approach, a time series model is used to gen-

erate a number of synthetic inflow sequences. The system is

optimized for each streamflow sequence and the operating

rules are found by multiple regression. During the optimiza-

tion the synthetic data series are considered as deterministic

series.

Although the implicit approach can be easily adopted for

single-reservoir optimization, numerous difficulties are encoun-

tered in applying it to multireservoir systems. The difficulty of

obtaining a computationally manageable algorithm which

derives the optimal results becomes much more severe when

the streamflows into each reservoir are interdependent. In such

a situation, complicated synthetic streamflow-generating mod-

els are used to obtain the cross-correlated streamflows into

each of the reservoirs. The implicit approach optimizes the

system operation under a large number of streamflow sequen-

ces, at the expense of computer time. It is therefore employed

only for long-range planning purposes.

The explicit approach considers the probability distribu-

tion of the inflows rather than specific flow sequences. This

approach generates an operation policy comprising storage

targets or release decisions for every possible reservoir storage

and inflow state in each time step, rather than a mere single

schedule of reservoir releases.

Young (1967) proposed an implicit stochastic approach to

optimize the operation of a single reservoir. He combined

Monte Carlo simulation for synthetic streamflow generation,

deterministic DP optimization, and regression analysis to

derive the operating strategy which was expressed in terms

of release as a function of initial storage volume in the reser-

voir and inflow during the time step.

Harboe et al. (1970) used deterministic DP to derive the

optimal operation policy of a single reservoir serving multiple

purposes: water supply, energy generation, flood and water

quality control downstream of the reservoir. The last two

purposes were considered as maximum storage and minimum

downstream release constraints respectively, whereas the tar-

get water supply was incorporated as a parameter into the

optimization procedure. By varying the level of the water

supply target, successive DP optimizations were applied to

obtain a family of the optimal operating trajectories with

respect to the maximization of the firm energy production.

The authors stressed the efficiency of the developed algorithm

and suggested that it could easily be implemented as the

optimization core of an implicit stochastic DP methodology.

Opricović and Djordjević (1976) presented an implicit SDP

based algorithm for optimal long-term control of a single

multipurpose reservoir with both direct and indirect users.

The approach takes into account the fact that water already

used for one purpose (direct user) can be utilized by another

user located further downstream (indirect user). The devel-

oped optimization method maximizes the total benefit earned

from the delivered water by applying DP at each of the three
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