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THE PROBLEM OF ORBIT DETERMINATION

In this chapter we define the problem of orbit determination, by specifying

its three basic mathematical elements: the dynamics, the observations and

the error model. We state the minimum principle, the least squares principle

as the main case, and attempt a classification of the types of orbit deter-

mination found in astronomy and astrodynamics. The last section contains

suggestions on the reading sequence, to adapt this book to different needs.

1.1 Orbits and observations

The two essential elements of an orbit determination problem are orbits and

observations. Orbits are solutions of an equation of motion:

dy

dt
= f(y, t, µ)

which is an ordinary differential equation; y ∈ R
p is the state vector, µ ∈

R
p′

are the dynamical parameters, such as the geopotential coefficients,

t ∈ R is the time. In the asteroid case the equation of motion is the N -body

problem, the asteroid orbit being perturbed by the gravitational attraction

of the planets; for many comets and some exceptionally accurate orbits of

asteroids the non-gravitational effects are also relevant. For an artificial

satellite the equation of motion is the satellite problem, the orbit being

mostly perturbed by the asymmetric part of the geopotential, but also by

non-gravitational perturbations.

The initial conditions are the value of the state vector at an epoch t0:

y(t0) = y0 ∈ R
p.

In the two simple cases cited above we have p = 6, i.e., the vector of the

initial condition is just formed by the position and velocity of the small
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4 THE PROBLEM OF ORBIT DETERMINATION

body in some inertial reference system. The orbits are specific solutions,

for a given value of y0 and µ, of the equation of motion (initial condition

problem). All the orbits together form the general solution

y = y(t,y0, µ),

also known as integral flow when considered as a mapping from the initial

conditions (and dynamical parameters) to the current state at time t:

y(t) = Φt
t0

(y0, µ).

For the second element we introduce an observation function

R(y, t, ν)

depending on the current state, directly upon time, and also upon a number

of kinematical parameters ν ∈ R
p′′

. The function R is assumed to be

differentiable. The composition of the general solution with the observation

function is the prediction function

r(t) = R(y(t), t,ν)

which is used to predict the outcome of a specific observation at some time

ti, with i = 1, . . . , m. However, the observation result ri is generically not

equal to the prediction, the difference being the residual

ξi = ri − R(y(ti), ti, ν), i = 1, . . . , m.

The observation function can depend also upon the index i, the most com-

mon case being the use of a two-dimensional observation function like (right

ascension, declination) or (range, range-rate), in which case R has two dif-

ferent analytical expressions, one for i even, the other for i odd. All the

residuals can be assembled forming a vector in R
m

ξ = (ξi)i=1,...,m

which is in principle a function of all the p + p′ + p′′ variables (y0, µ, ν).

The above equations define a fully deterministic model: each residual is a

single valued function of the p+p′+p′′ parameters. This function is obtained

from the observation function, for which we assume an explicit analytical

expression, by using the general solution, which is not known as an analyt-

ical expression but is uniquely defined by the differential equations; both

functions are assumed to be differentiable, see Chapter 2. These assump-

tions may not be the whole truth, as we shall see in Chapters 14 and 17,

but we shall work with them for now.
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1.2 The minimum principle 5

The random element is introduced by the assumption that every obser-

vation contains an error. Even assuming we know with perfect accuracy all

the true values (y0
∗, µ∗, ν∗) of the parameters, that our model is perfectly

complete (both for the equation of motion and for the observations), and

that our explicit computations are perfectly accurate (they are computed in

“exact arithmetic”, not with a realistic computer), nevertheless the residuals

¿∗i = ri − R(y(y0
∗, ti, µ

∗), ti, ν
∗, i) = ÿi

would not be zero but random variables. The joint distribution of ÿ =

(ÿi)i=1,...,m needs to be modeled, that is we need some assumptions, either

in the form of a probability density function or as a set of inequalities,

describing the observation errors we rate as acceptable. The probabilistic

approach in most cases uses Gaussian distributions, discussed in Chapter 3.

1.2 The minimum principle

The basic tool of the classical theory of orbit determination (Gauss 1809)

is the definition of a target function Q(¿) depending on the vector of

residuals ¿. The target function cannot be chosen arbitrarily, but needs to

satisfy suitable conditions of regularity and convexity. We shall focus on the

simplest case, in which Q is proportional to the sum of squares of all the

residuals:

Q(¿) =
1

m
¿T ¿ =

1

m

m∑

i=1

¿2
i .

A quadratic form of general type, provided it is non-negative, can be handled

with exactly the same formalism (see Chapter 5) and often needs to be

used in practical applications. Since each residual is a function of all the

parameters,

¿i = ¿i(y0, µ, ¿),

the target function is also a function of (y0, µ, ¿). The next step is to select

the parameters to be fit to the data: let x ∈ R
N be a subvector of (y0, µ, ¿) ∈

R
p+p′+p′′

, that is x = (xi), i = 1, N , with each xi either a component of the

initial conditions, or a dynamical parameter, or a kinematical parameter.

Then we consider the target function

Q(x) = Q(¿(x))

as a function of x only, leaving the vector of the consider parameters

k ∈ R
p+p′+p′′

−N (all the parameters not included in x) fixed at the assumed

value.
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6 THE PROBLEM OF ORBIT DETERMINATION

The minimum principle selects as nominal solution the point x∗ ∈

R
N where the target function Q(x) has its minimum value Q∗. The principle

of least squares is the minimum principle with as target function the sum

of squares Q(¿) = ¿T ¿/m, or some other quadratic form.

1.3 Two interpretations

The minimum principle should not be understood as if the “real” solution

needs to be the point of minimum x∗. Two interpretations can be used.

According to the optimization interpretation, x∗ is the optimum point

but values of the target function immediately above the minimum are also

acceptable. The set of acceptable solutions can be described as the confi-

dence region

Z(Ã) =

{

x ∈ R
N

∣

∣

∣

∣

Q(x) ≤ Q∗ +
Ã2

m

}

depending upon the confidence parameter Ã > 0. For least squares

Z(Ã) =

{

x ∈ R
N

∣

∣

∣

∣

∣

N
∑

i=1

¿2
i ≤ mQ∗ + Ã2

}

.

The intuitive meaning of the confidence region is clear: the solutions x in

Z(Ã) correspond to observation errors larger than those for x∗, but still

compatible with the available information on the observation procedure.

The choice of the value of Ã bounding the acceptable errors is not easy.

The alternative probabilistic interpretation describes the observation

errors ÿi as random variables with an assumed probability density, which

should be the result of an error model, justified by a priori knowledge of

the observation process and/or a posteriori statistical tests. The vector

ÿ = (ÿi), i = 1, m, is then a set of jointly distributed random variables

(see Section 3.1), and also the joint probability density function needs to be

known; in particular, independence of the errors for observations at different

times cannot be assumed, but needs to be justified by statistical tests.

Then the probabilistic model of the observation errors can be mapped in

a probabilistic model of the result of orbit determination, with a probability

density for the random variables x which in principle exists and can be, at

least under some hypotheses, explicitly computed. The probability that the

true orbit coincides exactly with the nominal solution x∗ is zero, although

under reasonable hypotheses x could be both the mode (point of maximum

of the probability density) and the expected value.
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1.4 Classification of the problem 7

In other words, the optimization interpretation describes the possible so-

lutions as a subset of the x space where the target function has an acceptable

value, surrounding the nominal solution which is the minimum point. The

probabilistic interpretation regards the solutions as a probability density

cloud, surrounding the point of highest probability density. Both interpre-

tations can be useful, having different advantages and limitations.

1.4 Classification of the problem

Orbit determination appears as a number of different problems, with differ-

ent dynamical systems and observation techniques. One way to classify the

dynamical systems is to decompose the right-hand side of the equation of

motion into three parts:

dy

dt
= f0(y, t, µ) + f1(y, t, µ) + f2(y, t, µ);

the unperturbed equation of motion has only the main term f0, with |f0| ÿ

|f1|. The main term may not contain unknown parameters, or very few.

The perturbations are subdivided into the most relevant ones f1 and the

negligible ones f2. Negligible means not only that |f1| ÿ |f2| but also that

the effects of the f2 terms on the general solution are small (with respect

to the observational accuracy), thus the equation of motion actually solved

to compute the predictions contains only f0 + f1. The choice of the terms to

be neglected in each specific case is therefore a delicate issue, discussed in

Sections 4.6, 15.3, and 17.3.

Let us focus on the main term f0. For a satellite of the Earth it is the

monopole gravitational attraction of the Earth; for an object in heliocentric

orbit it is the monopole attraction from the Sun, and so on. In most cases

the unperturbed equation of motion is a two-body problem. Only in a few

exceptional examples is there no dominant two-body term.

Thus we can classify orbit determination problems by the central body:

" Earth satellite orbits, for the Moon, artificial satellites, and space debris;

" heliocentric orbits, including the planets, the smaller asteroids, comets,

meteoroids, trans-neptunian objects, and artificial interplanetary probes;

" satellite orbits of other planets, for the natural satellites, planetary or-

biters, binary asteroids, and asteroid/comet orbiter missions;

" the orbits around another star, for binary stars and extrasolar planets;

" the cases without a dominant central body, such as orbits near the La-

grangian equilibrium points, temporary satellite captures, very small in-

terplanetary dust with motion dominated by radiation pressure.
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8 THE PROBLEM OF ORBIT DETERMINATION

The orbit determination problems may differ also in the observation

method, in the number and timing of the data, and in their accuracy. The

main difference is between the collaborative and the population orbit deter-

mination problems.

Tracking

In collaborative orbit determination the object whose orbit has to be

determined has a man-built device specifically intended to assist the ob-

server. In this case the observation procedure is usually called tracking.

The most common case is tracking by radio waves: artificial satellites

are normally equipped with a device called a transponder, which receives,

amplifies, and retransmits the radio signal received from a ground station in

a given frequency band.1 Then the range-rate, the time derivative of the

distance between the spacecraft and the ground station, can be measured

by the Doppler shift between the signal emitted from the ground station

and the one received back. If the signal also contains, beside the carrier,

an encoded signal and the transponder is regenerative, that is it can send

back this encoded signal on top of the return carrier, then also the range,

or distance from the ground station, can be measured. This is possible also

at interplanetary distance, thus the spacecraft could be in heliocentric orbit

but also orbiting around another planet, or around an asteroid/comet.

In the above example the spacecraft needs to consume energy in the

transponder, thus it has to be active, with a power system and possibly

with attitude control to suitably point some antenna. There are examples in

which the spacecraft is totally passive, such as the Earth satellites specifically

launched for satellite laser ranging: they are only equipped with a special

class of mirror, the corner cubes, to return a light ray in the same direction

it came from with minimal dispersion. The ground stations are equipped

with lasers capable of powerful but short-duration pulses of monochromatic

light: the time interval between the emission of each pulse and the return

signal detection measures the distance to the satellite.

The above examples are about artificial celestial bodies, that is man-made

spacecraft. However, a tracking device can be planted on a natural body:

e.g., corner cubes have been placed on the Moon by American and Soviet

missions in the 1970s, thus lunar laser ranging has been regularly per-

formed for more than 30 years, and the orbit of our natural satellite is

known with centimeter level accuracy, actually more accurately than the

1 The return signal can be shifted in frequency with respect to the received one, but this is done
with phase locking, preserving very accurately the timing information.
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1.4 Classification of the problem 9

orbit of any artificial satellite, affected by non-gravitational perturbations.

The Viking landers have been on the surface of Mars for more than five

years with operational transponders, and this has allowed the computation

of the orbit of Mars with an accuracy of a few tens of meters. The in-

terplanetary space probes like Voyager can be used to constrain the orbit

of the planets they encounter. Planetary orbiters like Cassini (now around

Saturn) and the future BepiColombo (around Mercury) will provide very ac-

curate orbit determination for these planets and for the natural satellites of

Saturn, thanks to the very accurate transponders on these spacecraft. Thus

the main difference is not between natural and artificial orbits.

The specific properties of the collaborative cases are three.

First, the body has some built in capability to respond to tracking; thus

the number of observations, their distribution in time and their accuracy

are planned in the design phase of the mission. A simulation of orbit de-

termination is a compulsory phase of mission analysis, the study showing

that some proposed space mission is feasible from the astrodynamics point

of view. If the simulated orbit determination gives poor results, the required

frequency and accuracy of the observations has to be improved. Thus the

most difficult cases of divergent orbit determination should not occur in the

collaborative case; even strong nonlinearity and chaos should not happen.

However, if there is some failure, either hardware like an antenna failing to

deploy, or software like a faulty on-board computer program, or planning like

an orbit determination simulation providing illusory results, then a track-

ing case may show some problems of the non-collaborative case, including

divergence, excessive nonlinearity, and chaos.

Second, the observation data contain information on which object is being

tracked. In the simplest case, there is only one spacecraft answering in a

given frequency band in a given direction (within a given solid angle). Fre-

quency bands and orbit slots (e.g., in the geosynchronous belt) are allocated

by international authorities to avoid confusion and interference between sig-

nals to and from the satellites. In other cases (e.g., satellite constellations,

such as navigation satellites) the satellite encodes its identity in the signal

sent back to the ground. Thus we can assume we always know to which

spacecraft each batch of tracking data belongs.2 In most cases it is possi-

ble to treat each spacecraft as a separate problem of orbit determination;

the exceptions are the cases of satellite-to-satellite tracking, where the ra-

dio/laser beam travels between two (or more) satellites, in which case the

orbits of the two (or more) have to be solved simultaneously.

2 Of course also this can occasionally fail, making orbit determination quite messy.
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10 THE PROBLEM OF ORBIT DETERMINATION

Third, if the amount of observational data and their accuracy exceeds

what is required for the determination of the orbit in the strictest sense,

that is for fitting the initial conditions y0, the additional information can

be used to fit other parameters, either dynamical or kinematical, and in fact

this is often the case. This is the key idea of satellite geodesy, where

the gravity field of the central planet (the Earth, the Moon, another planet,

an asteroid) is determined from the tracking data, rather than from the

inhomogeneous ground-based gravimetry. In satellite geodesy around the

Earth also the position of the ground stations can be determined with an

accuracy far superior to that possible with ground-based measurements.

Catalogs

In the case of population orbit determination the observations are a

scarce resource because the objects do not assist the observer. The total

number of observations may not be small; actually it can be comparable to

that of the tracking data points for a scientific space mission, e.g., tens of

millions. The problem is that they refer to objects of a large population, and

the average number of observations per object is small: e.g., 107 observations

of a population of 106 objects (down to the minimum size observable).

The example most extensively discussed in this book is the orbit determi-

nation of the small bodies of the Solar System, including asteroids, comets,

meteoroids and trans-neptunian objects. The number of objects needs to

be qualified by a class of orbits and a minimum size: e.g., there are of the

order of 106 main belt asteroids of size ≥ 1 km in diameter (this is just

an estimate, extrapolated from the orbits already determined). A survey

consists of a number of telescopes scanning the sky and looking for objects

with stellar appearance which move with respect to the approximately fixed

stars; this is the origin of the name asteroid, as proposed by Herschel. When

such a moving object is detected the amount of information is minimal,

typically only astrometry, that is angular positions, and photometry, that

is apparent magnitude. There is a signature neither to identify the object

with the ones already discovered, nor to decide it is new.

As we will see in Chapter 8, orbit determination is typically not possible

with the discovery data alone. Thus the orbit determination problem cannot

be disentangled from the identification problem, that is to find the inde-

pendent discoveries referring to the same physical object: only by joining the

information, contained in such separate discoveries, we can gather enough

data for a solution. The output of the identification/orbit determination

procedure is a catalog containing the list of distinct objects discovered, their
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1.4 Classification of the problem 11

best fit orbits, an estimate of their uncertainty and the little physical infor-

mation available, in most cases just the absolute magnitude, a measure of

the intrinsic capability of the object to reflect sunlight.3

The above example refers to passive observations detecting photons of

reflected sunlight. Active observations are used in planetary radar observa-

tions, where a powerful beam of microwaves is directed towards a celestial

body such as a major planet, a natural planetary satellite, an asteroid, a

comet. At the present state-of-the-art, given that the signal-to-noise ratio at

distance r is proportional to 1/r4, only the major inner planets, some very

large satellites (e.g., Titan), and large asteroids can be observed by radar

at interplanetary distances. Most of the targets therefore are near-Earth

asteroids, which have the possibility of comparatively close approaches to

the Earth.4 Radar observations are a complex subject, because the radar

return signal contains photons reflected from different parts of the asteroid

surface, each with a different range and range-rate with respect to the radar

antenna. In fact, the radar astrometry data are normal points obtained from

a large fit providing also information on the size, shape, radar reflectivity,

and rotation state of the object. The information constraining the orbit can

be synthesized into an equivalent observation of range and range-rate. The

accuracy of radar astrometry is between two and three orders of magnitude

better than conventional astrometry.

The above examples are about natural bodies, but a very similar problem

is obtained by considering spacecraft whose operational life is over. They

can be observed in a non-collaborative way, with exactly the same techniques

as asteroids, that is by astrometry and by radar. In most cases, however,

these observations do not allow us to discriminate one dead spacecraft from

another (actually, some care needs to be used to identify among the ob-

servations the ones belonging to operational spacecraft). As the search for

this space debris progresses towards smaller and smaller Earth-orbiting

objects, the list of bodies increases by adding spent rocket stages, pieces

of exploded satellites and rocket motors, screws, bolts, and small pieces re-

leased during stage separation and antenna deployment, as well as particles

of fuel, of frozen cooling liquid, all kinds of trash. A current estimate places

at about 350 000 the number of orbiting debris above 1 cm of diameter.

Thus the space debris problem is a population orbit determination problem,

and surveys have to be set up to compile catalogs of all the particles above

3 The absolute magnitude gives an indication of the diameter and mass, but the correspondence
between these quantities contains unknown parameters such as the albedo and the density.

4 With the current technology, radar astrometry for small asteroids (diameter < 1 km) is possible
up to a distance of 0.2–0.3 AU.
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12 THE PROBLEM OF ORBIT DETERMINATION

a given size. The analogy is striking because there is an impact monitor-

ing problem: the objects larger than a few mm could seriously damage the

International Space Station by colliding at a relative speed of several km/s.

Thus the specific properties of the population cases are three, and they

are opposite to those of the collaborative case.

First, the number of observations is not under our control. A survey can

be designed to obtain a very large number of observations, but unavoidably

the larger the data set, the larger the set of distinct objects for which the

orbit has to be determined. Thus the average number of observations per

object is small, typically of the order of 10.

Second, the batches of observations which can be immediately assigned to

a single object are not enough to compute an orbit, thus the identification

problem needs to be solved before orbit determination is possible. On the

other hand, an identification can be considered reliable only if an orbit can

be consistently fit to all the data believed to be of the same physical ob-

ject. Thus orbit determination and identification are just a single algorithm,

necessarily complex.

Third, the dynamical and kinematical parameters are normally not deter-

mined. After the reliable identifications have been established, each orbit

can be solved individually, fitting just N = p = 6 parameters. Additionally,

a separate fit of the photometric data can provide the absolute magnitude.

However, this has to be performed for millions of bodies.

Planetary systems

There are a few examples of orbit determination which do not fit well into

the binary classification collaborative/population. Interesting examples are

the planetary systems. There are two main cases.

Our Solar System contains a small number NP of planets.5 The equation

of motion for the planets needs to take into account the perturbations from

the other planets, relativistic corrections, the perturbations from the larger

satellites (especially the Moon), and the larger asteroids. The masses of

the major planets appear as dynamical parameters µ, together with the

post-Newtonian parameters describing general relativity effects.

Thus the orbits of the planets have to be determined all at once, including

5 The exact definition of planet has been controversial, e.g., Pluto has size and mass comparable
to those of other trans-neptunian bodies previously classified as minor planets, and it is signif-
icantly smaller than some satellites such as the Moon, Ganymede, and Titan. What matters
in our discussion is the number of bodies whose masses are large enough to produce observable
perturbations in the orbits of other planets, as discussed in Section 4.6; for the current accuracy
in astrometric observations Pluto does not need to be included.
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