
1 Introduction

Network coding, as a field of study, is young. It was only in 2000 that the seminal
paper by Ahlswede, Cai, Li, and Yeung [3], which is generally attributed with
the “birth” of network coding, was published. As such, network coding, like
many young fields, is characterized by some degree of confusion, of both
excitement about its possibilities and skepticism about its potential. Clarifying
this confusion is one of the principal aims of this book. Thus, we begin soberly,
with a definition of network coding.

1.1 WHAT IS NETWORK CODING?

Defining network coding is not straightforward. There are several definitions
that can be and have been used.

In their seminal paper [3], Ahlswede, Cai, Li, and Yeung say that they “refer
to coding at a node in a network as network coding,” where, by coding, they
mean an arbitrary, causal mapping from inputs to outputs. This is the most
general definition of network coding. But it does not distinguish the study of
network coding from network, or multiterminal, information theory – a much
older field with a wealth of difficult open problems. Since we do not wish to
devote this book to network information theory (good coverage of network
information theory already exists, for example, in [27, Chapter 14]), we seek
to go further with our definition.

A feature of Ahlswede et al.’s paper that distinguishes it from most network
information theory papers is that, rather than looking at general networks where
essentially every node has an arbitrary, probabilistic effect on every other node,
they look specifically at networks consisting of nodes interconnected by error-
free point-to-point links. Thus the network model of Ahlswede et al. is a special
case of those ordinarily studied in network information theory, albeit one that
is very pertinent to present-day networks – essentially all wireline networks
can be cast into their model once the physical layer has been abstracted into
error-free conduits for carrying bits.

1

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-87310-9 - Network Coding: An Introduction
Tracey Ho and Desmond S. Lun
Excerpt
More information

http://www.cambridge.org/052187310X
http://www.cambridge.org
http://www.cambridge.org

2 INTRODUCTION

Another possible definition of network coding, then, is coding at a node
in a network with error-free links. This distinguishes the function of network
coding from that of channel coding for noisy links; we can similarly distinguish
the function of network coding from that of source coding by considering the
former in the context of independent incompressible source processes. This
definition is frequently used and, under it, the study of network coding reduces
to a special case of network information theory. This special case was in fact
studied well before 2000 (see, for example, [51, 131]), which detracts from
some of the novelty of network coding, but we can still go further with our
definition.

Much work in network coding has concentrated around a particular form
of network coding: random linear network coding. Random linear network
coding was introduced in [58] as a simple, randomized coding method that
maintains “a vector of coefficients for each of the source processes,” which is
“updated by each coding node.” In other words, random linear network coding
requires messages being communicated through the network to be accompanied
by some degree of extra information – in this case, a vector of coefficients. In
today’s communications networks, there is a type of network that is widely used,
that easily accommodates such extra information, and that, moreover, consists
of error-free links: packet networks. With packets, such extra information,
or side information, can be placed in packet headers and, certainly, placing
side information in packet headers is common practice today (e.g., sequence
numbers are often placed in packet headers to keep track of order).

A third definition of network coding, then, is coding at a node in a packet
network (where data are divided into packets and network coding is applied to
the contents of packets), or more generally, coding above the physical layer. This
is unlike network information theory, which is generally concerned with coding
at the physical layer. We use this definition in this book. Restricting attention to
packet networks does, in some cases, limit our scope unnecessarily, and some
results with implications beyond packet networks may not be reported as such.
Nevertheless, this definition is useful because it grounds our discussion in a
concrete setting relevant to practice.

1.2 WHAT IS NETWORK CODING GOOD FOR?

Equipped with a definition, we now proceed to discuss the utility of network
coding. Network coding can improve throughput, robustness, complexity, and
security. We discuss each of these performance factors in turn.

1.2.1 Throughput

The most well-known utility of network coding – and the easiest to illustrate –
is increase of throughput. This throughput benefit is achieved by using packet

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-87310-9 - Network Coding: An Introduction
Tracey Ho and Desmond S. Lun
Excerpt
More information

http://www.cambridge.org/052187310X
http://www.cambridge.org
http://www.cambridge.org

1.2 WHAT IS NETWORK CODING GOOD FOR? 3

t2

s

t11

3

2

b1

b2

b1

b1 ⊕ b2

b2

b1

b2

4

b1 ⊕ b2

b1 ⊕ b2

1.1. The butterfly network. In this network, ev-
ery arc represents a directed link that is capable
of carrying a single packet reliably. There are two
packets, b1 and b2, present at the source node
s, and we wish to communicate the contents of
these two packets to both of the sink nodes, t1
and t2.

transmissions more efficiently, i.e., by communicating more information with
fewer packet transmissions. The most famous example of this benefit was given
by Ahlswede et al. [3], who considered the problem of multicast in a wireline
network. Their example, which is commonly referred to as the butterfly network
(see Figure 1.1), features a multicast from a single source to two sinks, or
destinations. Both sinks wish to know, in full, the message at the source node.
In the capacitated network that they consider, the desired multicast connection
can be established only if one of the intermediate nodes (i.e., a node that
is neither source nor sink) breaks from the traditional routing paradigm of
packet networks, where intermediate nodes are allowed only to make copies
of received packets for output, and performs a coding operation – it takes two
received packets, forms a new packet by taking the binary sum, or XOR, of the
two packets, and outputs the resulting packet. Thus, if the contents of the two
received packets are the vectors b1 and b2, each comprised of bits, then the
packet that is output is b1 ⊕ b2, formed from the bitwise XOR of b1 and b2.
The sinks decode by performing further coding operations on the packets that
they each receive. Sink t1 recovers b2 by taking the XOR of b1 and b1 ⊕ b2, and
likewise sink t2 recovers b1 by taking the XOR of b2 and b1 ⊕ b2. Under routing,
we could communicate, for example, b1 and b2 to t1, but we would then only
be able to communicate one of b1 or b2 to t2.

The butterfly network, while contrived, illustrates an important point: that
network coding can increase throughput for multicast in a wireline network. The
nine packet transmissions that are used in the butterfly network communicate
the contents of two packets. Without coding, these nine transmissions cannot
be used to communicate as much information, and they must be supplemented
with additional transmissions (for example, an additional transmission from
node 3 to node 4).

While network coding can increase throughput for multicast in a wireline
network, its throughput benefits are not limited to multicast or to wireline net-
works. A simple modification of the butterfly network leads to an example
that involves two unicast connections that, with coding, can be established
and, without coding, cannot (see Figure 1.2). This example involves two uni-
cast connections. For unicast in the lossless wireline networks that have been

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-87310-9 - Network Coding: An Introduction
Tracey Ho and Desmond S. Lun
Excerpt
More information

http://www.cambridge.org/052187310X
http://www.cambridge.org
http://www.cambridge.org

4 INTRODUCTION

s2

t2

t1

s1

1

b1

b1

b2

b2

2
b1 ⊕ b2

b1 ⊕ b2

b1 ⊕ b2

1.2. The modified butterfly network. In this net-
work, every arc represents a directed link that
is capable of carrying a single packet reliably.
There is one packet b1 present at source node
s1 that we wish to communicate to sink node t1
and one packet b2 present at source node s2 that
we wish to communicate to sink node t2.

2

3

1

s

t1

t2

b1

b2

b1

b2

b1 ⊕ b2

1.3. The wireless butterfly network. In this net-
work, every hyperarc represents a directed link
that is capable of carrying a single packet reliably
to one or more nodes. There are two packets, b1

and b2, present at the source node s, and we wish
to communicate the contents of these two packets
to both of the sink nodes, t1 and t2.

considered so far, a minimum of two unicast connections is necessary for there
to be a throughput gain from network coding. As we establish more concretely
in Section 2.3, network coding yields no throughput advantage over routing for
a single unicast connection in a lossless wireline network.

Network coding can also be extended to wireless networks and, in wireless
networks, it becomes even easier to find examples where network coding yields
a throughput advantage over routing. Indeed, the wireless counterparts of the
butterfly network (Figure 1.3) and the modified butterfly network (Figure 1.4)
involve fewer nodes – six and three nodes, respectively, as opposed to seven and
six. As before, these examples show instances where the desired communication
objective is not achievable using routing, but is achievable using coding. These
wireless examples differ in that, rather than assuming that packet transmissions
are from a single node to a single other node, they allow for packet transmissions

s1

s2

1

b1

b2

 b1 ⊕ b2

1.4. The modified wireless butterfly network. In this network, every
hyperarc represents a directed link that is capable of carrying a
single packet reliably to one or more nodes. There is one packet
b1 present at source node s1 that we wish to communicate to node
s2 and one packet b2 present at source node s2 that we wish to
communicate to node s1.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-87310-9 - Network Coding: An Introduction
Tracey Ho and Desmond S. Lun
Excerpt
More information

http://www.cambridge.org/052187310X
http://www.cambridge.org
http://www.cambridge.org

1.2 WHAT IS NETWORK CODING GOOD FOR? 5

to originate at a single node and end at more than one node. Thus, rather than
representing transmissions with arcs, we use hyperarcs – generalizations of arcs
that may have more than one end node.

The examples that we have discussed so far demonstrate that, even in the
absence of losses and errors, network coding can yield a throughput advantage
when it is applied either to one or more simultaneous multicast connections or
two or more simultaneous unicast connections. This is true both when packets
are transmitted only from a single node to a single other node (wireline net-
works) and when they are transmitted from a single node to one or more other
nodes (wireless networks). These examples are, however, seemingly contrived,
toy examples, and it is natural to wonder whether network coding can be gen-
eralized and, if so, to what end. Much of the remainder of this book will be
devoted to generalizing the observations made thus far on network coding to
more general settings.

1.2.2 Robustness

1.2.2.1 Robustness to packet losses. But before we proceed, we address an
important issue in packet networks, particularly wireless packet networks, that
we have thus far neglected: packet loss. Packet loss arises for various reasons in
networks, which include buffer overflow, link outage, and collision. There are
a number of ways to deal with such losses. Perhaps the most straightforward,
which is the mechanism used by the transmission control protocol (TCP), is
to set up a system of acknowledgments, where packets received by the sink
are acknowledged by a message sent back to the source and, if the source
does not receive the acknowledgment for a particular packet, it retransmits the
packet. An alternative method that is sometimes used is channel coding or,
more specifically, erasure coding. An erasure code, applied by the source node,
introduces a degree of redundancy to the packets so that the message can be
recovered even if only a subset of the packets sent by the source are received
by the sink.

Erasure coding is coding applied by the source node. What about coding
applied by intermediate nodes? That is, what about network coding? Is network
coding useful in combating against packet losses? It is; and the reason it is
can be seen with a very simple example. Consider the simple, two-link tandem
network shown in Figure 1.5. In this network, packets are lost on the link joining
nodes 1 and 2 with probability ε12 and on the link joining nodes 2 and 3 with
probability ε23. An erasure code, applied at node 1, allows us to communicate
information at a rate of (1 − ε12)(1 − ε23) packets per unit time. Essentially

21 3
1.5. Two-link tandem network. Nodes 1 and 2
are each capable of injecting a single packet per
unit time on their respective outgoing links.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-87310-9 - Network Coding: An Introduction
Tracey Ho and Desmond S. Lun
Excerpt
More information

http://www.cambridge.org/052187310X
http://www.cambridge.org
http://www.cambridge.org

6 INTRODUCTION

2

1 3

1.6. The packet relay channel. Nodes 1 and 2
are each capable of injecting a single packet per
unit time on their respective outgoing links.

we have, between nodes 1 and 3, an erasure channel with erasure probability
1 − (1 − ε12)(1 − ε23), whose capacity, of (1 − ε12)(1 − ε23), can be achieved
(or approached) with a suitably designed code. But the true capacity of the
system is greater. If we apply an erasure code over the link joining nodes 1 and
2 and another over the link joining nodes 2 and 3, i.e., if we use two stages
of erasure coding with full decoding and re-encoding at node 2, then we can
communicate information between nodes 1 and 2 at a rate of 1 − ε12 packets
per unit time and between nodes 2 and 3 at a rate of 1 − ε23 packets per unit
time. Thus, we can communicate information between nodes 1 and 3 at a rate
of min(1 − ε12, 1 − ε23), which is in general greater than (1 − ε12)(1 − ε23).

So why isn’t this solution used in packet networks? A key reason is delay.
Each stage of erasure coding, whether it uses a block code or a convolutional
code, incurs some degree of delay because the decoder of each stage needs to
receive some number of packets before decoding can begin. Thus, if erasure
coding is applied over every link or connection, the total delay would be large.
But applying extra stages of erasure coding is simply a special form of network
coding – it is coding applied at intermediate nodes. Thus, network coding can
be used to provide robustness against packet losses, which can be translated into
throughput gains. But what we want from a network coding solution is not only
increased throughput: – we want a solution that goes beyond merely applying
additional stages of erasure coding – we want a network coding scheme that
applies additional coding at intermediate code without decoding. In Chapter 4,
we discuss how random linear network coding satisfies the requirements of such
a coding scheme.

Losses add an additional dimension to network coding problems and, when
losses are present, even a single unicast connection suffices for gains to be ob-
served. Losses are very pertinent to wireless networks, and considering losses
makes network coding more relevant to wireless applications. Another charac-
teristic of wireless networks that we have discussed is the presence of broadcast
links – links that reach more than one end node – and we have yet to combine
losses and broadcast links.

In Figure 1.6, we show a modification of the two-link tandem network that
we call the packet relay channel. Here, the link coming out of node 1 doesn’t
only reach node 2, but also reaches node 3. Because of packet loss, however,
whether a packet transmitted by node 1 is received by neither node 2 nor node
3, by node 2 only, by node 3 only, or by both nodes 2 and 3 is determined

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-87310-9 - Network Coding: An Introduction
Tracey Ho and Desmond S. Lun
Excerpt
More information

http://www.cambridge.org/052187310X
http://www.cambridge.org
http://www.cambridge.org

1.2 WHAT IS NETWORK CODING GOOD FOR? 7

probabilistically. Let’s say packets transmitted by node 1 are received by node 2
only with probability p1(23)2, by node 3 only with probability p1(23)3, and by both
nodes 2 and 3 with probability p1(23)(23)) (they are lost entirely with probability
1 − p1(23)2 − p1(23)3 − p1(23)(23)). As for packets transmitted by node 2, let’s say
packets transmitted by node 2 are received by node 3 with probability p233

(they are lost entirely with probability 1 − p233). Network coding, in particular
random linear network coding, allows for the maximum achievable throughput
in such a setup, known as the min-cut capacity, to be reached, which in this case
is min(p1(23)2 + p1(23)3 + p1(23)(23), p1(23)3 + p1(23)(23) + p233).

This is no mean feat: first, from the standpoint of network information
theory, it is not even clear that there would exist a simple, capacity-achieving
network code and, second, it represents a significant shift from the prevailing
approach to wireless packet networks. The prevailing, routing approach ad-
vocates treating wireless packet networks as an extension of wireline packet
networks. Thus, it advocates sending information along routes; in this case,
either sending information from node 1 to node 2, then to node 3, or directly
from node 1 to node 3, or, in more sophisticated schemes, using a combination
of the two. With network coding, there are no paths as such – nodes contribute
transmissions to a particular connection, but these nodes do not necessarily fall
along a path. Hence a rethink of routing is necessary. This rethink results in
subgraph selection, which we examine in Chapter 5.

1.2.2.2 Robustness to link failures. Besides robustness against random
packet losses, network coding is also useful for protection from non-ergodic
link failures. Live path protection, where a primary and a backup flow are
transmitted for each connection, allows very fast recovery from link failures,
since rerouting is not required. However, this approach doubles the amount
of network traffic. By allowing sharing of network resources among different
flows, network coding can improve resource usage. For an individual multicast
session, there exists, for any set of failure patterns from which recovery is
possible with arbitrary rerouting, a static network coding solution that allows
recovery from any failure pattern in the set without rerouting [82].

1.2.3 Complexity

In some cases, although optimal routing may be able to achieve similar per-
formance to that of network coding, the optimal routing solution is difficult to
obtain. For instance, minimum-cost subgraph selection for multicast routing
involves Steiner trees, which is complex even in a centralized setting, while the
corresponding problem with network coding is a linear optimization that admits
low-complexity distributed solutions. This is discussed further in Section 5.1.1.

Network coding has also been shown to substantially improve perfor-
mance in settings where practical limitations necessitate suboptimal solutions,

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-87310-9 - Network Coding: An Introduction
Tracey Ho and Desmond S. Lun
Excerpt
More information

http://www.cambridge.org/052187310X
http://www.cambridge.org
http://www.cambridge.org

8 INTRODUCTION

e.g., gossip-based data dissemination [32] and 802.11 wireless ad hoc network-
ing [74], which is discussed in Section 3.5.2.2.

1.2.4 Security

From a security standpoint, network coding can offer both benefits and draw-
backs. Consider again the butterfly network (Figure 1.1). Suppose an adversary
manages to obtain only the packet b1 ⊕ b2. With the packet b1 ⊕ b2 alone, the
adversary cannot obtain either b1 or b2; thus we have a possible mechanism
for secure communication. In this instance, network coding offers a security
benefit.

Alternatively, suppose that node 3 is a malicious node that does not send
out b1 ⊕ b2, but rather a packet masquerading as b1 ⊕ b2. Because packets are
coded rather than routed, such tampering of packets is more difficult to detect.
In this instance, network coding results in a potential security drawback. We
discuss the security implications of network coding in Chapter 6.

We have now given a number of toy examples illustrating some benefits of
network coding. That these examples bear some relevance to packet networks
should be evident; exactly how the principles they illustrate can be exploited in
actual settings is perhaps not. We address more general cases using the model
that we put forth in the following section.

1.3 NETWORK MODEL

Packet networks, especially wireless packet networks, are immensely complex
and, as such, difficult to accurately model. Moreover, network coding is used
in such a wide variety of contexts that it is not sensible to always use the same
model. Nevertheless, there are common aspects to all of the models that we
employ, which we now discuss. The specific aspects of the various models we
use are discussed as we encounter them.

As a starting point for our model, we assume that there are a number of
connections, or sessions, that we wish to establish. These connections may be
unicast (with a single source node and a single sink node) or multicast (with
a single source node and more than one sink node). In a multicast connection,
all of the sink nodes wish to know the same message originating from the
source node. These connections are associated with packets that we wish to
communicate at rates that may or may not be known. Thus, our model ignores
congestion control, i.e., our model does not consider having to regulate the
rates of connections. We consider congestion control to be a separate problem
that is not covered in this book, but is readily incorporated into the model (see
e.g. [25, 135]).

We represent the topology of the network with a directed hypergraph H =
(N ,A), where N is the set of nodes and A is the set of hyperarcs. A hypergraph

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-87310-9 - Network Coding: An Introduction
Tracey Ho and Desmond S. Lun
Excerpt
More information

http://www.cambridge.org/052187310X
http://www.cambridge.org
http://www.cambridge.org

1.3 NETWORK MODEL 9

is a generalization of a graph, where, rather than arcs, we have hyperarcs. A
hyperarc is a pair (i, J), where i , the start node, is an element of N and J , the
set of end nodes, is a non-empty subset of N . Each hyperarc (i, J) represents
a broadcast link from node i to nodes in the non-empty set J . In the special
case where J consists of a single element j , we have a point-to-point link. The
hyperarc is now a simple arc and we sometimes write (i, j) instead of (i, { j}). If
the network consists only of point-to-point links (as in a wireline network), then
H is a graph, denoted alternatively as G rather than H. The link represented by
hyperarc (i, J) may be lossless or lossy, i.e., it may or may not be subject to
packet erasures.

To establish the desired connection or connections, packets are injected
on hyperarcs. Let zi J be the average rate at which packets are injected on
hyperarc (i, J). The vector z, consisting of zi J , (i, J) ∈ A, defines the rate at
which packets are injected on all hyperarcs in the network. In this abstraction,
we have not explicitly accounted for any queues. We assume that queueing
occurs at a level that is hidden from our abstraction and, provided that z lies
within some constraint set Z , all queues in the network are stable. In wireline
networks, links are usually independent, and the constraint set Z decomposes
as the Cartesian product of |A| constraints. In wireless networks, links are
generally dependent and the form of Z may be complicated (see, for example,
[28,72,73,79,137,141]). For the time being, we make no assumptions about Z
except that it is a convex subset of the positive orthant and that it contains the
origin.

The pair (H, Z) defines a capacitated graph that represents the network
at our disposal, which may be a full, physical network or a subnetwork of a
physical network. The vector z, then, can be thought of as a subset of this
capacitated graph – it is the portion actually under use – and we call it the
coding subgraph for the desired connection or connections. We assume that the
coding subgraph defines not only the rates of packet injections on hyperarcs, but
also the specific times at which these injections take place. Thus, the classical
networking problems of routing and scheduling are special subproblems of the
problem of selecting a coding subgraph.

The examples discussed in the previous section give instances of coding
subgraphs, instances where packet injections have been chosen, and the task that
remains is to use them as effectively as possible. Perhaps the simplest way of
representing a coding subgraph in a lossless network is to represent each packet
transmission over some time period as a separate hyperarc, as we have done in
Figures 1.1–1.4. We may have parallel hyperarcs as we do in Figure 1.3 (where
there are two hyperarcs (s, {1, 2})), representing multiple packets transmitted
and received by the same nodes in a single time period. Coding at a node is
shown in Figure 1.7. We call this representation of a subgraph a static subgraph.
In a static subgraph, time is not represented explicitly, and it appears as though
events occur instantaneously. Presumably in reality, there is some delay involved

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-87310-9 - Network Coding: An Introduction
Tracey Ho and Desmond S. Lun
Excerpt
More information

http://www.cambridge.org/052187310X
http://www.cambridge.org
http://www.cambridge.org

10 INTRODUCTION

b1

b3 = f (b1, b2)

b2

1.7. Coding at a node in a static subgraph. Two packets, b1 and
b2, are each carried by one of the incoming arcs. The outgoing arc
carries a packet that is a function of b1 and b2.

in transmitting packets along links, so the output of packets on a link is delayed
from their input. Thus, static subgraphs hide some timing details that, though
not difficult to resolve, must be kept in mind. Moreover, we must restrict our
attention to acyclic graphs, because cyclic graphs lead to the instantaneous
feedback of packets. Despite its limitations, static subgraphs suffice for much
that we wish to discuss, and they will be used more or less exclusively in
Chapter 2, where we deal with lossless networks.

For lossy networks, the issue of time becomes much more important. The
network codes that are used for lossy networks are generally much longer than
those for lossless networks, i.e., one coding block involves many more source
packets. Looked at another way, the time period that must be considered for a
network code in a lossy network is much longer than that in a lossless network.
Hence, it becomes imperative to examine the interplay of coding and time
at a coding node. To do this, we extend static subgraphs to time-expanded
subgraphs.

A time-expanded subgraph represents not only the injection and reception
points of packets, but also the times at which these injections and receptions
take place. We draw only successful receptions; hence, in a lossy network, a
time-expanded subgraph in fact represents a particular element in the random
ensemble of a coding subgraph. Suppose for example that, in Figure 1.7, packet
b1 is received at time 1, packet b2 is received at time 2, and packet b3 is
injected at time 3. In a time-expanded subgraph, we represent these injections
and receptions as shown in Figure 1.8. In this example, we have used integral
values of time, but real values of time can just as easily be used. We now
have multiple instances of the same node, with each instance representing the
node at a different time. Joining these instances are infinite capacity links that

time1 2 3

b1

b3 = f (b1, b2)

b2 1.8. Coding at a node in a time-expanded sub-
graph. Packet b1 is received at time 1, and
packet b2 is received at time 2. The thick, hori-
zontal arcs have infinite capacity and represent
data stored at a node. Thus, at time 3, packets
b1 and b2 can be used to form packet b3.

www.cambridge.org© Cambridge University Press

Cambridge University Press
978-0-521-87310-9 - Network Coding: An Introduction
Tracey Ho and Desmond S. Lun
Excerpt
More information

http://www.cambridge.org/052187310X
http://www.cambridge.org
http://www.cambridge.org

