Physics of the Earth

The fourth edition of Physics of the Earth maintains the original philosophy of this classic textbook on fundamental solid Earth geophysics, while being completely revised and up-dated by Frank Stacey and his new co-author Paul Davis. Building on the success of previous editions, which have served generations of graduate students and researchers for nearly forty years, this new edition will be an invaluable resource for graduate students looking for the necessary physical and mathematical foundations to embark on their own research careers in geophysics.

The book presents a detailed, critical analysis of the whole range of global geophysics topics and traces our understanding of the Earth, from its origin and composition to recent ideas about rotation of the inner core. The division of this new edition into an increased number of shorter chapters is designed to make the material more accessible, and allows students to focus on topics of particular interest. New chapters on elastic and inelastic properties, rock mechanics, kinematics of earthquake processes, earthquake dynamics and thermal properties have been added. A brief concluding chapter also reviews contributions from solid Earth studies to our understanding of climate change and the potential for 'alternative' energies.

Appendices, presenting fundamental data and advanced mathematical concepts, and an extensive reference list, are provided as tools to aid readers wishing to pursue topics beyond the level of the book. Over 140 student exercises of varying levels of difficulty are also included, and full solutions are available online at www.cambridge.org/ 9780521873628.

Frank Stacey is a graduate of London University. After appointments in Canada, Australia and UK, he went to the University of Queensland in 1964 and it was there that the first three editions of 'Physics of the Earth' were written. After retirement as Professor of Applied Physics, he joined CSIRO Exploration and Mining (in 1997) to continue geophysical research. He has published on a wide range of geophysical topics and has been recognized by his peers by election to fellowship of the Australian Academy of Science and the American Geophysical Union and by the award of the inaugural Neel medal of the European Geophysical Society, as well as numerous visiting lectureships at institutions around the world. Professor Stacey is also the author/editor of three other books.

Paul Davis is a graduate of the University of Queensland. After appointments in Edmonton, Canada, and Cambridge, he joined the University of California at Los Angeles (UCLA), where he is Professor of Geophysics. He has published extensively on geophysical topics, especially seismology. His professional honours include a Guggenheim fellowship, fellowship of the Royal Astronomical Society and the American Geophysical Union and a visiting Leverhulme professorship to the University of Oxford. He has served a term as editor of the Journal of Geophysical Research (Solid Earth). Professor Davis is also the co-author of another undergraduate textbook.

Gemini XI photograph of the Gulf of Aden and the Red Sea by NASA astronauts Charles Conrad and Richard F. Gordon. This is one of the areas of particular interest in the theory of sea floor spreading. A line of earthquake epicentres extends from the ridge system in the Indian Ocean, up the middle of the Gulf of Aden and into the Red Sea, marking the axis of a new ridge along which mantle material is rising as the Africa and Arabia plates part. Courtesy of the National Aeronautics and Space Administration, Washington.

Physics of the Earth

Fourth edition

Frank D Stacey CSIRO Exploration and Mining, Brisbane, Australia

Paul M Davis Department of Earth and Space Sciences, University of California, Los Angeles, USA

CAMBRIDGE UNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom

Published in the United States of America by Cambridge University Press, New York

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org Information on this title: www.cambridge.org/9780521873628

© F. D. Stacey and P. M. Davis 2008

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2008 4th printing 2013

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-87362-8 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

IOrigin and history of the Solar System11.1 Preamble11.2 Planetary orbits: the Titius-Bode law31.3 Axial rotations41.4 Distribution of angular momentum51.5 Satellites61.6 Asteroids71.7 Meteorites: falls, finds and orbits81.8 Cosmic ray exposures of meteorites and the evidence of asteroidal collisions101.9 The Poynting-Robertson and Yarkovsky effects111.10 Parent bodies of meteorites and their cooling rates151.11 Magnetism in meteorites171.12 Tektites18
1.1Preamble11.2Planetary orbits: the Titius-Bode law31.3Axial rotations41.4Distribution of angular momentum51.5Satellites61.6Asteroids71.7Meteorites: falls, finds and orbits81.8Cosmic ray exposures of meteorites and the evidence of asteroidal collisions101.9The Poynting-Robertson and Yarkovsky effects111.10Parent bodies of meteorites and their cooling rates151.11Magnetism in meteorites171.12Tektites18
1.2Planetary orbits: the Titius-Bode law31.3Axial rotations41.4Distribution of angular momentum51.5Satellites61.6Asteroids71.7Meteorites: falls, finds and orbits81.8Cosmic ray exposures of meteorites and the evidence of asteroidal collisions101.9The Poynting-Robertson and Yarkovsky effects111.10Parent bodies of meteorites and their cooling rates151.11Magnetism in meteorites171.12Tektites18
1.3 Axial rotations41.4 Distribution of angular momentum51.5 Satellites61.6 Asteroids71.7 Meteorites: falls, finds and orbits81.8 Cosmic ray exposures of meteorites and the evidence of asteroidal collisions101.9 The Poynting-Robertson and Yarkovsky effects111.10 Parent bodies of meteorites and their cooling rates151.11 Magnetism in meteorites171.12 Tektites18
1.4 Distribution of angular momentum51.5 Satellites61.6 Asteroids71.7 Meteorites: falls, finds and orbits81.8 Cosmic ray exposures of meteorites and the evidence of asteroidal collisions101.9 The Poynting-Robertson and Yarkovsky effects111.10 Parent bodies of meteorites and their cooling rates151.11 Magnetism in meteorites171.12 Tektites18
1.5 Satellites61.6 Asteroids71.7 Meteorites: falls, finds and orbits81.8 Cosmic ray exposures of meteorites and the evidence of asteroidal collisions101.9 The Poynting-Robertson and Yarkovsky effects111.10 Parent bodies of meteorites and their cooling rates151.11 Magnetism in meteorites171.12 Tektites18
1.6 Asteroids71.7 Meteorites: falls, finds and orbits81.8 Cosmic ray exposures of meteorites and the evidence of asteroidal collisions101.9 The Poynting-Robertson and Yarkovsky effects111.10 Parent bodies of meteorites and their cooling rates151.11 Magnetism in meteorites171.12 Tektites18
1.7 Meteorites: falls, finds and orbits81.8 Cosmic ray exposures of meteorites and the evidence of asteroidal collisions101.9 The Poynting-Robertson and Yarkovsky effects111.10 Parent bodies of meteorites and their cooling rates151.11 Magnetism in meteorites171.12 Tektites18
1.8 Cosmic ray exposures of meteorites and the evidence of asteroidal collisions101.9 The Poynting-Robertson and Yarkovsky effects111.10 Parent bodies of meteorites and their cooling rates151.11 Magnetism in meteorites171.12 Tektites18
of asteroidal collisions101.9 The Poynting-Robertson and Yarkovsky effects111.10 Parent bodies of meteorites and their cooling rates151.11 Magnetism in meteorites171.12 Tektites18
1.9 The Poynting-Robertson and Yarkovsky effects111.10 Parent bodies of meteorites and their cooling rates151.11 Magnetism in meteorites171.12 Tektites18
1.10 Parent bodies of meteorites and their cooling rates151.11 Magnetism in meteorites171.12 Tektites18
1.11 Magnetism in meteorites171.12 Tektites18
1.12 Tektites 18
1.13 The Kuiper belt, comets, meteors and
interplanetary dust 19
1.14 The terrestrial planets: some comparisons21
1.15 Early history of the Moon23
2 Composition of the Earth 27
2.1 Preamble 27
2.2 Meteorites as indicators of planetary compositions 30
2.3 Irons and stony-irons 31
2.4 Ordinary and carbonaceous chondrites 31
2.5 Achondrites 34
2.6 The solar atmosphere34
2.7 The mantle 35
2.8 The core 37
2.9 The crust 40
2.10 The oceans 42
2.11 Water in the Earth 43
2.12 The atmosphere: a comparison with the other
terrestrial planets 45
3 Radioactivity, isotopes and dating 48
3.1 Preamble 48
3.2 Radioactive decay 49
3.3 A decay clock: ¹⁴ C dating 50
34 Accumulation clocks: K-Ar and U-He dating 50
3.5 Fission tracks 52

vi CONTENTS

3.6 The use of isochrons: Rb-Sr dating	53
2.0. 1475m 143NId and other decours	55
2.0 Isotopic fractionation	56
3.9 Isotopic fractionation	57
4 Isotopic clues to the age and origin	
of the Solar System	61
4.1 Preamble	61
4.2 The pre-nuclear age problem	61
4.3 Meteorite isochrons and the age of the Earth	63
4.4 Dating the heavy elements: orphaned decay	
products	65
4.5 Isotopic variations of pre-Solar System origin	67
4.6 Sequence of events in Solar System formation	70
5 Evidence of the Earth's evolutionary history	72
5.1 Preamble	70
5.2 Argon and helium outgassing and the Farth's	12
notassium content	74
5.3 Evolution of the crust	75
5.4 Separation of the core	78
5.5 The fossil record: crises and extinctions	79
6 Rotation, figure of the Earth and gravity	81
6.1 Preamble	81
6.2 Gravitational potential of a nearly spherical body	82
6.3 Rotation, ellipticity and gravity	84
6.4 The approach to equilibrium ellipticity	87
7 Precession, wobble and rotational irregularities	90
7.1 Preamble	90
7.2 Precession of the equinoxes	91
7.3 The Chandler wobble	94
7.4 Length-of-day (LOD) variations	97
7.5 Coupling of the core to rotational variations	99
8 Tides and the evolution of the lunar orbit	102
8.1 Freamble	102
6.2 Fidal deformation of the Earth	103
6.5 Hual HICUON 9.4 Evolution of the lunar orbit	106
0.4 EVOLUTION OF THE ITHAL OF DU	108
8.5 The North Innit for fidal stability of a satellite	111
8.6 The multiple moons hypothesis	114

CAMBRIDGE

CONTENTS vii

9	The satellite geoid, isostasy, post-glacial rebound		
	and mantle viscosity	117	
9.1	Preamble	117	
9.2	The satellite geoid	118	
9.3	3 The principle of isostasy		
9.4	Gravity anomalies and the inference of internal structure	125	
9.5	Post-glacial isostatic adjustment	128	
9.6	Rebound and the variation in ellipticity	132	
10	Elastic and inelastic properties	135	
10.	l Preamble	135	
10.2	2 Elastic moduli of an isotropic solid	136	
10.3	3 Crystals and elastic anisotropy	138	
10.4	4 Relaxed and unrelaxed moduli of a composite material	141	
10.	5 Anelasticity and the damping of elastic waves	142	
10.0	5 Inelasticity, creep and flow	144	
10.	7 Frequency dependent elasticity and the dispersion		
	of body waves	147	
П	Deformation of the crust: rock mechanics	149	
11.	l Preamble	149	
11.	2 The tensor representation of stress and strain	149	
11.	3 Hooke's law in three dimensions	151	
11.4	4 Tractions, principal stresses and rotation of axes	152	
11.	5 Crustal stress and faulting	156	
11.0	5 Crustal stress: measurement and analysis	159	
12	Tectonics	163	
12.	l Preamble	163	
12.2	2 Wadati-Benioff zones and subduction	167	
12.3	3 Spreading centres and magnetic lineations	171	
12.4	4 Plate motions and hot spot traces	173	
12.	5 The pattern of mantle convection	177	
12.	5 Tectonic history and mantle heterogeneity	179	
13	Convective and tectonic stresses	181	
13.	l Preamble	181	
13.2	2 Convective energy, stress and mantle viscosity	184	
13.3	Buoyancy forces in deep mantle plumes	187	
13.4	4 Topographic stress	188	
13.	5 Stress regimes of continents and ocean floors	191	
13.	5 Coulombic thrust wedges	193	

viii CONTENTS

14	Kinematics of the earthquake process	197
14.1	Preamble	197
14.2	Earthquakes as dislocations	198
14.3	Generalized seismic moment	203
14.4	First motion studies	206
14.5	Rupture models and the spectra of seismic waves	208
14.6	Earthquake magnitude and energy	212
14.7	The distribution of earthquake sizes	215
14.8	Tsunamis	219
14.9	Microseisms	222
15	Earthquake dynamics	224
15.1	Preamble	224
15.2	Stress fields of earthquakes	225
15.3	Fault friction and earthquake nucleation: the	
	quasi-static regime	227
15.4	The dynamic regime	231
15.5	Omori's aftershock law	232
15.6	Stress drop and radiated energy	233
15.7	Foreshocks and prediction ideas	237
16	Seismic wave propagation	239
16.1	Preamble	239
16.2	Body waves	240
16.3	16.3 Attenuation and scattering	
16.4	Reflection and transmission coefficients	
	at a plane boundary	247
16.5	Surface waves	251
16.6	Free oscillations	255
16.7	The moment tensor and synthetic seismograms	261
17	Seismological determination of Earth structure	267
17.1	Preamble	267
17.2	Refraction in a plane layered Earth	268
17.3	Refraction in a spherically layered Earth	271
17.4	Travel times and the velocity distribution	274
17.5	Earth models: density variation in a homogeneous layer	277
17.6	Internal structure of the Earth: the broad picture	278
17.7	Boundaries and discontinuities	279
17.8	Lateral heterogeneity: seismic tomography	284
17.9	Seismic anisotropy	289
18	Finite strain and high-pressure equations of state	294
18.1	Preamble	294
18.2	High-pressure experiments and their interpretation	296

CAMBRIDGE

Cambridge University Press 978-0-521-87362-8 - Physics of the Earth: Fourth Edition Frank D Stacey and Paul M Davis Frontmatter More information

CONTENTS ix

10.5	The appeal to atomic potentials	299	
18.4	Finite strain approaches		
18.5	Derivative equations		
18.6	I nermodynamic constraints		
18./	Finite strain of a composite material		
18.8	kigidity modulus at high pressure		
18.9	9 A comment on application to the Earth's deep interior		
19	Thermal properties		
19.1	Preamble		
19.2	Specific heat		
19.3	Thermal expansion and the Grüneisen parameter		
19.4	Melting		
19.5	Adiabatic and melting point gradients	326	
19.6	Thermal conduction	327	
19.7	Temperature dependences of elastic moduli: thermal		
	interpretation of tomography	329	
19.8	Anharmonicity	332	
20	The surface heat flux	337	
20.1	Preamble	337	
20.1	The ocean floor heat flux	338	
20.2	The continental heat flux	341	
20.5	Lithospheric thickness	244	
20.4 Lithospheric unckness		544	
2115	(limatic attacts	216	
20.5	Climatic effects	346	
20.5 21	The global energy budget	346 348	
20.5 21 21.1	The global energy budget Preamble	346 348 348	
20.5 21 21.1 21.2	The global energy budget Preamble Radiogenic heat	346 348 348 349	
20.5 21 21.1 21.2 21.3	The global energy budget Preamble Radiogenic heat Thermal contraction, gravitational energy	346 348 348 349	
20.5 21 21.1 21.2 21.3	The global energy budget Preamble Radiogenic heat Thermal contraction, gravitational energy and the heat capacity	346 348 348 349 352	
 20.5 21 21.1 21.2 21.3 21.4 	Climatic effects The global energy budget Preamble Radiogenic heat Thermal contraction, gravitational energy and the heat capacity Energy balance of the core	346 348 348 349 352 356	
 20.5 21 21.1 21.2 21.3 21.4 21.5 	Climatic effects The global energy budget Preamble Radiogenic heat Thermal contraction, gravitational energy and the heat capacity Energy balance of the core Minor components of the energy budget	346 348 348 349 352 356 359	
 20.5 21 21.1 21.2 21.3 21.4 21.5 22 	Climatic effects The global energy budget Preamble Radiogenic heat Thermal contraction, gravitational energy and the heat capacity Energy balance of the core Minor components of the energy budget Thermodynamics of convection	346 348 349 352 356 359 361	
 20.5 21 21.1 21.2 21.3 21.4 21.5 22 22.1 	Climatic effects The global energy budget Preamble Radiogenic heat Thermal contraction, gravitational energy and the heat capacity Energy balance of the core Minor components of the energy budget Thermodynamics of convection Preamble	346 348 348 349 352 356 359 361 361	
 20.5 21 21.1 21.2 21.3 21.4 21.5 22 22.1 22.2 	Climatic effects The global energy budget Preamble Radiogenic heat Thermal contraction, gravitational energy and the heat capacity Energy balance of the core Minor components of the energy budget Thermodynamics of convection Preamble Thermodynamic efficiency, buoyancy forces	346 348 349 352 356 359 361 361	
 20.5 21 21.1 21.2 21.3 21.4 21.5 22 22.1 22.2 	Climatic effects The global energy budget Preamble Radiogenic heat Thermal contraction, gravitational energy and the heat capacity Energy balance of the core Minor components of the energy budget Thermodynamics of convection Preamble Thermodynamic efficiency, buoyancy forces and convective power	346 348 349 352 356 359 361 361 361	
 20.5 21 21.1 21.2 21.3 21.4 21.5 22 22.1 22.2 22.3 	Climatic effects The global energy budget Preamble Radiogenic heat Thermal contraction, gravitational energy and the heat capacity Energy balance of the core Minor components of the energy budget Thermodynamics of convection Preamble Thermodynamic efficiency, buoyancy forces and convective power Convection through phase transitions	346 348 349 352 356 359 361 361 361 362 362	
 20.5 21 21.1 21.2 21.3 21.4 21.5 22 22.1 22.2 22.3 22.4 	Climatic effects The global energy budget Preamble Radiogenic heat Thermal contraction, gravitational energy and the heat capacity Energy balance of the core Minor components of the energy budget Thermodynamics of convection Preamble Thermodynamic efficiency, buoyancy forces and convective power Convection through phase transitions Thermodynamic efficiency of mantle convection	346 348 349 352 356 359 361 361 361 362 364	
 20.5 21 21.1 21.2 21.3 21.4 21.5 22 22.1 22.2 22.3 22.4 	Climatic effects The global energy budget Preamble Radiogenic heat Thermal contraction, gravitational energy and the heat capacity Energy balance of the core Minor components of the energy budget Thermodynamics of convection Preamble Thermodynamic efficiency, buoyancy forces and convective power Convection through phase transitions Thermodynamic efficiency of mantle convection and tectonic power	346 348 349 352 356 359 361 361 362 364 366	
 20.5 21 21.1 21.2 21.3 21.4 21.5 22 22.1 22.2 22.3 22.4 22.5 	Climatic effects The global energy budget Preamble Radiogenic heat Thermal contraction, gravitational energy and the heat capacity Energy balance of the core Minor components of the energy budget Thermodynamics of convection Preamble Thermodynamic efficiency, buoyancy forces and convective power Convection through phase transitions Thermodynamic efficiency of mantle convection and tectonic power Why are mantle phase boundaries sharp?	346 348 349 352 356 359 361 361 361 362 364 366 368	
 20.5 21 21.1 21.2 21.3 21.4 21.5 22 22.1 22.2 22.3 22.4 22.5 22.6 	Climatic effects The global energy budget Preamble Radiogenic heat Thermal contraction, gravitational energy and the heat capacity Energy balance of the core Minor components of the energy budget Thermodynamics of convection Preamble Thermodynamic efficiency, buoyancy forces and convective power Convection through phase transitions Thermodynamic efficiency of mantle convection and tectonic power Why are mantle phase boundaries sharp? Compositional convection in the core	346 348 349 352 356 359 361 361 361 362 364 366 368 370	
20.5 21 21.1 21.2 21.3 21.4 21.5 22 22.1 22.1 22.3 22.4 22.5 22.6 22.7	Climatic effects The global energy budget Preamble Radiogenic heat Thermal contraction, gravitational energy and the heat capacity Energy balance of the core Minor components of the energy budget Thermodynamics of convection Preamble Thermodynamic efficiency, buoyancy forces and convective power Convection through phase transitions Thermodynamic efficiency of mantle convection and tectonic power Why are mantle phase boundaries sharp? Compositional convection in the core Thermodynamic efficiency of core convection	346 348 349 352 356 359 361 361 362 364 366 368 370	
20.5 21 21.1 21.2 21.3 21.4 21.5 22 22.1 22.3 22.4 22.5 22.6 22.7	Climatic effects The global energy budget Preamble Radiogenic heat Thermal contraction, gravitational energy and the heat capacity Energy balance of the core Minor components of the energy budget Thermodynamics of convection Preamble Thermodynamic efficiency, buoyancy forces and convective power Convection through phase transitions Thermodynamic efficiency of mantle convection and tectonic power Why are mantle phase boundaries sharp? Compositional convection in the core Thermodynamic efficiency of core convection and dynamo power	346 348 349 352 356 359 361 361 362 364 366 368 370 372	
 20.5 21 21.1 21.2 21.3 21.4 21.5 22 22.1 22.2 22.3 22.4 22.5 22.6 22.7 22.8 	Climatic effects The global energy budget Preamble Radiogenic heat Thermal contraction, gravitational energy and the heat capacity Energy balance of the core Minor components of the energy budget Thermodynamics of convection Preamble Thermodynamic efficiency, buoyancy forces and convective power Convection through phase transitions Thermodynamic efficiency of mantle convection and tectonic power Why are mantle phase boundaries sharp? Compositional convection in the core Thermodynamic efficiency of core convection and dynamo power Refrigerator action in the core	346 348 349 352 356 359 361 361 361 362 364 366 368 370 372 374	

x CONTENTS

	23	Thermal h	istory	376
	23.1	Preamble		376
	23.2	The rate of	beat transfer to the oceans	378
	23.2	The heat h	alance equation and mantle rheology	380
	20.0	The meat b	istory of the mantle	200
	20.4	Cooling hi	story of the core	364
	23.5	Cooling in	story of the core	385
	24	The geoma	agnetic field	389
	7/1	Droamblo	0	280
	24.1	The metter	n af tha faild	389
	24.2	The patter	n of the field	391
	24.3	The secura		~~~
		of the man		397
	24.4	Electrical o	conductivity of the core	402
	24.5	The dynam	10 mechanism	405
	24.6	The westw	ard drift and inner core rotation	410
	24.7	Dynamo ei	nergy and the toroidal field	411
	24.8	Magnetic f	ields of other planets	414
	25	Pool more	action and palo amognation	410
	25	ROCK mage	leusm and paleomagneusm	417
	25.1	Preamble		417
	25.2	Magnetic p	properties of minerals and rocks	418
25.3 Secular variation and the axial dipole hypothesis			422	
	25.4	Geomagne	tic reversals	427
	25.5	Paleointen	sity – the strength of the ancient field	432
	25.6	Polar wand	ler and continental drift	434
	~ ~	· • •		
	26	'Alternativ	e' energy sources and natural climate	
		variations:	some geophysical background	438
	26.1	Preamble		438
	26.2	Natural en	ergy dissipations	440
	26.3	'Alternativ	e' energy sources: possibilities	
		and consec	juences	442
	26.4	Orbital mo	dulation of insolation and solar variability	445
	26.5	A concludi	ng comment regarding 'alternative'	
		energies		447
		8		
	Арр	endix A	General reference data	448
	Арр	endix B	Orbital dynamics (Kepler's laws)	454
	Арр	endix C	Spherical harmonic functions	457
	Арр	endix D	Relationships between elastic moduli	
			of an isotropic solid	462

CONTENTS xi

Appendix E Thermodynamic parameters and derivative relationships	464
Appendix F An Earth model: mechanical properties	469
Appendix G A thermal model of the Earth	472
Appendix H Radioactive isotopes	474
Appendix I A geologic time scale	476
Appendix J Problems	477
References	496
Name index	514
Subject index	521

Preface

As with previous editions of this title, our principal aim is to present a coherent account of the Earth that will satisfy advanced students with diverse backgrounds. We have endeavoured to explore the physical principles of the subject in a way that encourages critical appraisal. This requires the reader to have some familiarity with a wide range of inter-related ideas, for which there is no clearly preferred, logical order of presentation. Should the properties of meteorites precede or follow the isotopic methods used to study them? Is it important to understand something about the Earth's internal heat before studying seismology or vice versa? Can we be clear about the evidence for tectonic activity without knowing about the behaviour of the geomagnetic field? We have attempted to avoid the need for answers to these questions by beginning each chapter with what we call a preamble. Our preambles are not intended to be synopses of the chapters or even introductions in the conventional sense, but glue to hold the subject together, with glimpses of related concepts from other chapters. We hope to convey in this way a feel for the unity of the subject. Especially for students using this book as a text, we suggest reading all of the preambles before looking deeper into any of the chapters.

The appendices and the list of references are also indications of our philosophy. They are included as tools to aid students, or others, who are pursuing topics beyond the level of this book, questioning the approach we have taken or simply seeking convenient reference material. We often learn most effectively by doubting something we read and conducting an independent check, either by a calculation or by a literature search. This is especially true in using a text such as ours, which introduces ideas that are recent and await confirmation or are even disputed. One of the appendices is a set of problems, many of which we have used with our own classes. They have a wide range of sophistication, from near trivial to difficult. For convenience they are numbered to identify them with particular chapters, but in many cases it is not clear to which chapters they are most relevant. Problems that provide bridges between topics are probably the most useful and we draw attention to some of them in the text. Our own solutions are presented on a website: www.cambridge.org/9780521873628.

We like to think that this book will be read by the next generation of geophysicists, who will develop an understanding of things that currently puzzle us or correct things that we have got wrong. We refer in the text to some of the tantalizing questions that await their attention and they will find more that we have not thought of. Advice about our errors, omissions and obscurities will be appreciated. We thank colleagues who have reviewed draft chapters and helped us to minimize the flaws: Charles Barton, Peter Bird, Emily Brodsky, Shamita Das, David Dunlop, Emily Foote, Mark Harrison, Donald Isaak, Ian Jackson, Mark Jacobson, Per Jögi, Brian Kennett, Andrew King, Frank Kyte, David Loper, Kevin McKeegan, Ronald Merrill, Francis Nimmo, Richard Peltier, Henry Pollack, Joy Stacey, Sabine Stanley and George Williams.

> Frank Stacey Paul Davis