POTENTIAL FLOWS OF VISCOUS AND VISCOELASTIC FLUIDS

The goal of this book is to show how potential flows enter into the general theory of motions of viscous and viscoelastic fluids. Traditionally, the theory of potential flow is presented as a subject called "potential flow of an inviscid fluid"; when the fluid is incompressible, these fluids are, curiously, said to be "perfect" or "ideal." This type of presentation is widespread; it can be found in every book and in all university courses on fluid mechanics, but it is deeply flawed. It is never necessary and typically not useful to put the viscosity of fluids in potential (irrotational) flow to zero. The dimensionless description of potential flows of fluids with a nonzero viscosity depends on the Reynolds number, and the theory of potential flow of an inviscid fluid can be said to rise as the Reynolds number tends to infinity. The theory given here can be described as the theory of potential flows at finite and even small Reynolds numbers.

Daniel Joseph is a Professor of Aerospace Engineering and Mechanics at the University of Minnesota since 1963, where he has served as the Russel J. Penrose Professor and Regent's Professor. He is presently a Distinguished Adjunct Professor of Aerospace and Mechanical Engineering at the University of California, Irvine, and an Honorary Professor at Xi'an Jiaotong University in China. He has authored 10 patents, 400 journal articles, and six books. He is a Guggenheim Fellow; a member of the National Academy of Engineering, the National Academy of Sciences; and the American Academy of Arts and Sciences, G. I. Taylor Medalist, Society of Engineering Science; a Fellow of the American Physical Society; winner of the Timoshenko Medal of the ASME, the Schlumberger Foundation Award, the Bingham Medal of the Society of Rheology, and the Fluid Dynamics Prize of the APS. He is listed in Thompson Scientific-ISI's Highly Cited ResearchersTM.

Toshio Funada is a Professor of Digital Engineering at the Numazu College of Technology in Japan and has served as both Dean and Department Head. He received his doctorate at Osaka University under the guidance of Prof Kakatuni. He is an expert in the theory of stability, bifurcation, and dynamical systems. He has worked on the potential flows of viscous fluids with Professor Joseph for nearly ten years.

Jing Wang is a Post Doctoral Fellow at the University of Minnesota. He received the "Best Dissertation Award" in Physical Sciences and Engineering for 2006 at the University of Minnesota.

Cambridge University Press & Assessment 978-0-521-87337-6 — Potential Flows of Viscous and Viscoelastic Liquids Daniel Joseph , Toshio Funada , Jing Wang Frontmatter <u>More Information</u>

CAMBRIDGE AEROSPACE SERIES

Editors Wei Shyy and Michael J. Rycroft

- 1. J. M. Rolfe and K. J. Staples (eds.): Flight Simulation
- 2. P. Berlin: The Geostationary Applications Satellite
- 3. M. J. T. Smith: Aircraft Noise
- 4. N. X. Vinh: Flight Mechanics of High-Performance Aircraft
- 5. W. A. Mair and D. L. Birdsall: Aircraft Performance
- 6. M. J. Abzug and E. E. Larrabee: Airplane Stability and Control
- 7. M. J. Sidi: Spacecraft Dynamics and Control
- 8. J. D. Anderson: A History of Aerodynamics
- 9. A. M. Cruise, J. A. Bowles, C. V. Goodall, and T. J. Patrick: *Principles* of Space Instrument Design
- 10. G. A. Khoury and J. D. Gillett (eds.): Airship Technology
- 11. J. Fielding: Introduction to Aircraft Design
- 12. J. G. Leishman: Principles of Helicopter Aerodynamics, 2nd Edition
- 13. J. Katz and A. Plotkin: Low Speed Aerodynamics, 2nd Edition
- 14. M. J. Abzug and E. E. Larrabee: *Airplane Stability and Control: A History* of the Technologies that Made Aviation Possible, 2nd Edition
- 15. D. H. Hodges and G. A. Pierce: *Introduction to Structural Dynamics and Aeroelasticity*
- 16. W. Fehse: Automatic Rendezvous and Docking of Spacecraft
- 17. R. D. Flack: Fundamentals of Jet Propulsion with Applications
- 18. E. A. Baskharone: Principles of Turbomachinery in Air-Breathing Engines
- 19. Doyle D. Knight: Elements of Numerical Methods for High-Speed Flows
- 20. C. Wagner, T. Huettl, and P. Sagaut: Large-Eddy Simulation for Acoustics
- 21. D. Joseph, T. Funada, and J. Wang: *Potential Flows of Viscous* and Viscoelastic Fluids

POTENTIAL FLOWS OF VISCOUS AND VISCOELASTIC FLUIDS

Daniel Joseph

University of Minnesota

Toshio Funada

Numazu College of Technology

Jing Wang

University of Minnesota

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom

One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314-321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi - 110025, India

103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University's mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9780521873376

© Daniel Joseph, Toshio Funada, Jing Wang 2008

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press & Assessment.

First published 2007

A catalogue record for this publication is available from the British Library

Library of Congress Cataloging-in-Publication data
Joseph, Daniel D.
Potential flows of viscous and viscoelastic fluids / Daniel D. Joseph, Toshio Funda, Jing Wang. p. cm. – (Cambridge aerospace series ; 21)
Includes bibliographical references and index.
ISBN-13: 978-0-521-87337-6 (hardback)
ISBN-10: 0-521-87337-1 (hardback)
I. Viscous flow. 2. Viscoelasticity. I. Funada, Toshio, 1948–
II. Wang, Jing, 1979– III. Title. IV. Series.
QA929.J67 2007
532.0533-dc22 2006039193
ISBN 978-0-521-87337-6 Hardback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Pre	Preface page x			
List of Abbreviations				
1 Introduction				
1				
	1.1	Controlational now, Laplace's equation	2	
	1.2	Continuity equation, incompressible fluids, isochoric flow	3	
	1.3	Euler's equations	3	
	1.4	Generation of vorticity in fluids governed by Euler's equations	4	
	1.5	Periect huids, irrotational now	4	
	1.0	Boundary conditions for irrotational flow	5	
	1./	Streaming irrotational now over a stationary sphere	0	
2	His	torical notes	8	
	2.1	Navier-Stokes equations	8	
	2.2	Stokes theory of potential flow of viscous fluid	9	
	2.3	The dissipation method	10	
	2.4	The distance a wave will travel before it decays by a certain amount	11	
3	Βοι	andary conditions for viscous fluids	13	
4	Hel	mholtz decomposition coupling rotational to irrotational flow	16	
	4.1	Helmholtz decomposition	16	
	4.2	Navier–Stokes equations for the decomposition	17	
	4.3	Self-equilibration of the irrotational viscous stress	19	
	4.4	Dissipation function for the decomposed motion	20	
	4.5	Irrotational flow and boundary conditions	20	
	4.6	Examples from hydrodynamics	21	
		4.6.1 Poiseuille flow	21	
		4.6.2 Flow between rotating cylinders	21	
		4.6.3 Stokes flow around a sphere of radius a in a uniform stream U	22	
		4.6.4 Streaming motion past an ellipsoid	23	
		4.6.5 Hadamard–Rybyshinsky solution for streaming flow past a liquid		
		sphere	23	

viii		Contents	
		4.6.6 Axisymmetric steady flow around a spherical gas bubble at finite	
		Reynolds numbers	24
		4.6.7 Viscous decay of free-gravity waves	24
		4.6.8 Oseen flow	25
		4.6.9 Flows near internal stagnation points in viscous incompressible	
		fluids	26
		4.6.10 Hiemenz boundary-layer solution for two-dimensional flow	
		toward a "stagnation point" at a rigid boundary	29
		4.6.11 Jeffrey–Hamel flow in diverging and converging channels	31
		4.6.12 An irrotational Stokes flow	32
	. –	4.6.13 Lighthill's approach	32
	4.7	Conclusion	33
5	Har	monic functions that give rise to vorticity	35
U	IIui		00
6	Rac	lial motions of a spherical gas bubble in a viscous liquid	39
7	Rise	e velocity of a spherical cap bubble	42
	7.1	Analysis	42
	7.2	Experiments	46
	7.3	Conclusions	50
8	Elli	psoidal model of the rise of a Taylor bubble in a round tube	51
	8.1	Introduction	51
		8.1.1 Unexplained and paradoxical features	52
		8.1.2 Drainage	53
		8.1.3 Brown's analysis of drainage	54
		8.1.4 Viscous potential flow	55
	8.2	Ellipsoidal bubbles	56
		8.2.1 Ovary ellipsoid	56
		8.2.2 Planetary ellipsoid	60
		8.2.3 Dimensionless rise velocity	61
	8.3	Comparison of theory and experiment	63
	8.4	Comparison of theory and correlations	66
	8.5	Conclusion	68
9	Ray	leigh–Taylor instability of viscous fluids	70
	9.1	Acceleration	71
	9.2	Simple thought experiments	71
	9.3	Analysis	71
		9.3.1 Linear theory of Chandrasekhar	73
		9.3.2 Viscous potential flow	74
	9.4	Comparison of theory and experiments	76
	9.5	Comparison of the stability theory with the experiments on drop breakup	76
	9.6	Comparison of the measured wavelength of corrugations on the drop surface	
		with the prediction of the stability theory	81

			Contents	ix
	9.7 9.8	Fragmer Modelir	ntation of Newtonian and viscoelastic drops ng Rayleigh–Taylor instability of a sedimenting suspension of	84
		several	thousand circular particles in a direct numerical simulation	89
10	The	force on	a cylinder near a wall in viscous potential flows	90
	10.1	The flow	v that is due to the circulation about the cylinder	90
	10.2 10.3	The stre	aming flow past the cylinder near a wall	93 95
	10.5			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
11	Kelv	in–Helm	holtz instability	100
	11.1 11.2	KH inst Maximu	ability on an unbounded domain	100
	11.2	11 2 1	Maximum growth rate	102
		11.2.2	Hadamard instability	102
		11.2.3	The regularization of Hadamard instability	102
		11.2.4	Neutral curves	103
	11.3	KH inst	ability in a channel	103
		11.3.1	Formulation of the problem	104
		11.3.2	Viscous potential flow analysis	105
		11.3.3	KH instability of inviscid fluid	109
		11.3.4	The effect of liquid viscosity and surface tension on growth rates	110
		11.3.3	and neutral curves	112
		11.3.6	Comparison of theory and experiments in rectangular ducts	112
		11.3.7	Critical viscosity and density ratios	118
		11.3.8	Further comparisons with previous results	119
		11.3.9	Nonlinear effects	121
		11.3.10	Combinations of Rayleigh–Taylor and Kelvin–Helmholtz instabilities	123
12	Ener	gy equat	ion for irrotational theories of gas-liquid flow: viscous potential	
	flow,	viscous j	potential flow with pressure correction, and dissipation method	126
	12.1	Viscous	potential flow	126
	12.2	Dissipat	tion method according to Lamb	126
	12.3	Drag on	a spherical gas bubble calculated from the viscous dissipation	
		of an irr	rotational flow	127
	12.4	The idea	a of a pressure correction	127
	12.5	Energy	equation for irrotational flow of a viscous fluid	128
	12.0	Viscous Direct d	correction of viscous potential flow	130
	12.7	for the v	viscous decay of capillary-gravity waves	132
13	Risir	ıg bubble	es	134
	13.1	The diss	sipation approximation and viscous potential flow	134
		13.1.1	Pressure correction formulas	134
	13.2	Rising s	pherical gas bubble	135

х

1

Contents

	13.3	Rising	oblate ellipsoidal bubble	136
	13.4	A liqu	id drop rising in another liquid	137
	13.5	Purely	irrotational analysis of a toroidal bubble in a viscous fluid	139
		13.5.1	Prior work, experiments	139
		13.5.2	The energy equation	141
		13.5.3	The impulse equation	145
		13.5.4	Comparison of irrotational solutions for inviscid and viscous	
			fluids	145
		13.5.5	Stability of the toroidal vortex	148
		13.5.6	Boundary-integral study of vortex ring bubbles in a viscous	
			liquid	152
		13.5.7	Irrotational motion of a massless cylinder under the combined	
			action of Kutta–Joukowski lift, acceleration of added mass, and	
			viscous drag	153
	13.6	The m	otion of a spherical gas bubble in viscous potential flow	155
	13.7	Steady	motion of a deforming gas bubble in a viscous potential flow	157
	13.8	Dynan	nic simulations of the rise of many bubbles in a viscous potential	
		flow		157
4	Pure	ly irrota	ational theories of the effect of viscosity on the decay of waves	159
	14.1	Decay	of free-gravity waves	159
		14.1.1	Introduction	159
		14.1.2	Irrotational viscous corrections for the potential flow solution	160
		14.1.3	Relation between the pressure correction and Lamb's exact	
			solution	162
		14.1.4	Comparison of the decay rate and the wave velocity given by the	
			exact solution, VPF, and VCVPF	163
		14.1.5	Why does the exact solution agree with VCVPF when $k < k_c$ and	
			with VPF when $k > k_c$?	166
		14.1.6	Conclusion and discussion	168
		14.1.7	Quasi-potential approximation – vorticity layers	169
	14.2	Viscou	s decay of capillary waves on drops and bubbles	170
		14.2.1	Introduction	171
		14.2.2	VPF analysis of a single spherical drop immersed in another fluid	172
		14.2.3	VCVPF analysis of a single spherical drop immersed in another	
			fluid	176
		14.2.4	Dissipation approximation (DM)	180
		14.2.5	Exact solution of the linearized free-surface problem	181
		14.2.6	VPF and VCVPF analyses for waves acting on a plane interface	
			considering surface tension - comparison with Lamb's solution	183
		14.2.7	Results and discussion	185
		14.2.8	Concluding remarks	192
	14.3	Irrotat	ional dissipation of capillary-gravity waves	193
		14.3.1	Correction of the wave frequency assumed by Lamb	193
		14.3.2	Irrotational dissipation of nonlinear capillary-gravity waves	195

			Contents	xi	
15 Irrotational Faraday waves on a viscous fluid 19					
	15.1 Introduction			108	
	15.1	Energy	equation	100	
	15.2	VPF an	d VCVPF	200	
	15.5	1531	Potential flow	200	
		15.3.1	Amplitude equations for the elevation of the free surface	200	
	154	Dissipat	tion method	201	
	15.5	Stability	v analysis	204	
	15.6	Ravleig	h–Taylor instability and Faraday wayes	206	
	15.7	Compar	rison of purely irrotational solutions with exact solutions	210	
	15.8	Bifurcat	tion of Faraday waves in a nearly square container	213	
	15.9	Conclus	sion	213	
16	Stab	ility of a	liquid jet into incompressible gases and liquids	215	
	16.1	Capillar	ry instability of a liquid cylinder in another fluid	215	
		16.1.1	Introduction	215	
		16.1.2	Linearized equations governing capillary instability	217	
		16.1.3	Fully viscous flow analysis	218	
		16.1.4	Viscous potential flow analysis	218	
		16.1.5	Pressure correction for viscous potential flow	219	
		16.1.6	Comparison of growth rates	222	
		16.1.7	Dissipation calculation for capillary instability	230	
		16.1.8	Discussion of the pressure corrections at the interface of two		
			viscous fluids	232	
		16.1.9	Capillary instability when one fluid is a dynamically inactive gas	234	
		16.1.10	Conclusions	237	
	16.2	Stability	y of a liquid jet into incompressible gases: Temporal, convective,		
		and abs	olute instabilities	238	
		16.2.1	Introduction	239	
		16.2.2	Problem formulation	240	
		16.2.3	Dispersion relation	241	
		16.2.4	Temporal instability	243	
		16.2.5	Numerical results of temporal instability	250	
		16.2.6	Spatial, absolute, and convective instability	251	
		16.2.7	Algebraic equations at a singular point	255	
		16.2.8	Subcritical, critical, and supercritical singular points	256	
		16.2.9	Inviscid jet in inviscid fluid ($Re \rightarrow \infty, m = 0$)	261	
		16.2.10	Exact solution; comparison with previous results	262	
		16.2.11	Summary and discussion	266	
	16.3	Viscous	potential flow of the Kelvin–Helmholtz instability of a cylindrical	-	
		jet of or	ne fluid into the same fluid	267	
		16.3.1	Mathematical formulation	267	
		16.3.2	Normal modes; dispersion relation	268	
		16.3.3	Growth rates and frequencies	269	
		16.3.4	Hadamard instabilities for piecewise discontinuous profiles	269	

xii			Contents			
17	Stres	s-induc	ed cavitation	272		
	17.1	Theory	v of stress-induced cavitation	273		
		17.1.1	Mathematical formulation	273		
		17.1.2	Cavitation threshold	275		
	17.2	Viscou	s potential flow analysis of stress-induced cavitation in an			
		apertu	re flow	278		
		17.2.1	Analysis of stress-induced cavitation	279		
		17.2.2	Stream function, potential function, and velocity	281		
		17.2.3	Cavitation threshold	282		
		17.2.4	Conclusions	286		
		17.2.5	Navier-Stokes simulation	287		
	17.3	Stream	ning motion past a sphere	287		
		17.3.1	Irrotational flow of a viscous fluid	290		
		17.3.2	An analysis for maximum <i>K</i>	293		
	17.4	Symme	etric model of capillary collapse and rupture	297		
		17.4.1	Introduction	297		
		17.4.2	Analysis	299		
		17.4.3	Conclusions and discussion	304		
		17.4.4	Appendix	308		
18	Viscous effects of the irrotational flow outside boundary layers on rigid solids 310					
	18.1	Extra o	drag due to viscous dissipation of the irrotational flow outside			
		the bo	undary layer	311		
		18.1.1	Pressure corrections for the drag on a circular gas bubble	312		
		18.1.2	A rotating cylinder in a uniform stream	315		
		18.1.3	The additional drag on an airfoil by the dissipation method	324		
		18.1.4	Discussion and conclusion	327		
	18.2	Glaue	rt's solution of the boundary layer on a rapidly rotating cylinder in a			
		unifori	m stream revisited	329		
		18.2.1	Introduction	330		
		18.2.2	Unapproximated governing equations	334		
		18.2.3	Boundary-layer approximation and Glauert's equations	334		
		18.2.4	Decomposition of the velocity and pressure field	335		
		18.2.5	Solution of the boundary-layer now	330		
		18.2.0	Discussion and conclusion	347 250		
	102	18.2.7 Numo	Discussion and conclusion	350 252		
	10.5	1921	Introduction	352		
		18.3.1	Numerical features	355		
		18.3.2	Results and discussion	350		
		1834	Concluding remarks	377		
		10.3.4	Concluding remarks	512		
19	Irrotational flows that satisfy the compressible Navier–Stokes equations 37					
	19.1	Acous	tics	375		
	19.2	Spheri	cally symmetric waves	377		

Cambridge University Press & Assessment 978-0-521-87337-6 — Potential Flows of Viscous and Viscoelastic Liquids Daniel Joseph , Toshio Funada , Jing Wang Frontmatter <u>More Information</u>

			Contents	xiii
	19.3	Liquid	jet in a high-Mach-number airstream	378
		19.3.1	Introduction	378
		19.3.2	Basic partial differential equations	379
		19.3.3	Cylindrical liquid jet in a compressible gas	380
		19.3.4	Basic isentropic relations	380
		19.3.5	Linear stability of the cylindrical liquid jet in a compressible gas;	
			dispersion equation	381
		19.3.6	Stability problem in dimensionless form	383
		19.3.7	Inviscid potential flow	386
		19.3.8	Growth-rate parameters as functions of <i>M</i> for different	
			viscosities	386
		19.3.9	Azimuthal periodicity of the most dangerous disturbance	387
		19.3.10	Variation of the growth-rate parameters with the Weber number	388
		19.3.11	Convective/absolute instability	389
		19.3.12	Conclusions	393
20	Irrota	tional flo	ows of viscoelastic fluids	395
	20.1	Oldroy	d B model	395
	20.2	Asympt	totic form of the constitutive equations	396
		20.2.1	Retarded motion expansion for the UCM model	396
		20.2.2	The expanded UCM model in potential flow	397
		20.2.3	Potential flow past a sphere calculated with the expanded	
			UCM model	397
	20.3	Second	-order fluids	398
	20.4	Purely i	rrotational flows	400
	20.5	Purely i	rrotational flows of a second-order fluid	400
	20.6	Reversa	al of the sign of the normal stress at a point of stagnation	401
	20.7	Fluid fo	prces near stagnation points on solid bodies	402
		20.7.1	Turning couples on long bodies	402
		20.7.2	Particle–particle interactions	402
		20.7.3	Sphere–wall interactions	403
		20.7.4	Flow-induced microstructure	404
	20.8	Potentia	al flow over a sphere for a second-order fluid	406
	20.9	Potentia	al flow over an ellipse	408
		20.9.1	Normal stress at the surface of the ellipse	409
		20.9.2	The effects of the Reynolds number	410
		20.9.3	The effects of $-\alpha_1/(\rho a^2)$	412
		20.9.4	The effects of the aspect ratio	412
	20.10	The mo	ment on the ellipse	413
	20.11	The rev	ersal of the sign of the normal stress at stagnation points	414
	20.12	Flow pa	ist a flat plate	416
	20.13	Flow pa	ast a circular cylinder with circulation	416
	20.14	Potentia	al flow of a second-order fluid over a triaxial ellipsoid	417
	20.15	Motion	of a sphere normal to a wall in a second-order fluid	418
		20.15.1	Low Reynolds numbers	419

xiv			Contents	
		20.15.2	Viscoelastic Potential Flow	422
		20.15.3	Conclusions	425
21	Pure	ly irrota	tional theories of stability of viscoelastic fluids	426
	21.1	Rayleig	h–Taylor instability of viscoelastic drops at high Weber numbers	426
		21.1.1	Introduction	426
		21.1.2	Experiments	427
		21.1.3	Theory	428
		21.1.4	Comparison of theory and experiment	437
	21.2	Purely i	rrotational theories of the effects of viscosity and viscoelasticity	
		on capil	llary instability of a liquid cylinder	443
		21.2.1	Introduction	443
		21.2.2	Linear stability equations and the exact solution	444
		21.2.3	Viscoelastic potential flow	446
		21.2.4	Dissipation and the formulation for the additional pressure	
			contribution	447
		21.2.5	The additional pressure contribution for capillary instability	448
		21.2.6	Comparison of the growth rate	449
		21.2.7	Comparison of the stream functions	451
		21.2.8	Discussion	456
	21.3	Steady	motion of a deforming gas bubble in a viscous potential flow	460
22	Num	nerical m	ethods for irrotational flows of viscous fluid	461
	22.1	Perturb	ation methods	461
	22.2	Bounda	ary-integral methods for inviscid potential flow	462
	22.3	Bounda	ry-integral methods for viscous potential flow	464
Ap	pendi	x A. Eq	uations of motion and strain rates for rotational and irrotational	
flo	w in C	artesian	, cylindrical, and spherical coordinates	465
Ар	pendi	x B. List	t of frequently used symbols and concepts	471
Rej	ferenc	es		473
Inc	lex			487

Preface

Potential flows of incompressible fluids with constant properties are irrotational solutions of the Navier–Stokes equations that satisfy Laplace's equation. How do these solutions enter into the general problem of viscous fluid mechanics? Under certain conditions, the Helmholtz decomposition says that solutions of the Navier–Stokes equations can be decomposed into a rotational part and an irrotational part satisfying Laplace's equation. The irrotational part is required for satisfying the boundary conditions; in general, the boundary conditions cannot be satisfied by the rotational velocity, and they cannot be satisfied by the irrotational velocity; the rotational and irrotational velocities are both required and they are tightly coupled at the boundary. For example, the no-slip condition for Stokes flow over a sphere cannot be satisfied by the rotational velocity; harmonic functions that satisfy Laplace's equation subject to a Robin boundary condition in which the irrotational normal and tangential velocities enter in equal proportions are required.

The literature that focuses on the computation of layers of vorticity in flows that are elsewhere irrotational describes boundary-layer solutions in the Helmholtz decomposed forms. These kinds of solutions require small viscosity and, in the case of gas–liquid flows, are said to give rise to weak viscous damping. It is true that viscous effects arising from these layers are weak, but the main effects of viscosity in so many of these flows are purely irrotational, and they are not weak.

The theory of purely irrotational flows of a viscous fluid is an approximate theory that works well especially in gas–liquid flows of liquids of high viscosity at low Reynolds numbers. The theory of purely irrotational flows of a viscous fluid can be seen as a very successful competitor to the theory of purely irrotational flows of an inviscid fluid. We have come to regard every solution of free-surface problems in an inviscid liquid as an opportunity for a new study. There are hundreds of such opportunities that are still available.

The theory of irrotational flows of viscous and viscoelastic liquids that is developed here is embedded in a variety of fluid mechanics problems ranging from cavitation, capillary breakup and rupture, Rayleigh–Taylor and Kelvin–Helmholtz instabilities, irrotational Faraday waves on a viscous fluid, flow-induced structure of particles in viscous and viscoelastic fluids, boundary-layer theory for flow over rigid solids, rising bubbles, and other topics. The theory of stability of free-surface problems developed here is a great improvement of what was available previously and could be used as supplemental text in courses on hydrodynamic stability.

xvi

Preface

We have tried to assemble here all the literature bearing on the irrotational flow of viscous liquids. For sure, it is not a large literature, but it is likely that despite an honest effort we missed some good works.

We are happy to acknowledge the contributions of persons who have helped us. Terrence Liao made very important contributions to our early work on this subject in the early 1990's. More recently, Juan Carlos Padrino joined our group and has made truly outstanding contributions to problems described here. In a sense, Juan Carlos could be considered to be an author of this book and we are lucky that he came along. We are indebted to G. I. Barenblatt and to K. R. Sreenivasan for their support and help in promoting viscous potential flow as a topic at the foundation of fluid mechanics. The National Science Foundation has supported our work from the beginning.

We worked day and night on this research; Funada in his day and our night and Joseph and Wang in their day and his night. The whole effort was a great pleasure.

Cambridge University Press & Assessment 978-0-521-87337-6 — Potential Flows of Viscous and Viscoelastic Liquids Daniel Joseph , Toshio Funada , Jing Wang Frontmatter <u>More Information</u>

List of Abbreviations

2D	two-dimensional
3D	three-demensional
BEM	boundary-element method
BU	Benjamin and Unsell
C/A	convective-absolute
с.с.	complex conjugate
DM	dissipation method
ES	exact solution
FHS	fully hydrodynamic system
FVF	fully viscous flow
IPF	inviscid potential flow
JBB	Joseph, Belanger, and Beavers
JBF	Joseph, Beavers, and Funada
KH	Kelvin–Helmholtz
KT	Kumar and Tuckerman
LHC	Longuet-Higgins and Cokelet
MVK	Miksis, Vanden-Broeck, and Keller
ODE	ordinary differential equation
PAA	polyacrylamide
PDE	partial differential equation
PISO	pressure implicit with splitting of operators
PNSCC	principal normal stress cavitation criterion
PO or PEO	polyox or polyethylene oxide
QUICK	quadratic upwind interpolation for convective kinematics (scheme)
RT	Rayleigh–Taylor
TVF	Taylor vortex flow
VCVPF	viscous correction of VPF
VPF	viscous potential flow

xvii