Index

adder
 carry propagate 25
 carry save 25
floating point 28–29
Kogge–Stone 23
alpha microprocessor 18
arithmetic module 22
ASIC methodology
design costs 141
example 4
in consumer market 21
total design starts 141
average selling prices (ASP) 21
bipolar logic 2
bubble pushing, see unate transform
clock
 creating four phases
 hard timing edge 75
 skew 14
 soft timing edge 15
two-phase for domino 12–14
CMOS
 45 nm process 130
 history of 1–4
 manufacturing capacity mix 129
 power dissipation 2
 process trends 129
 scaling 19
 static NAND gate 1
crosstalk
 fixing 105
 maximum voltage spike check 105
custom design
 benefits 4–5
 in microprocessor 21
 optimizing across logic and circuit design 29
design rule check (DRC) 105
domino
ASIC flow
 allowing binate logic 138–139
 applications 127–128
 benefits 70
 challenges 70
 clock tree synthesis 104
 crosstalk fixing by router 104
design guidelines 91–92
disruptive technology 141
dynamic simulations 105
 formal verification 103
 initial placement 98
 non-footed domino 134, 140–141
 overview 72–73
 physical design 103
 portability across different EDA tools 106
 pulse-based analysis 106
 RTL guidelines 95
 silicon results 126
 standard tool-based 71
 synthesis constraints 92–95
 synthesizing other dynamic logic families 132
 uses of domino design 16
 variables 87–91
characterization
data pin setup falling 59
domino cell
 falling delay 53
 rising delay 52–53
 transition characterization 54
 domino register
 delay measurement 64
 hold 65
 scan output delay 64
 setup 65
 hold falling 58
 input pin capacitance 54
 maximum data pin crosstalk 61–62
 minimum pulse width high and low 59
 minimum pulse width high overlap 55–57
 setup rising with respect to clock falling 54–55
 simultaneous crosstalk and charge sharing 62
 charge sharing, checking 62
 clock
 creating four phases
 hard timing edge 75
 skew 14
 soft timing edge 15
two-phase for domino 12–14
 Kogge–Stone 23
 Kogge-Stone 23
 alpha microprocessor 18
 arithmetic module 22
 ASIC methodology
design costs 141
example 4
in consumer market 21
total design starts 141
average selling prices (ASP) 21
bipolar logic 2
bubble pushing, see unate transform
Index

domino (cont.)
DSP chip results 119
system advantages in using domino logic 119
AND gate 5
avoiding explicit flip-flops with 14 charge sharing 49–50
clock 6
clocking techniques 12–15
compound domino 134
crosstalk noise 50–51
data-driven 134
disadvantages 15–16
evaluate phase 6
evaluate transistors 49
factors to consider before using 35
full timing model 66–67
future scalability 128
implementing binate functions with 9–11
improving charge-sharing tolerance 63
improving precharge delay 63
is dynamic attribute 66
keeper transistor 49
lack of contention 8
low frequency and voltage operation 117
maximum operating frequency 131
maximum precharge delay 49
non-footed domino speed advantage 132
precharge check 63
precharge delay 49, 52–54
precharge phase 6
precharge transistors 49
schematic capture 106–107
self-resetting 136
speed advantage 6–8
uninverting nature 8
Zipper/NORA 134, 135
synthesis, see domino ASIC flow
do dual output domino
advantages 110
disadvantages 110
example circuit 109

EDA history 4
fan-out of four (FO4) 20
flip-flop
D-to-Q delay 41
hold time in 14, 65
master–slave 41
pulse 41
setup and hold measurement 44
Frank Wanlass 1

 glitching 9
high-performance microarchitecture 22–29
hold time
definition 14
of pulse flip-flops 41
hot cell
intel
integer execution unit chip
chip description 115–116
clock generation 116
crosstalk failure 113
crosstalk simulation 112
data flow 108
datapath 111
design flow 108
domino cells 111–112
domino inverter P/N sizing 115
domino keeper sizing 115
dynamic cell P/N sizing 114
overview 108
physical design 116
precharge transistor sizing 115
silicon results 116–119
test methodology 116
transistor sizing simulation 112

Intel
4004 2
8088/8086 3
domino synthesis paper 124–125
low voltage swing domino 136

layout versus schematic (LVS) 105
logic
adder and shifter module 29–30
predictive comparator following addition 26
self-loading effect 6
speculative operation 27

logic synthesis
description 4
of complex datapath 25

memory
6T cell 33
decoder 34
interface to domino logic 35
layout requirements 33–34
sense amplifiers 34
SRAM example 31
timing models 31
using in ASIC design 31
microarchitecture definition 22
microprocessor
performance predictions 18
speed evolution 18
<table>
<thead>
<tr>
<th>Keyword</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>minimum pulse width high overlap description</td>
<td>104</td>
</tr>
<tr>
<td>iterative fixing</td>
<td>104</td>
</tr>
<tr>
<td>violation report</td>
<td>104</td>
</tr>
<tr>
<td>multiplier</td>
<td>24–25</td>
</tr>
<tr>
<td>NMOS NAND gate</td>
<td>2</td>
</tr>
<tr>
<td>speed disadvantage</td>
<td>3</td>
</tr>
<tr>
<td>pass transistor logic in standard cells</td>
<td>40</td>
</tr>
<tr>
<td>XOR</td>
<td>40</td>
</tr>
<tr>
<td>phase assignment challenges</td>
<td>76</td>
</tr>
<tr>
<td>clock width high check</td>
<td>83</td>
</tr>
<tr>
<td>clock width low check</td>
<td>84</td>
</tr>
<tr>
<td>definition</td>
<td>75</td>
</tr>
<tr>
<td>detailed description</td>
<td>101–103</td>
</tr>
<tr>
<td>domino input ports</td>
<td>82</td>
</tr>
<tr>
<td>fan-in phase differences</td>
<td>80–81</td>
</tr>
<tr>
<td>maximum negative slack</td>
<td>101</td>
</tr>
<tr>
<td>mixing static and domino cell</td>
<td>86</td>
</tr>
<tr>
<td>multi cycle paths</td>
<td>84–85</td>
</tr>
<tr>
<td>phase skip limit</td>
<td>101</td>
</tr>
<tr>
<td>phase skipping with slack</td>
<td>78–79</td>
</tr>
<tr>
<td>with static cells</td>
<td>100</td>
</tr>
<tr>
<td>precharge failure</td>
<td>83</td>
</tr>
<tr>
<td>requirements</td>
<td>77</td>
</tr>
<tr>
<td>simplification of latched outputs</td>
<td>90</td>
</tr>
<tr>
<td>static input port</td>
<td>81–82</td>
</tr>
<tr>
<td>static output port</td>
<td>83</td>
</tr>
<tr>
<td>unbalanced</td>
<td>79–80</td>
</tr>
<tr>
<td>using mixed registers</td>
<td>100</td>
</tr>
<tr>
<td>using skewed clocks</td>
<td>100</td>
</tr>
<tr>
<td>phase locked loop</td>
<td>130–131</td>
</tr>
<tr>
<td>pin under test</td>
<td>52</td>
</tr>
<tr>
<td>pipelining deeply in microprocessors</td>
<td>19–20</td>
</tr>
<tr>
<td>limits of</td>
<td>21</td>
</tr>
<tr>
<td>process, using worst-case corner in design</td>
<td>120</td>
</tr>
<tr>
<td>radio frequency (RF)</td>
<td>11</td>
</tr>
<tr>
<td>setup time</td>
<td>14</td>
</tr>
<tr>
<td>standard cell domino logic compatibility</td>
<td>66</td>
</tr>
<tr>
<td>domino logic well</td>
<td>66</td>
</tr>
<tr>
<td>drive strengths</td>
<td>46–48</td>
</tr>
<tr>
<td>layout</td>
<td>42–43</td>
</tr>
<tr>
<td>library performance versus size</td>
<td>46</td>
</tr>
<tr>
<td>static cell library</td>
<td>127</td>
</tr>
<tr>
<td>timing assumption</td>
<td>44</td>
</tr>
<tr>
<td>track</td>
<td>45</td>
</tr>
<tr>
<td>typical library size</td>
<td>45</td>
</tr>
<tr>
<td>switching point</td>
<td>8</td>
</tr>
<tr>
<td>timing model, pseudo-static</td>
<td>72</td>
</tr>
<tr>
<td>timing verification</td>
<td>105</td>
</tr>
<tr>
<td>transistor sizing optimal P/N ratio</td>
<td>38–39</td>
</tr>
<tr>
<td>scaling</td>
<td>37–38</td>
</tr>
<tr>
<td>unate transform</td>
<td>75</td>
</tr>
<tr>
<td>binate functions</td>
<td>75</td>
</tr>
<tr>
<td>entire domino library</td>
<td>74</td>
</tr>
<tr>
<td>incremental optimization</td>
<td>97</td>
</tr>
<tr>
<td>output phase optimization</td>
<td>96</td>
</tr>
<tr>
<td>overview</td>
<td>73–75</td>
</tr>
<tr>
<td>removing trapped inverters</td>
<td>74</td>
</tr>
<tr>
<td>static port specification</td>
<td>97</td>
</tr>
<tr>
<td>Viterbi decode chip description</td>
<td>121–122</td>
</tr>
<tr>
<td>design flow</td>
<td>122–123</td>
</tr>
<tr>
<td>silicon results</td>
<td>124</td>
</tr>
<tr>
<td>voltage-controlled oscillator back-to-back inverter</td>
<td>131</td>
</tr>
<tr>
<td>LC tank</td>
<td>131</td>
</tr>
</tbody>
</table>