Resource Allocation for Wireless Networks

Merging the fundamental principles of resource allocation with the state of the art in research and application examples, Han and Liu present a novel and comprehensive perspective for improving wireless system performance. Cross-layer multiuser optimization in wireless networks is described systematically. Starting from the basic principles, such as power control and multiple access, coverage moves to the optimization techniques for resource allocation, including formulation and analysis and game theory. Advanced topics, such as dynamic resource allocation and resource allocation in antenna-array processing and in cooperative, sensor, personal-area, and ultrawide-band networks, are then discussed. Unique in its scope, timeliness, and innovative author insights, this invaluable work will help graduate students and researchers understand the basics of wireless resource allocation while highlighting modern research topics and will help industrial engineers improve system optimization.

Zhu Han is currently an assistant professor in the Electrical and Computer Engineering Department at Boise State University, Idaho. In 2003, he was awarded his Ph.D. in electrical engineering from the University of Maryland, College Park. Zhu Han has also worked for a period in industry, as an R & D Engineer for JDSD. Dr. Han is PHY/MAC Symposium Vice Chair of the IEEE Wireless Communications and Networking Conference, 2008.

K. J. Ray Liu is a Distinguished Scholar–Teacher of the University of Maryland, College Park. Dr. Liu is the recipient of numerous honors and awards, including best paper awards from IEEE Signal Processing Society (twice), IEEE Vehicular Technology Society, and EURASIP, as well as recognitions from University of Maryland, including the university-level Invention of the Year Award and the college-level Poole and Kent Company Senior Faculty Teaching Award.

Resource Allocation for Wireless Networks

Basics, Techniques, and Applications

ZHU HAN

Boise State University, Idaho

K. J. RAY LIU University of Maryland, College Park

CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi

Cambridge University Press 32 Avenue of the Americas, New York, NY 10013-2473, USA

www.cambridge.org Information on this title: www.cambridge.org/9780521873857

© Cambridge University Press 2008

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2008

Printed in the United States of America

A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data

Han, Zhu, 1974–
Resource allocation for wireless networks : basics, techniques, and applications / Zhu Han, K.J. Ray Liu. p. cm.
Includes bibliographical references and index.
ISBN 978-0-521-87385-7 (hbk.)
Wireless communication systems. 2. Resource allocation. I. Liu, K. J. Ray, 1961– II. Title.
TK5103.2.H332 2006
621.384 – dc22 2008007048

ISBN 978 0 521 87385 7 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate.

To my wife as well as my parents and sister in China. – Zhu Han

To Lynne Liu. – K. J. Ray Liu

Contents

	Pre	face	<i>page</i> xi
1	Intr	oduction	1
Part I	Basics I	Principles	7
2	Wir	eless Networks: An Introduction	9
	2.1	Introduction	9
	2.2	Wireless Channel Models	10
	2.3	3G Cellular Networks and Beyond	16
		2.3.1 CDMA2000	17
		2.3.2 WCDMA/UMTS	20
		2.3.3 TD-SCDMA	22
		2.3.4 4G and Beyond	23
		WiMAX Networks	24
	2.5	WiFi Networks	27
	2.6	Wireless Personal-Area Networks	31
		2.6.1 Bluetooth/Zigbee	32
		2.6.2 Ultrawide Band	36
	2.7	Wireless Ad Hoc Networks	40
	2.8	Wireless Sensor Networks	44
	2.9	Cognitive Radios	51
3	Pov	ver Control	55
	3.1	Introduction	55
	3.2	Basic Power-Control System Models	56
	3.3		59
	3.4	Centralized Power Control	61
	3.5	Distributed Iterative Power Control	66
	3.6	Statistical Power Control	68
	3.7	DS-CDMA Power Control	69
	3.8	Other Works and Summary	73

viii	Cont	tents	
4	Pata	Adaptation	75
4		-	
	4.1	Introduction	75
	4.2	Source Rate Adaptation	76 76
		4.2.1 Adaptive Voice Encoder4.2.2 Scalability of Image/Video Encoders	78
	4.3	Rate Control for Network/MAC Layer	82
	т.5	4.3.1 The Basics of Queuing Theory	82
	4.4	Adaptation for PHY Layer	84
	7.7	4.4.1 Adaptive Channel Coding	85
		4.4.2 Adaptive Modulation	87
		4.4.3 Adaptive Coded Modulation	89
		4.4.4 Adaptive Processing Gain for CDMA	90
	4.5	Source–Channel Coding with Power Control	91
		4.5.1 Joint Source–Channel Coding	91
		4.5.2 Degrees of Freedom	95
5	Mult	tiple Access and Spectrum Access	99
	5.1	Introduction	99
	5.2	Multiple-Access Methods	100
	5.3	Scheduling	106
		5.3.1 Cross-Layer System Model	107
		5.3.2 Opportunistic Scheduling Framework and Trade-Offs	109
		5.3.3 Basic Scheduling Approaches	110
		5.3.4 Cross-Layer Scheduling Approaches	115
	5.4	Packet Radio Multiple-Access Protocols	116
		5.4.1 Aloha	117
		5.4.2 CSMA	118
		5.4.3 Wireless LAN (RTS/CTS)	120
		3G System Multiple Access	121
	5.6	Channel Allocation/Opportunistic Spectrum Access	122
	5.7	Handoff	127
	5.8	Admission Control	131
	5.9	Summary	133
Part II	Optimiz	ation Techniques for Resource Allocation	135
6	Opti	mization Formulation and Analysis	137
	6.1	Introduction	137
	6.2	Constrained Optimization	138
	6.3	Optimality	142
	6.4	Duality	144
	6.5	Approximations	146

Cambridge University Press			
978-0-521-87385-7 - Resource Allocation for Wireless	s Networks: Basics,	Techniques, a	and Applications
Zhu Han and K. J. Ray Liu			
Frontmatter			
More information			

		Contents	i
			1.4
	6.6 Application Example6.7 Summary		143 152
	0.7 Summary		152
7	Mathematical Programming		154
	7.1 Introduction		154
	7.2 Linear Programming		15
	7.3 Convex Optimization		15
	7.4 Nonlinear Programming		16
	7.5 Dynamic Programming		16
	7.6 A Wireless Resource-Allocation Example		17
8	Integer/Combinatorial Optimization		173
	8.1 Introduction		17
	8.2 General Problem		17
	8.3 Knapsack Problem		18
	8.4 Relaxation and Decomposition		18
	8.5 Enumerative Techniques		18
	8.6 Cutting Planes		19
	8.7 A Knapsack Example for Resource Allocation		19
	8.8 Summary		202
9	Game Theory		20.
	9.1 Introduction		20.
	9.2 Game-Theory Basics		20
	9.3 Noncooperative Static Game		20
	9.4 Dynamic/Repeated Game		21
	9.5 Cooperative Game		21
	9.6 Auction Theory and Mechanism Design		22
	9.7 Summary		22
Part III	Advanced Topics		22
10	Resource Allocation with Antenna-Array Processing		22
	10.1 Introduction		22
	10.2 Joint Optimization with Antenna-Array Processing		22
	10.3 Blind Beam Forming in Wireless Networks		24
11	Dynamic Resource Allocation		26
	11.1 Introduction		26
	11.2 Resource Management with Fairness		26
	11.3 Delay-Sensitive Scheduling for Multimedia Transmission		28
	11.4 Rate Control Using Dynamic Programming		29

X	Contents	
12	Resource Allocation for Cooperative Networks	304
12	·	
	12.1 Introduction	304
	12.2 Cooperative Communication Protocols	305
	12.3 Physical-Layer Issue: Power Control	308
	12.4 MAC Layer Issue: Relay Selection and Channel Allocation 12.4.1 OFDM Networks	321 322
	12.4.1 OFDM Networks 12.4.2 Cellular Networks	332
	12.4.2 Centual Networks 12.5 Network Layer Issue: Cooperative Routing	341
	12.6 Summary on Cooperative Cross-Layer Optimization	350
13	Game-Theoretic Approaches for Resource Allocation	352
	13.1 Introduction	352
	13.2 Noncooperative Static Games	354
	13.2.1 Noncooperative Power Control and Throughput Games	354
	13.2.2 Referee-Based Approach	363
	13.2.3 Buyer/Seller Approach	377
	13.3 Noncooperative Repeated Games	388
	13.3.1 Punishment-Based Approach	388
	13.3.2 Self-Learning-Based Approach	398
	13.4 Games with Cooperation	410
	13.4.1 Bargaining-Based Approach	410
	13.4.2 Opportunistic Spectrum Access for Cognitive Radio	429
14	Ad Hoc/Sensor/Personal-Area Networks	439
	14.1 Introduction	439
	14.2 Connectivity Improvement for MANETs	440
	14.3 Lifetime Extension for Sensor Networks	453
	14.4 Power Control/Channel Allocation for UWB Networks	472
15	Resource Allocation for Wireless Multimedia	488
	15.1 Introduction	488
	15.2 Framework of Multimedia Over Wireless Networks	489
	15.2.1 Current and Future Wireless Network Paradigms	490
	15.2.2 Current and Future Video-Coding Paradigms	492
	15.2.3 Design Principles of Multiuser Cross-Layer Resource Allocation	493
	15.3 Transmitting Video Over 3G Cellular Networks	494
	15.4 Videoconferencing Over WLANs	501
	15.5 Next-Generation Video Over Multiuser OFDMA Networks	506
	15.6 Summary	517
	Bibliography	518
	Index	539

Preface

Because of fading channels, user mobility, energy/power resources, and many other factors, cross-layer design and multiuser optimization are the keys to ensuring overall system performance of wireless networks. And resource allocation is one of the most important issues for implementing future wireless networks.

In the past decade, we have witnessed significant progress in the advance of resource allocation over wireless networks. It is not only an important research topic, but is also gradually becoming an integral teaching material for graduate-level networking courses.

Yet there are few books available to date that can serve such a purpose. Why? Because the field of resource allocation is such a versatile area that covers a broad range of issues, it is not easy to develop a comprehensive book to cover them all. For instance, resource allocation across various networking layers encounters different design constraints and parameters; different networking scenarios have different performance goals and service objectives; and different formulations of resource allocations need to employ different optimization tools.

To respond to the need of such a book for graduate students, researchers, and engineers, we try to tackle the difficulties by bringing together our research in resource allocation over the past decade and the basic material of resource allocation and optimization techniques to form the foundation of this book. Its intent is to serve either as a textbook for advanced graduate-level courses on networking or as a reference book for self-study by researchers and engineers.

This book covers three main parts. In Part I, the basic principles of resource allocation is discussed. Part II provides the background of optimization tools needed to conduct research and development in resource allocation. And in Part III, examples of advanced topics in resource allocation for different networking scenarios are the focus, to illustrate what one may encounter in different applications.

We would like to thank many for their contributions to some of the material presented in this book, including Thanongsak Himsoon, Ahmed Ibrahim, Zhu Ji, Andres Kwasinski, Xin Liu, Charles Pandana, Farrokh Rashid-Farrokhi, Javad Razavilar, Ahmed Sadek, Wipawee Siriwongpairat, Guan-Ming Su, Weifeng Su, Lee Swindlehurst, Beibei Wang, and Min Wu. We also would like to thank Greg Heinzman for his editing assistance.

> Zhu Han K. J. Ray Liu