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Preface

Potential flows of incompressible fluids with constant properties are irrotational solutions

of the Navier–Stokes equations that satisfy Laplace’s equation. How do these solutions

enter into the general problem of viscous fluid mechanics? Under certain conditions,

the Helmholtz decomposition says that solutions of the Navier–Stokes equations can be

decomposed into a rotational part and an irrotational part satisfying Laplace’s equation.

The irrotational part is required for satisfying the boundary conditions; in general, the

boundary conditions cannot be satisfied by the rotational velocity, and they cannot be

satisfied by the irrotational velocity; the rotational and irrotational velocities are both

required and they are tightly coupled at the boundary. For example, the no-slip condition

for Stokes flow over a sphere cannot be satisfied by the rotational velocity; harmonic

functions that satisfy Laplace’s equation subject to a Robin boundary condition in which

the irrotational normal and tangential velocities enter in equal proportions are required.

The literature that focuses on the computation of layers of vorticity in flows that are

elsewhere irrotational describes boundary-layer solutions in the Helmholtz decomposed

forms. These kinds of solutions require small viscosity and, in the case of gas–liquid flows,

are said to give rise to weak viscous damping. It is true that viscous effects arising from

these layers are weak, but the main effects of viscosity in so many of these flows are purely

irrotational, and they are not weak.

The theory of purely irrotational flows of a viscous fluid is an approximate theory

that works well especially in gas–liquid flows of liquids of high viscosity at low Reynolds

numbers. The theory of purely irrotational flows of a viscous fluid can be seen as a very

successful competitor to the theory of purely irrotational flows of an inviscid fluid. We

have come to regard every solution of free-surface problems in an inviscid liquid as

an opportunity for a new study. There are hundreds of such opportunities that are still

available.

The theory of irrotational flows of viscous and viscoelastic liquids that is developed here

is embedded in a variety of fluid mechanics problems ranging from cavitation, capillary

breakup and rupture, Rayleigh–Taylor and Kelvin–Helmholtz instabilities, irrotational

Faraday waves on a viscous fluid, flow-induced structure of particles in viscous and vis-

coelastic fluids, boundary-layer theory for flow over rigid solids, rising bubbles, and other

topics. The theory of stability of free-surface problems developed here is a great improve-

ment of what was available previously and could be used as supplemental text in courses

on hydrodynamic stability.

xv
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xvi Preface

We have tried to assemble here all the literature bearing on the irrotational flow of

viscous liquids. For sure, it is not a large literature, but it is likely that despite an honest

effort we missed some good works.

We are happy to acknowledge the contributions of persons who have helped us. Terrence

Liao made very important contributions to our early work on this subject in the early 1990’s.

More recently, Juan Carlos Padrino joined our group and has made truly outstanding

contributions to problems described here. In a sense, Juan Carlos could be considered

to be an author of this book and we are lucky that he came along. We are indebted to

G. I. Barenblatt and to K. R. Sreenivasan for their support and help in promoting viscous
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List of Abbreviations

2D two-dimensional

3D three-demensional

BEM boundary-element method

BU Benjamin and Unsell

C/A convective–absolute

c.c. complex conjugate

DM dissipation method

ES exact solution

FHS fully hydrodynamic system

FVF fully viscous flow

IPF inviscid potential flow

JBB Joseph, Belanger, and Beavers

JBF Joseph, Beavers, and Funada

KH Kelvin–Helmholtz

KT Kumar and Tuckerman

LHC Longuet-Higgins and Cokelet

MVK Miksis, Vanden-Broeck, and Keller

ODE ordinary differential equation

PAA polyacrylamide

PDE partial differential equation

PISO pressure implicit with splitting of operators

PNSCC principal normal stress cavitation criterion

PO or PEO polyox or polyethylene oxide

QUICK quadratic upwind interpolation for convective kinematics (scheme)

RT Rayleigh–Taylor

TVF Taylor vortex flow

VCVPF viscous correction of VPF

VPF viscous potential flow
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