Ultra-wideband Positioning Systems

Accurate determination of the location of wireless devices forms the basis of many new and interesting applications. Ultra-wideband (UWB) signals enable such positioning, especially in short-range wireless networks. This text provides a detailed account of UWB positioning systems, offering comprehensive treatment of signal and receiver design, time of arrival estimation techniques, theoretical performance bounds, ranging algorithms, and protocols. Beginning with a discussion of the potential applications of wireless positioning, and investigating UWB signals for such applications, later chapters go on to establish a signal processing framework for analyzing UWB ranging and positioning systems. The recent IEEE 802.15.4a standard related to UWB is also studied in detail. Each chapter contains examples, problems, and MATLAB® exercises to help readers grasp key concepts. This is an ideal text for graduate students and researchers in electrical and computer engineering, and for practitioners in the communications industry, particularly those in wireless communications. Further resources are available at www.cambridge.org/9780521873093.

ZAFER ŞAHİNOĞLU is currently working at the Mitsubishi Electric Research Laboratories as a Principal Technical Member, and is a Senior Member of the IEEE. He received his Ph.D. in Electrical Engineering from the New Jersey Institute of Technology in 2001, receiving their Hashimoto Prize the following year.

SİNAN GEZİCI is an Assistant Professor in the Department of Electrical and Electronics Engineering at Bilkent University, Ankara, Turkey. He received his Ph.D. in Electrical Engineering from Princeton University in 2006, and is also a member of the IEEE.

İSMAIL GÜVENÇ is a Research Engineer at DoCoMo USA Communications Laboratories, Palo Alto, CA, and is a member of the IEEE. He received his Ph.D. in Electrical Engineering from the University of South Florida in 2006, receiving their Outstanding Dissertation Award in the following year.
Ultra-wideband Positioning Systems
Theoretical Limits, Ranging Algorithms, and Protocols

ZAFTER ŞAHİNOĞLU, SINAN GEZİCİ, AND İSMAİL GÜVENÇ
Dedicated to
my parents, Hakki and Saziye Sahinoglu, my brother Fatih and my sister Filiz, whose support I have always had from thousands of miles away.

Zafer Sahinoglu

Dedicated to
my parents, Ergül and Muammer Gezici, my sister Sevinc, my brother-in-law M. Bekir and my dear niece Sila.

Sinan Gezici

Dedicated to
my wife Zeynep, my daughter Beyza and my parents, Mehmet and Hatice Guvenc, and my brother Oguz.

Ismail Guvenc
Contents

Preface	page ix

1 **Introduction** | 1
1.1 Trends in location-aware applications | 2
1.2 Taxonomy of localization systems | 6
1.3 Ranging and localization with UWB | 10
1.4 Problems | 19

2 **Ultra-wideband signals** | 20
2.1 Definition of UWB | 20
2.2 International regulations for UWB signals | 24
2.3 Emerging UWB standards | 32
2.4 Problems | 42

3 **Ultra-wideband channel models** | 44
3.1 UWB versus narrowband | 45
3.2 UWB channel characterization | 49
3.3 UWB channel measurement campaigns | 53
3.4 Problems | 61

4 **Position estimation techniques** | 63
4.1 Measurement categories | 64
4.2 Position estimation | 74
4.3 Position tracking | 92
4.4 Problems | 97

5 **Time-based ranging via UWB radios** | 101
5.1 Time-based positioning | 101
5.2 Error sources in time-based ranging | 103
5.3 Time-based ranging | 108
5.4 Fundamental limits for time-based ranging | 117
5.5 Maximum likelihood-based ranging techniques 125
5.6 Low-complexity UWB ranging techniques 133
5.7 Problems 145

6 Ranging protocols 148
6.1 Layered protocols 149
6.2 Time-based ranging protocols 150
6.3 Ranging in IEEE 802.15.4a standard 158
6.4 Problems 180

7 Special topics in ranging 181
7.1 Interference mitigation 182
7.2 Coded payload modulation 196
7.3 Private ranging 198
7.4 Problems 202

8 Practical considerations for UWB system design 203
8.1 Signal design for ranging 203
8.2 Link budget calculations 210
8.3 Hardware issues 214
8.4 Problems 225

9 Recent developments and future research directions 227
9.1 Development of accurate ranging/positioning algorithms 227
9.2 Training-based systems and exploiting the side information 229
9.3 NLOS mitigation 231
9.4 Multiple accessing and interference mitigation 232
9.5 Cognitive ranging and localization 233
9.6 Anchor placement 235
9.7 UWB radar in health-care 236
9.8 UWB for simultaneous localization and mapping 237
9.9 Secure ranging and localization 238
9.10 Concluding remarks 240

References 241
Index 265
Preface

Ability to locate assets and people will be driving not only emerging location-based services, but also mobile advertising, and safety and security applications. Cellular subscribers are increasingly using their handsets already as mapping and navigation tools. Location-aware vehicle-to-vehicle communication networks are being researched widely to increase traffic safety and efficiency. Asset management in warehouses, and equipment and personnel localization/tracking in hospitals are among other location-based applications that address vast markets. It is a fact that application space for localization technologies is very diverse, and performance requirements of such applications vary to a great extent.

The Global Positioning System (GPS) requires communication with at least four GPS satellites, and offers location accuracy of several meters. It is used mainly for outdoor location-based applications, because its accuracy can degrade significantly in indoor scenarios. Wireless local area network (WLAN) technology has recently become a candidate technology for indoor localization, but the location accuracy it offers is poor, and also high power consumption of WLAN terminals is an issue for power-sensitive mobile applications. Ultra-wideband technologies (UWB) promise to overcome power consumption and accuracy limitations of both GPS and WLAN, and are more suitable for indoor location-based applications.

The Federal Communications Commission (FCC) and European Commission (EC) regulate certain frequency bands for UWB systems. These have prompted worldwide research and development efforts on UWB. Another consequence was development of international wireless communication standards that adopt UWB technology such as IEEE 802.15.4a WPAN and IEEE 802.15.3c WPAN.

The writing of this book was prompted by the fact that UWB is the most promising technology for indoor localization and tracking. As of today there is no book with particular focus on theoretical and practical evaluation of the capabilities of various UWB localization systems. The book is written for graduate-level students and practicing engineers. Prior knowledge in probability, linear algebra, digital signal processing, and signal detection and estimation is assumed.

The scope of the book is not limited to time-based UWB ranging systems, because in addition to signal design and time of arrival estimation, most location systems should adopt a ranging protocol and perform certain position estimation and tracking techniques. For completeness of the course, in depth coverage from signal design to position solving...
Preface and tracking techniques is given. Each chapter includes examples and problems to accelerate readers’ understanding. Programming exercises allow readers to simulate various techniques in UWB systems and help them see impacts of various design parameters.

Although the main focus of all chapters is on UWB systems, Chapters 1, 4, and 9 are not limited to UWB. Current trends for location-aware applications and taxonomy of localization systems are given in the first chapter. Position estimation and tracking techniques, which are applicable to any location system, are discussed in Chapter 4. Recent developments and future research directions form the main topic of Chapter 9.

UWB-specific treatment starts with Chapter 2, in which various UWB signal waveforms are studied, international regulations for UWB signal emissions are presented, and various UWB standards are discussed. UWB channel models arising from channel measurements conducted for 2–10 GHz, below 1 GHz and 57–66 GHz frequency band regions are overviewed in Chapter 3. Also, differences between narrowband and UWB channels are highlighted in this chapter. Treatment of time based ranging via UWB radios is given in Chapter 5. Its content includes discussion of potential error sources and quantification of fundamental performance limits via Cramer–Rao and Ziv–Zakai lower bounds. Chapter 6 is devoted to the discussion of various ranging protocols, and their pros and cons. The ranging aspect of the recently published IEEE 802.15.4a UWB WPAN standard is studied in detail, including preamble and start of frame delimiter design, timing counter management, and clock frequency offset mitigation. Narrowband and multiuser interference mitigation techniques, ranging privacy mechanisms and the state-of-the-art coded payload modulation technique are the special topics covered in Chapter 7. Practical considerations for UWB system design are given in Chapter 8, including signal design under practical constraints, link budget analysis, and specific hardware issues.

Solutions for the problems at the end of each chapter and Matlab simulation scripts can be found by visiting the website for this book, which is currently at www.cambridge.org/9780521873093. The most up-to-date errata sheet and references to additional material can also be found at the same site.

We would like to thank experts in the field, who have reviewed and commented on the draft of the manuscript. Their inputs greatly helped us improve the presentation. Special thanks to Andreas F. Molisch from Mitsubishi Electric Research Labs for his suggestions about the channel modeling chapter, Davide Dardari from University of Bologna for his thorough review of Chapter 5, Henk A. Wymeersch from Massachusetts Institute of Technology and Qin Wang from Harvard University for their inputs in general and for helping organize Chapter 6 in particular, Yihong Qi from AMD for her inputs on Chapters 4 and 7, Rainer Hach from Nanotron Inc. for his review of Chapter 6, Chia Chin Chong from NTT DoCoMo Labs and Fikret Altinkilic from Syracuse University for their suggestions on Chapter 3, Philip Orlik from Mitsubishi Electric Research Labs for reviewing and providing suggestions and comments on Chapters 2 and 4, and furthermore Fujio Watanabe from NTT DoCoMo Labs, Huseyin Arslan from University of South Florida and Volkan Efe from Motorola for providing comments on various chapters.

We also thank many colleagues in Mitsubishi Electric Research Labs, namely Jinyun Zhang, Kent Wittenburg, Fatih Porikli, Giovanni Vannucci, Richard Waters, Joseph Katz,
Darren Leigh, Huifang Sun, Masashi Saito, and Chunjie Duan. We are indebted to many amazing researchers with whom we closely interacted in the IEEE 802.15.4a standard and through other collaboration activities. These researchers are Patrick W. Kinney, Vern Brethour, Jay Bain, John Lampe, Ismail Lakkis, Michael McLaughlin, Francois Chin, Shahriar Emami, Ryuji Kohno, Yves Paul Nakache, Bin Zhen, Lars Menzer, Patricia Martigne, Huan Bang Li, Richard Roberts, Laurent Ouvry, Arnaud Tonnerre, Benjamin Rolfe, Moe Win, Huilin Xu, Hasari Celebi, Amer Catovic, Hiroshi Inamura, Yasuhiro Naoi, Hisashi Kobayashi, and H. Vincent Poor. Finally, we acknowledge the great support of our editor, Phil Meyler, at Cambridge University Press, and thank our families and beloved ones for being patient during the writing of this book.