Physics of the Earth

The fourth edition of Physics of the Earth maintains the original philosophy of this classic textbook on fundamental solid Earth geophysics, while being completely revised and up-dated by Frank Stacey and his new co-author Paul Davis. Building on the success of previous editions, which have served generations of graduate students and researchers for nearly forty years, this new edition will be an invaluable resource for graduate students looking for the necessary physical and mathematical foundations to embark on their own research careers in geophysics.

The book presents a detailed, critical analysis of the whole range of global geophysics topics and traces our understanding of the Earth, from its origin and composition to recent ideas about rotation of the inner core. The division of this new edition into an increased number of shorter chapters is designed to make the material more accessible, and allows students to focus on topics of particular interest. New chapters on elastic and inelastic properties, rock mechanics, kinematics of earthquake processes, earthquake dynamics and thermal properties have been added. A brief concluding chapter also reviews contributions from solid Earth studies to our understanding of climate change and the potential for ‘alternative’ energies.

Appendices, presenting fundamental data and advanced mathematical concepts, and an extensive reference list, are provided as tools to aid readers wishing to pursue topics beyond the level of the book. Over 140 student exercises of varying levels of difficulty are also included, and full solutions are available online at www.cambridge.org/9780521873628.

Frank Stacey is a graduate of London University. After appointments in Canada, Australia and UK, he went to the University of Queensland in 1964 and it was there that the first three editions of ‘Physics of the Earth’ were written. After retirement as Professor of Applied Physics, he joined CSIRO Exploration and Mining (in 1997) to continue geophysical research. He has published on a wide range of geophysical topics and has been recognized by his peers by election to fellowship of the Australian Academy of Science and the American Geophysical Union and by the award of the inaugural Neel medal of the European Geophysical Society, as well as numerous visiting lectureships at institutions around the world. Professor Stacey is also the author/editor of three other books.

Paul Davis is a graduate of the University of Queensland. After appointments in Edmonton, Canada, and Cambridge, he joined the University of California at Los Angeles (UCLA), where he is Professor of Geophysics. He has published extensively on geophysical topics, especially seismology. His professional honours include a Guggenheim fellowship, fellowship of the Royal Astronomical Society and the American Geophysical Union and a visiting Leverhulme professorship to the University of Oxford. He has served a term as editor of the Journal of Geophysical Research (Solid Earth). Professor Davis is also the co-author of another undergraduate textbook.
Gemini XI photograph of the Gulf of Aden and the Red Sea by NASA astronauts Charles Conrad and Richard F. Gordon. This is one of the areas of particular interest in the theory of sea floor spreading. A line of earthquake epicentres extends from the ridge system in the Indian Ocean, up the middle of the Gulf of Aden and into the Red Sea, marking the axis of a new ridge along which mantle material is rising as the Africa and Arabia plates part. Courtesy of the National Aeronautics and Space Administration, Washington.
Physics of the Earth

Fourth edition

Frank D Stacey
CSIRO Exploration and Mining, Brisbane, Australia

Paul M Davis
Department of Earth and Space Sciences, University of California, Los Angeles, USA
Contents

Preface
page xiii

1 Origin and history of the Solar System
1
1.1 Preamble
1.2 Planetary orbits: the Titius–Bode law
1.3 Axial rotations
1.4 Distribution of angular momentum
1.5 Satellites
1.6 Asteroids
1.7 Meteorites: falls, finds and orbits
1.8 Cosmic ray exposures of meteorites and the evidence of asteroidal collisions
1.9 The Poynting–Robertson and Yarkovsky effects
1.10 Parent bodies of meteorites and their cooling rates
1.11 Magnetism in meteorites
1.12 Tektites
1.13 The Kuiper belt, comets, meteors and interplanetary dust
1.14 The terrestrial planets: some comparisons
1.15 Early history of the Moon

2 Composition of the Earth
27
2.1 Preamble
2.2 Meteorites as indicators of planetary compositions
2.3 Irons and stony-irons
2.4 Ordinary and carbonaceous chondrites
2.5 Achondrites
2.6 The solar atmosphere
2.7 The mantle
2.8 The core
2.9 The crust
2.10 The oceans
2.11 Water in the Earth
2.12 The atmosphere: a comparison with the other terrestrial planets

3 Radioactivity, isotopes and dating
48
3.1 Preamble
3.2 Radioactive decay
3.3 A decay clock: 14C dating
3.4 Accumulation clocks: K-Ar and U-He dating
3.5 Fission tracks
3.6 The use of isochrons: Rb-Sr dating 53
3.7 U-Pb and Pb-Pb methods .. 55
3.8 147Sm-143Nd and other decays 56
3.9 Isotopic fractionation ... 57

4 Isotopic clues to the age and origin of the Solar System 61
4.1 Preamble ... 61
4.2 The pre-nuclear age problem .. 61
4.3 Meteorite isochrons and the age of the Earth 63
4.4 Dating the heavy elements: orphaned decay products 65
4.5 Isotopic variations of pre-Solar System origin 67
4.6 Sequence of events in Solar System formation 70

5 Evidence of the Earth’s evolutionary history 72
5.1 Preamble ... 72
5.2 Argon and helium outgassing and the Earth’s potassium content 74
5.3 Evolution of the crust .. 75
5.4 Separation of the core ... 78
5.5 The fossil record: crises and extinctions 79

6 Rotation, figure of the Earth and gravity 81
6.1 Preamble ... 81
6.2 Gravitational potential of a nearly spherical body 82
6.3 Rotation, ellipticity and gravity 84
6.4 The approach to equilibrium ellipticity 87

7 Precession, wobble and rotational irregularities 90
7.1 Preamble ... 90
7.2 Precession of the equinoxes ... 91
7.3 The Chandler wobble ... 94
7.4 Length-of-day (LOD) variations 97
7.5 Coupling of the core to rotational variations 99

8 Tides and the evolution of the lunar orbit 102
8.1 Preamble ... 102
8.2 Tidal deformation of the Earth 103
8.3 Tidal friction .. 106
8.4 Evolution of the lunar orbit .. 108
8.5 The Roche limit for tidal stability of a satellite 111
8.6 The multiple moons hypothesis 114
9 The satellite geoid, isostasy, post-glacial rebound and mantle viscosity

9.1 Preamble 117
9.2 The satellite geoid 118
9.3 The principle of isostasy 122
9.4 Gravity anomalies and the inference of internal structure 125
9.5 Post-glacial isostatic adjustment 128
9.6 Rebound and the variation in ellipticity 132

10 Elastic and inelastic properties 135
10.1 Preamble 135
10.2 Elastic moduli of an isotropic solid 136
10.3 Crystals and elastic anisotropy 138
10.4 Relaxed and unrelaxed moduli of a composite material 141
10.5 Anelasticity and the damping of elastic waves 142
10.6 Inelasticity, creep and flow 144
10.7 Frequency dependent elasticity and the dispersion of body waves 147

11 Deformation of the crust: rock mechanics 149
11.1 Preamble 149
11.2 The tensor representation of stress and strain 151
11.3 Hooke’s law in three dimensions 151
11.4 Traction, principal stresses and rotation of axes 152
11.5 Crustal stress and faulting 156
11.6 Crustal stress: measurement and analysis 159

12 Tectonics 163
12.1 Preamble 163
12.2 Wadati-Benioff zones and subduction 167
12.3 Spreading centres and magnetic lineations 171
12.4 Plate motions and hot spot traces 173
12.5 The pattern of mantle convection 177
12.6 Tectonic history and mantle heterogeneity 179

13 Convective and tectonic stresses 181
13.1 Preamble 181
13.2 Convective energy, stress and mantle viscosity 184
13.3 Buoyancy forces in deep mantle plumes 187
13.4 Topographic stress 188
13.5 Stress regimes of continents and ocean floors 191
13.6 Coulombic thrust wedges 193
14 Kinematics of the earthquake process 197
14.1 Preamble 197
14.2 Earthquakes as dislocations 198
14.3 Generalized seismic moment 203
14.4 First motion studies 206
14.5 Rupture models and the spectra of seismic waves 208
14.6 Earthquake magnitude and energy 212
14.7 The distribution of earthquake sizes 215
14.8 Tsunamis 219
14.9 Microseisms 222

15 Earthquake dynamics 224
15.1 Preamble 224
15.2 Stress fields of earthquakes 225
15.3 Fault friction and earthquake nucleation: the quasi-static regime 227
15.4 The dynamic regime 231
15.5 Omori’s aftershock law 232
15.6 Stress drop and radiated energy 233
15.7 Foreshocks and prediction ideas 237

16 Seismic wave propagation 239
16.1 Preamble 239
16.2 Body waves 240
16.3 Attenuation and scattering 242
16.4 Reflection and transmission coefficients at a plane boundary 247
16.5 Surface waves 251
16.6 Free oscillations 255
16.7 The moment tensor and synthetic seismograms 261

17 Seismological determination of Earth structure 267
17.1 Preamble 267
17.2 Refraction in a plane layered Earth 268
17.3 Refraction in a spherically layered Earth 271
17.4 Travel times and the velocity distribution 274
17.5 Earth models: density variation in a homogeneous layer 277
17.6 Internal structure of the Earth: the broad picture 278
17.7 Boundaries and discontinuities 279
17.8 Lateral heterogeneity: seismic tomography 284
17.9 Seismic anisotropy 289

18 Finite strain and high-pressure equations of state 294
18.1 Preamble 294
18.2 High-pressure experiments and their interpretation 296
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.3 The appeal to atomic potentials</td>
<td>299</td>
</tr>
<tr>
<td>18.4 Finite strain approaches</td>
<td>302</td>
</tr>
<tr>
<td>18.5 Derivative equations</td>
<td>303</td>
</tr>
<tr>
<td>18.6 Thermodynamic constraints</td>
<td>305</td>
</tr>
<tr>
<td>18.7 Finite strain of a composite material</td>
<td>307</td>
</tr>
<tr>
<td>18.8 Rigidity modulus at high pressure</td>
<td>309</td>
</tr>
<tr>
<td>18.9 A comment on application to the Earth's deep interior</td>
<td>311</td>
</tr>
<tr>
<td>19 Thermal properties</td>
<td>314</td>
</tr>
<tr>
<td>19.1 Preamble</td>
<td>314</td>
</tr>
<tr>
<td>19.2 Specific heat</td>
<td>316</td>
</tr>
<tr>
<td>19.3 Thermal expansion and the Grüneisen parameter</td>
<td>319</td>
</tr>
<tr>
<td>19.4 Melting</td>
<td>323</td>
</tr>
<tr>
<td>19.5 Adiabatic and melting point gradients</td>
<td>326</td>
</tr>
<tr>
<td>19.6 Thermal conduction</td>
<td>327</td>
</tr>
<tr>
<td>19.7 Temperature dependences of elastic moduli: thermal</td>
<td></td>
</tr>
<tr>
<td>interpretation of tomography</td>
<td>329</td>
</tr>
<tr>
<td>19.8 Anharmonicity</td>
<td>332</td>
</tr>
<tr>
<td>20 The surface heat flux</td>
<td>337</td>
</tr>
<tr>
<td>20.1 Preamble</td>
<td>337</td>
</tr>
<tr>
<td>20.2 The ocean floor heat flux</td>
<td>338</td>
</tr>
<tr>
<td>20.3 The continental heat flux</td>
<td>341</td>
</tr>
<tr>
<td>20.4 Lithospheric thickness</td>
<td>344</td>
</tr>
<tr>
<td>20.5 Climatic effects</td>
<td>346</td>
</tr>
<tr>
<td>21 The global energy budget</td>
<td>348</td>
</tr>
<tr>
<td>21.1 Preamble</td>
<td>348</td>
</tr>
<tr>
<td>21.2 Radiogenic heat</td>
<td>349</td>
</tr>
<tr>
<td>21.3 Thermal contraction, gravitational energy and the heat</td>
<td>352</td>
</tr>
<tr>
<td>capacity</td>
<td></td>
</tr>
<tr>
<td>21.4 Energy balance of the core</td>
<td>356</td>
</tr>
<tr>
<td>21.5 Minor components of the energy budget</td>
<td>359</td>
</tr>
<tr>
<td>22 Thermodynamics of convection</td>
<td>361</td>
</tr>
<tr>
<td>22.1 Preamble</td>
<td>361</td>
</tr>
<tr>
<td>22.2 Thermodynamic efficiency, buoyancy forces and</td>
<td>362</td>
</tr>
<tr>
<td>convective power</td>
<td></td>
</tr>
<tr>
<td>22.3 Convection through phase transitions</td>
<td>364</td>
</tr>
<tr>
<td>22.4 Thermodynamic efficiency of mantle convection and</td>
<td>366</td>
</tr>
<tr>
<td>tectonic power</td>
<td></td>
</tr>
<tr>
<td>22.5 Why are mantle phase boundaries sharp?</td>
<td>368</td>
</tr>
<tr>
<td>22.6 Compositional convection in the core</td>
<td>370</td>
</tr>
<tr>
<td>22.7 Thermodynamic efficiency of core convection and</td>
<td>372</td>
</tr>
<tr>
<td>dynamo power</td>
<td></td>
</tr>
<tr>
<td>22.8 Refrigerator action in the core</td>
<td>374</td>
</tr>
</tbody>
</table>
23 Thermal history 376
23.1 Preamble 376
23.2 The rate of heat transfer to the oceans 378
23.3 The heat balance equation and mantle rheology 380
23.4 Thermal history of the mantle 382
23.5 Cooling history of the core 385

24 The geomagnetic field 389
24.1 Preamble 389
24.2 The pattern of the field 391
24.3 The secular variation and the electrical conductivity of the mantle 397
24.4 Electrical conductivity of the core 402
24.5 The dynamo mechanism 405
24.6 The westward drift and inner core rotation 410
24.7 Dynamo energy and the toroidal field 411
24.8 Magnetic fields of other planets 414

25 Rock magnetism and paleomagnetism 417
25.1 Preamble 417
25.2 Magnetic properties of minerals and rocks 418
25.3 Secular variation and the axial dipole hypothesis 422
25.4 Geomagnetic reversals 427
25.5 Paleointensity – the strength of the ancient field 432
25.6 Polar wander and continental drift 434

26 ‘Alternative’ energy sources and natural climate variations: some geophysical background 438
26.1 Preamble 438
26.2 Natural energy dissipations 440
26.3 ‘Alternative’ energy sources: possibilities and consequences 442
26.4 Orbital modulation of insolation and solar variability 445
26.5 A concluding comment regarding ‘alternative’ energies 447

Appendix A General reference data 448
Appendix B Orbital dynamics (Kepler’s laws) 454
Appendix C Spherical harmonic functions 457
Appendix D Relationships between elastic moduli of an isotropic solid 462
CONTENTS

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Thermodynamic parameters and derivative relationships</td>
<td>464</td>
</tr>
<tr>
<td>F</td>
<td>An Earth model: mechanical properties</td>
<td>469</td>
</tr>
<tr>
<td>G</td>
<td>A thermal model of the Earth</td>
<td>472</td>
</tr>
<tr>
<td>H</td>
<td>Radioactive isotopes</td>
<td>474</td>
</tr>
<tr>
<td>I</td>
<td>A geologic time scale</td>
<td>476</td>
</tr>
<tr>
<td>J</td>
<td>Problems</td>
<td>477</td>
</tr>
</tbody>
</table>

References 496
Name index 514
Subject index 521
Preface

As with previous editions of this title, our principal aim is to present a coherent account of the Earth that will satisfy advanced students with diverse backgrounds. We have endeavoured to explore the physical principles of the subject in a way that encourages critical appraisal. This requires the reader to have some familiarity with a wide range of inter-related ideas, for which there is no clearly preferred, logical order of presentation. Should the properties of meteorites precede or follow the isotopic methods used to study them? Is it important to understand something about the Earth’s internal heat before studying seismology or vice versa? Can we be clear about the evidence for tectonic activity without knowing about the behaviour of the geomagnetic field? We have attempted to avoid the need for answers to these questions by beginning each chapter with what we call a preamble. Our preambles are not intended to be synopses of the chapters or even introductions in the conventional sense, but glue to hold the subject together, with glimpses of related concepts from other chapters. We hope to convey in this way a feel for the unity of the subject. Especially for students using this book as a text, we suggest reading all of the preambles before looking deeper into any of the chapters.

The appendices and the list of references are also indications of our philosophy. They are included as tools to aid students, or others, who are pursuing topics beyond the level of this book, questioning the approach we have taken or simply seeking convenient reference material. We often learn most effectively by doubting something we read and conducting an independent check, either by a calculation or by a literature search. This is especially true in using a text such as ours, which introduces ideas that are recent and await confirmation or are even disputed. One of the appendices is a set of problems, many of which we have used with our own classes. They have a wide range of sophistication, from near trivial to difficult. For convenience they are numbered to identify them with particular chapters, but in many cases it is not clear to which chapters they are most relevant. Problems that provide bridges between topics are probably the most useful and we draw attention to some of them in the text. Our own solutions are presented on a website: www.cambridge.org/9780521873628.

We like to think that this book will be read by the next generation of geophysicists, who will develop an understanding of things that currently puzzle us or correct things that we have got wrong. We refer in the text to some of the tantalizing questions that await their attention and they will find more that we have not thought of. Advice about our errors, omissions and obscurities will be appreciated. We thank colleagues who have reviewed draft chapters and helped us to minimize the flaws: Charles Barton, Peter Bird, Emily Brodsky, Shamita Das, David Dunlop, Emily Foote, Mark Harrison, Donald Isaak, Ian Jackson, Mark Jacobson, Per Jögi, Brian Kennett, Andrew King, Frank Kyte, David Loper, Kevin McKeegan, Ronald Merrill, Francis Nimmo, Richard Peltier, Henry Pollack, Joy Stacey, Sabine Stanley and George Williams.

Frank Stacey
Paul Davis