An Introduction to Description Logic

Description logic (DL) has a long tradition in computer science and knowledge representation, being designed so that domain knowledge can be described and so that computers can reason about this knowledge. DL has recently gained increased importance since it forms the logical basis of widely used ontology languages, in particular the web ontology language OWL.

Written by four renowned experts, this is the first textbook on Description Logic. It is suitable for self-study by graduates and as the basis for a university course. Starting from a basic DL, the book introduces the reader to its syntax, semantics, reasoning problems and model theory, and discusses the computational complexity of these reasoning problems and algorithms to solve them. It then explores a variety of different description logics, reasoning techniques, knowledge-based applications and tools, and describes the relationship between DLs and OWL.
An Introduction to Description Logic

FRANZ BAADER
Technische Universität, Dresden

IAN HORROCKS
University of Oxford

CARSTEN LUTZ
Universität Bremen

ULI SATTLER
University of Manchester
Contents

1 Introduction page 1
 1.1 What are DLs and where do they come from? 1
 1.2 What are they good for and how are they used? 3
 1.3 A brief history of description logic 4
 1.4 How to use this book 7

2 A Basic Description Logic 10
 2.1 The concept language of the DL \mathcal{ALC} 10
 2.2 \mathcal{ALC} knowledge bases 16
 2.2.1 \mathcal{ALC} TBoxes 17
 2.2.2 \mathcal{ALC} ABoxes 19
 2.2.3 Restricted TBoxes and concept definitions 23
 2.3 Basic reasoning problems and services 28
 2.4 Using reasoning services 36
 2.5 Extensions of the basic DL \mathcal{ALC} 37
 2.5.1 Inverse roles 37
 2.5.2 Number restrictions 39
 2.5.3 Nominals 41
 2.5.4 Role hierarchies 42
 2.5.5 Transitive roles 42
 2.6 DLs and other logics 44
 2.6.1 DLs as decidable fragments of first-order logic 44
 2.6.2 DLs as cousins of modal logic 46
 2.7 Historical context and literature review 48

3 A Little Bit of Model Theory 50
 3.1 Bisimulation 51
 3.2 Expressive power 53
 3.3 Closure under disjoint union 55
Contents

3.4 Finite model property 57
3.5 Tree model property 63
3.6 Historical context and literature review 67

4 Reasoning in DLs with Tableau Algorithms 69
4.1 Tableau basics 70
4.2 A tableau algorithm for ALC 71
 4.2.1 ABox consistency 72
 4.2.2 Acyclic knowledge base consistency 82
 4.2.3 General knowledge base consistency 83
4.3 A tableau algorithm for ALCIN 90
 4.3.1 Inverse roles 90
 4.3.2 Number restrictions 93
 4.3.3 Combining inverse roles and number restrictions 97
4.4 Some implementation issues 101
 4.4.1 Or-branching 101
 4.4.2 And-branching 103
 4.4.3 Classification 104
4.5 Historical context and literature review 104

5 Complexity 106
5.1 Concept satisfiability in ALC 107
 5.1.1 Acyclic TBoxes and no TBoxes 108
 5.1.2 General TBoxes 117
5.2 Concept satisfiability beyond ALC 123
 5.2.1 ALC with inverse roles and nominals 123
 5.2.2 Further adding number restrictions 125
5.3 Undecidable extensions of ALC 130
 5.3.1 Role value maps 130
 5.3.2 Concrete domains 134
5.4 Historical context and literature review 137

6 Reasoning in the \mathcal{EL} Family of Description Logics 140
6.1 Subsumption in \mathcal{EL} 141
 6.1.1 Normalisation 142
 6.1.2 The classification procedure 147
6.2 Subsumption in \mathcal{ELT} 151
 6.2.1 Normalisation 151
 6.2.2 The classification procedure 152
6.3 Comparing the two subsumption algorithms 159
 6.3.1 Comparing the classification rules 159
 6.3.2 A more abstract point of view 162
Contents

6.4 Historical context and literature review 165

7 Query Answering 168
7.1 Conjunctive queries and FO queries 169
7.2 FO-rewritability and DL-Lite 174
7.2.1 Introducing DL-Lite 175
7.2.2 Universal models 180
7.2.3 FO-rewritability in DL-Lite 184
7.3 Datalog-rewritability in \mathcal{EL} and \mathcal{ELI} 192
7.3.1 Fundamentals of Datalog 193
7.3.2 Datalog-rewritings in \mathcal{ELI} 195
7.3.3 Short Datalog-rewritings in \mathcal{EL} 198
7.4 Complexity aspects 199
7.5 Historical context and literature review 202

8 Ontology Languages and Applications 205
8.1 The OWL ontology language 206
8.1.1 OWL and RDF 206
8.1.2 OWL and \mathcal{SROIQ} 209
8.1.3 OWL ontologies 213
8.1.4 Non-DL features 217
8.1.5 OWL profiles 222
8.2 OWL tools and applications 223
8.2.1 The OWL API 223
8.2.2 OWL reasoners 224
8.2.3 Ontology engineering tools 224
8.2.4 OWL applications 225

Appendix: Description Logic Terminology 228
A.1 Syntax and semantics of concept and role constructors 228
A.2 Syntax and semantics of knowledge bases 230
A.3 Naming schemes for description logics 231

References 234
Index 252