Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>xv</td>
</tr>
<tr>
<td>Introduction</td>
<td>xvii</td>
</tr>
<tr>
<td>Conventions and notations</td>
<td>xxiii</td>
</tr>
<tr>
<td>Selected notations list</td>
<td>xxviii</td>
</tr>
<tr>
<td>Part I Modules</td>
<td>1</td>
</tr>
<tr>
<td>1 Pp conditions</td>
<td>3</td>
</tr>
<tr>
<td>1.1 Pp conditions</td>
<td>3</td>
</tr>
<tr>
<td>1.1.1 Pp-definable subgroups of modules</td>
<td>3</td>
</tr>
<tr>
<td>1.1.2 The functor corresponding to a pp condition</td>
<td>10</td>
</tr>
<tr>
<td>1.1.3 The lattice of pp conditions</td>
<td>15</td>
</tr>
<tr>
<td>1.1.4 Further examples</td>
<td>17</td>
</tr>
<tr>
<td>1.2 Pp conditions and finitely presented modules</td>
<td>18</td>
</tr>
<tr>
<td>1.2.1 Pp-types</td>
<td>18</td>
</tr>
<tr>
<td>1.2.2 Finitely presented modules and free realisations</td>
<td>20</td>
</tr>
<tr>
<td>1.2.3 Irreducible pp conditions</td>
<td>29</td>
</tr>
<tr>
<td>1.3 Elementary duality of pp conditions</td>
<td>30</td>
</tr>
<tr>
<td>1.3.1 Elementary duality</td>
<td>30</td>
</tr>
<tr>
<td>1.3.2 Elementary duality and tensor product</td>
<td>33</td>
</tr>
<tr>
<td>1.3.3 Character modules and duality</td>
<td>35</td>
</tr>
<tr>
<td>1.3.4 Pp conditions in tensor products</td>
<td>38</td>
</tr>
<tr>
<td>1.3.5 Mittag–Leffler modules</td>
<td>39</td>
</tr>
<tr>
<td>2 Purity</td>
<td>43</td>
</tr>
<tr>
<td>2.1 Purity</td>
<td>43</td>
</tr>
<tr>
<td>2.1.1 Pure-exact sequences</td>
<td>43</td>
</tr>
<tr>
<td>2.1.2 Pure-projective modules</td>
<td>51</td>
</tr>
<tr>
<td>2.1.3 Purity and tensor product</td>
<td>53</td>
</tr>
</tbody>
</table>
Contents

2.2 Pure global dimension 54
2.3 Absolutely pure and flat modules 57
 2.3.1 Absolutely pure modules 57
 2.3.2 Flat modules 59
 2.3.3 Coherent modules and coherent rings 63
 2.3.4 Von Neumann regular rings 66
2.4 Purity and structure of finitely presented modules 68
 2.4.1 Direct sum decomposition of finitely presented modules 68
 2.4.2 Purity over Dedekind domains and RD rings 73
 2.4.3 Pp conditions over serial rings 77
2.5 Pure-projective modules over uniserial rings 80
3 Pp-pairs and definable subcategories 85
 3.1 Pp conditions and morphisms between pointed modules 85
 3.2 Pp-pairs 87
 3.2.1 Lattices of pp conditions 87
 3.2.2 The category of pp-pairs 91
 3.3 Reduced products and pp-types 99
 3.3.1 Reduced products 99
 3.3.2 Pp conditions in reduced products 102
 3.3.3 Realising pp-types in reduced products 104
 3.4 Definable subcategories 104
 3.4.1 Definable subcategories 104
 3.4.2 Duality and definable subcategories 112
 3.4.3 Further examples of definable subcategories 114
 3.4.4 Covariantly finite subcategories 118
4 Pp-types and pure-injectivity 124
 4.1 Pp-types with parameters 124
 4.2 Algebraic compactness 127
 4.2.1 Algebraically compact modules 127
 4.2.2 Linear compactness 131
 4.2.3 Topological compactness 133
 4.2.4 Algebraically compact \mathbb{Z}-modules 135
 4.2.5 Algebraic compactness of ultraproducts 136
 4.3 Pure-injectivity 137
 4.3.1 Pure-injective modules 138
 4.3.2 Algebraically compact $=$ pure-injective 143
 4.3.3 Pure-injective hulls 144
 4.3.4 Pure-injective extensions via duality 151
 4.3.5 Hulls of pp-types 153
 4.3.6 Indecomposable pure-injectives and irreducible pp-types 157
Contents ix

4.3.7 Pure-injective hulls of finitely presented modules 162
4.3.8 Krull–Schmidt rings 164
4.3.9 Linking and quotients of pp-types 167
4.3.10 Irreducible pp-types and indecomposable direct summands 169

4.4 Structure of pure-injective modules 171
4.4.1 Decomposition of pure-injective modules 171
4.4.2 \(\Sigma \)-pure-injective modules 173
4.4.3 Modules of finite endolength 179
4.4.4 Characters 183
4.4.5 The ascending chain condition on pp-definable subgroups 187

4.5 Representation type and pure-injective modules 188
4.5.1 Pure-semisimple rings 189
4.5.2 Finite length modules over pure-semisimple rings 192
4.5.3 Rings of finite representation type 195
4.5.4 The pure-semisimplicity conjecture 198
4.5.5 Generic modules and representation type 200

4.6 Cotorsion, flat and pure-injective modules 205

5 The Ziegler spectrum 209
5.1 The Ziegler spectrum 209
5.1.1 The Ziegler spectrum via definable subcategories 210
5.1.2 Ziegler spectra via pp-pairs: proofs 217
5.1.3 Ziegler spectra via morphisms 220

5.2 Examples 221
5.2.1 The Ziegler spectrum of a Dedekind domain 221
5.2.2 Spectra over RD rings 227
5.2.3 Other remarks 228

5.3 Isolation, density and Cantor–Bendixson rank 229
5.3.1 Isolated points and minimal pairs 230
5.3.2 The isolation condition 239
5.3.3 Minimal pairs and left almost split maps 248
5.3.4 Density of (hulls of) finitely presented modules 250
5.3.5 Neg-isolated points and elementary cogenerators 253
5.3.6 Cantor–Bendixson analysis of the spectrum 260
5.3.7 The full support topology 263

5.4 Duality of spectra 266
5.5 Maps between spectra 273
5.5.1 Epimorphisms of rings 274
5.5.2 Representation embeddings 276

5.6 The dual-Ziegler topology 278
Contents

6 Rings of definable scalars

6.1 Rings of definable scalars
 6.1.1 Actions defined by pp conditions
 6.1.2 Rings of definable scalars and epimorphisms
 6.1.3 Rings of definable scalars and localisation
 6.1.4 Duality and rings of definable scalars
 6.1.5 Rings of definable scalars over a PI Dedekind domain
 6.1.6 Rings of type-definable scalars

7 M-dimension and width

7.1 Dimensions on lattices
7.2 M-dimension
 7.2.1 Calculating m-dimension
 7.2.2 Factorisable systems of morphisms and m-dimension
7.3 Width
 7.3.1 Width and superdecomposable pure-injectives
 7.3.2 Existence of superdecomposable pure-injectives

8 Examples

8.1 Spectra of artin algebras
 8.1.1 Points of the spectrum
 8.1.2 Spectra of tame hereditary algebras
 8.1.3 Spectra of some string algebras
 8.1.4 Spectra of canonical algebras
8.2 Further examples
 8.2.1 Ore and RD domains
 8.2.2 Spectra over HNP rings
 8.2.3 Pseudofinite representations of \(sl_2 \)
 8.2.4 Verma modules over \(sl_2 \)
 8.2.5 The spectrum of the first Weyl algebra and related rings
 8.2.6 Spectra of V-rings and differential polynomial rings
 8.2.7 Spectra of serial rings
 8.2.8 Spectra of uniserial rings
 8.2.9 Spectra of pullback rings
 8.2.10 Spectra of von Neumann regular rings
 8.2.11 Commutative von Neumann regular rings
 8.2.12 Indiscrete rings and almost regular rings

9 Ideals in mod-\(R \)

9.1 The radical of mod-\(R \)
 9.1.1 Ideals in mod-\(R \)
 9.1.2 The transfinite radical of mod-\(R \)
Contents

9.1.3 Powers of the radical and factorisation of morphisms 403
9.1.4 The transfinite radical and Krull–Gabriel/m-dimension 404
9.2 Fp-idempotent ideals 408

Appendix A Model theory 411
A.1 Model theory of modules 411

Part II Functors 417
10 Finitely presented functors 419
10.1 Functor categories 419
10.1.1 Functors and modules 419
10.1.2 The Yoneda embedding 425
10.1.3 Representable functors and projective objects in functor categories 427
10.2 Finitely presented functors in (mod-
R, Ab) 429
10.2.1 Local coherence of (mod-
R, Ab) 430
10.2.2 Projective dimension of finitely presented functors 435
10.2.3 Minimal free realisations and local functors 439
10.2.4 Pp conditions over rings with many objects 442
10.2.5 Finitely presented functors = pp-pairs 443
10.2.6 Examples of finitely presented functors 446
10.2.7 Free abelian categories 448
10.2.8 Extending functors along direct limits 450
10.3 Duality of finitely presented functors 452
10.4 Finitistic global dimension 456
11 Serre subcategories and localisation 459
11.1 Localisation in Grothendieck categories 459
11.1.1 Localisation 459
11.1.2 Finite-type localisation in locally finitely generated categories 468
11.1.3 Elementary localisation and locally finitely presented categories 473
11.1.4 Finite-type localisation in locally coherent categories 480
11.1.5 Pp conditions in locally finitely presented categories 485
11.2 Serre subcategories and ideals 487
11.2.1 Annihilators of ideals of mod-
R 487
11.2.2 Duality of Serre subcategories 491
12 The Ziegler spectrum and injective functors 492
12.1 Making modules functors 492
12.1.1 The tensor embedding 492
Contents

12.1.2 Injectives in the category of finitely presented functors 500
12.1.3 The Ziegler spectrum revisited yet again 502
12.2 Pp-types, subfunctors of \((R^n, -)\), finitely generated functors 503
12.3 Definable subcategories again 508
12.4 Ziegler spectra and Serre subcategories: summary 515
12.5 Hulls of simple functors 518
12.6 A construction of pp-types without width 521
12.7 The full support topology again 525
12.8 Rings of definable scalars again 527

13 Dimensions 533
13.1 Dimensions 533
13.1.1 Dimensions via iterated localisation 533
13.1.2 Dimensions on lattices of finitely presented subfunctors 535
13.2 Krull–Gabriel dimension 538
13.2.1 Definition and examples 538
13.2.2 Gabriel dimension and Krull–Gabriel dimension 542
13.3 Locally simple objects 544
13.4 Uniserial dimension 545

14 The Zariski spectrum and the sheaf of definable scalars 549
14.1 The Gabriel–Zariski spectrum 549
14.1.1 The Zariski spectrum through representations 550
14.1.2 The Gabriel–Zariski and rep-Zariski spectra 552
14.1.3 Rep-Zariski = dual-Ziegler 557
14.1.4 The sheaf of locally definable scalars 560
14.2 Topological properties of \(\text{Zar}_R\) 562
14.3 Examples 564
14.3.1 The rep-Zariski spectrum of a PI Dedekind domain 564
14.3.2 The sheaf of locally definable scalars of a PI Dedekind domain 566
14.3.3 The presheaf of definable scalars of a PI HNP ring 569
14.3.4 The presheaf of definable scalars of a tame hereditary artin algebra 572
14.3.5 Other examples 574
14.4 The spectrum of a commutative coherent ring 575

15 Artin algebras 582
15.1 Quivers and representations 582
15.1.1 Representations of quivers 582
15.1.2 The Auslander–Reiten quiver of an artin algebra 586
15.1.3 Tubes and generalised tubes 588
15.2 Duality over artin algebras 593
Contents

15.3 Ideals in mod-R when R is an artin algebra 596
15.4 mdim $\neq 1$ for artin algebras 599
15.5 Modules over group rings 600

16 Finitely accessible and presentable additive categories 603
16.1 Finitely accessible additive categories 603
 16.1.1 Representation of finitely accessible additive categories 603
 16.1.2 Purity in finitely accessible categories 609
 16.1.3 Conjugate and dual categories 611
16.2 Categories generated by modules 612
16.3 Categories of presheaves and sheaves 617
 16.3.1 Categories of presheaves 618
 16.3.2 Finite-type localisation in categories of presheaves 619
 16.3.3 The category Mod-\mathcal{O}_X: local finite presentation 622
 16.3.4 The category Mod-\mathcal{O}_X: local finite generation 625
 16.3.5 Pp conditions in categories of sheaves 627

17 Spectra of triangulated categories 630
17.1 Triangulated categories: examples 631
17.2 Compactly generated triangulated categories 636
 17.2.1 Brown representability 637
 17.2.2 The functor category of a compactly generated triangulated category 640
17.3 Purity in compactly generated triangulated categories 642
 17.3.1 The Ziegler spectrum of a compactly generated triangulated category 648
 17.3.2 The Ziegler spectrum of $\mathcal{D}(R)$ 649
17.4 Localisation 651
17.5 The spectrum of the cohomology ring of a group ring 653

Appendix B Languages for definable categories 656
 B.1 Languages for finitely accessible categories 656
 B.1.1 Languages for modules 659
 B.2 Imaginaries 660

Appendix C A model theory/functor category dictionary 663

Part III Definable categories 665

18 Definable categories and interpretation functors 667
 18.1 Definable categories 667
 18.1.1 Definable subcategories 667
 18.1.2 Exactly definable categories 671
Contents

18.1.3 Recovering the definable structure 674
18.1.4 Definable categories 675

18.2 Functors between definable categories 677
18.2.1 Interpretation functors 680
18.2.2 Examples of interpretations 685
18.2.3 Tilting functors 687
18.2.4 Another example: lattices over groups 690
18.2.5 Definable functors and Ziegler spectra 692

Appendix D Model theory of modules: an update 696

Appendix E Some definitions 703

Main examples 718
Bibliography 720
Index 754