This book is an account of a fruitful interaction between algebra, mathematical logic, and category theory. It is possible to associate a topological space to the category of modules over any ring. This space, the Ziegler spectrum, is based on the indecomposable pure-injective modules. Although the Ziegler spectrum arose within the model theory of modules and plays a central role in that subject, this book concentrates on its algebraic aspects and uses.

The central aim is to understand modules and the categories they form through associated structures and dimensions which reflect the complexity of these, and similar, categories. The structures and dimensions considered arise through the application of ideas and methods from model theory and functor category theory. Purity and associated notions are central, localisation is an ever-present theme and various types of spectrum play organising roles.

This book presents a unified account of material which is often presented from very different viewpoints and it clarifies the relationships between these various approaches. It may be used as an introductory graduate-level text, since it provides relevant background material and a wealth of illustrative examples. An extensive index and thorough referencing also make this book an ideal, comprehensive reference.

Mike Prest is Professor of Pure Mathematics at the University of Manchester.
All the titles listed below can be obtained from good booksellers or from Cambridge University Press. For a complete series listing visit http://www.cambridge.org/uk/series/sSeries.asp?code=EOM
To Abigail, Stephen and Iain
Contents

Preface
xv

Introduction
xxvii

 Conventions and notations
 Selected notations list

 xxiii
 xxviii

Part I Modules

1 **Pp conditions**

1.1 **Pp conditions**

 1.1.1 Pp-definable subgroups of modules

 1.1.2 The functor corresponding to a pp condition

 1.1.3 The lattice of pp conditions

 1.1.4 Further examples

1.2 Pp conditions and finitely presented modules

 1.2.1 Pp-types

 1.2.2 Finitely presented modules and free realisations

 1.2.3 Irreducible pp conditions

1.3 Elementary duality of pp conditions

 1.3.1 Elementary duality

 1.3.2 Elementary duality and tensor product

 1.3.3 Character modules and duality

 1.3.4 Pp conditions in tensor products

 1.3.5 Mittag–Leffler modules

2 **Purity**

2.1 Purity

 2.1.1 Pure-exact sequences

 2.1.2 Pure-projective modules

 2.1.3 Purity and tensor product

vii
Contents

2.2 Pure global dimension 54
2.3 Absolutely pure and flat modules 57
 2.3.1 Absolutely pure modules 57
 2.3.2 Flat modules 59
 2.3.3 Coherent modules and coherent rings 63
 2.3.4 Von Neumann regular rings 66
2.4 Purity and structure of finitely presented modules 68
 2.4.1 Direct sum decomposition of finitely presented modules 68
 2.4.2 Purity over Dedekind domains and RD rings 73
 2.4.3 Pp conditions over serial rings 77
2.5 Pure-projective modules over uniserial rings 80
3 Pp-pairs and definable subcategories 85
 3.1 Pp conditions and morphisms between pointed modules 85
 3.2 Pp-pairs 87
 3.2.1 Lattices of pp conditions 87
 3.2.2 The category of pp-pairs 91
 3.3 Reduced products and pp-types 99
 3.3.1 Reduced products 99
 3.3.2 Pp conditions in reduced products 102
 3.3.3 Realising pp-types in reduced products 104
3.4 Definable subcategories 104
 3.4.1 Definable subcategories 104
 3.4.2 Duality and definable subcategories 112
 3.4.3 Further examples of definable subcategories 114
 3.4.4 Covariantly finite subcategories 118
4 Pp-types and pure-injectivity 124
 4.1 Pp-types with parameters 124
 4.2 Algebraic compactness 127
 4.2.1 Algebraically compact modules 127
 4.2.2 Linear compactness 131
 4.2.3 Topological compactness 133
 4.2.4 Algebraically compact \(\mathbb{Z} \)-modules 135
 4.2.5 Algebraic compactness of ultraproducts 136
 4.3 Pure-injectivity 137
 4.3.1 Pure-injective modules 138
 4.3.2 Algebraically compact = pure-injective 143
 4.3.3 Pure-injective hulls 144
 4.3.4 Pure-injective extensions via duality 151
 4.3.5 Hulls of pp-types 153
 4.3.6 Indecomposable pure-injectives and irreducible pp-types 157
4.3.7 Pure-injective hulls of finitely presented modules 162
4.3.8 Krull–Schmidt rings 164
4.3.9 Linking and quotients of pp-types 167
4.3.10 Irreducible pp-types and indecomposable direct summands 169

4.4 Structure of pure-injective modules 171
4.4.1 Decomposition of pure-injective modules 171
4.4.2 Σ-pure-injective modules 173
4.4.3 Modules of finite endolength 179
4.4.4 Characters 183
4.4.5 The ascending chain condition on pp-definable subgroups 187

4.5 Representation type and pure-injective modules 188
4.5.1 Pure-semisimple rings 189
4.5.2 Finite length modules over pure-semisimple rings 192
4.5.3 Rings of finite representation type 195
4.5.4 The pure-semisimplicity conjecture 198
4.5.5 Generic modules and representation type 200

4.6 Cotorsion, flat and pure-injective modules 205

5 The Ziegler spectrum 209
5.1 The Ziegler spectrum 209
5.1.1 The Ziegler spectrum via definable subcategories 210
5.1.2 Ziegler spectra via pp-pairs: proofs 217
5.1.3 Ziegler spectra via morphisms 220

5.2 Examples 221
5.2.1 The Ziegler spectrum of a Dedekind domain 221
5.2.2 Spectra over RD rings 227
5.2.3 Other remarks 228

5.3 Isolation, density and Cantor–Bendixson rank 229
5.3.1 Isolated points and minimal pairs 230
5.3.2 The isolation condition 239
5.3.3 Minimal pairs and left almost split maps 248
5.3.4 Density of (hulls of) finitely presented modules 250
5.3.5 Neg-isolated points and elementary cogenerators 253
5.3.6 Cantor–Bendixson analysis of the spectrum 260
5.3.7 The full support topology 263

5.4 Duality of spectra 266
5.5 Maps between spectra 273
5.5.1 Epimorphisms of rings 274
5.5.2 Representation embeddings 276

5.6 The dual-Ziegler topology 278
Contents

6 **Rings of definable scalars**

 6.1 Rings of definable scalars

 6.1.1 Actions defined by pp conditions

 6.1.2 Rings of definable scalars and epimorphisms

 6.1.3 Rings of definable scalars and localisation

 6.1.4 Duality and rings of definable scalars

 6.1.5 Rings of definable scalars over a PI Dedekind domain

 6.1.6 Rings of type-definable scalars

7 **M-dimension and width**

 7.1 Dimensions on lattices

 7.2 M-dimension

 7.2.1 Calculating m-dimension

 7.2.2 Factorisable systems of morphisms and m-dimension

 7.3 Width

 7.3.1 Width and superdecomposable pure-injectives

 7.3.2 Existence of superdecomposable pure-injectives

8 **Examples**

 8.1 Spectra of artin algebras

 8.1.1 Points of the spectrum

 8.1.2 Spectra of tame hereditary algebras

 8.1.3 Spectra of some string algebras

 8.1.4 Spectra of canonical algebras

 8.2 Further examples

 8.2.1 Ore and RD domains

 8.2.2 Spectra over HNP rings

 8.2.3 Pseudofinite representations of sl_2

 8.2.4 Verma modules over sl_2

 8.2.5 The spectrum of the first Weyl algebra and related rings

 8.2.6 Spectra of V-rings and differential polynomial rings

 8.2.7 Spectra of serial rings

 8.2.8 Spectra of uniserial rings

 8.2.9 Spectra of pullback rings

 8.2.10 Spectra of von Neumann regular rings

 8.2.11 Commutative von Neumann regular rings

 8.2.12 Indiscrete rings and almost regular rings

9 **Ideals in mod-R**

 9.1 The radical of mod-R

 9.1.1 Ideals in mod-R

 9.1.2 The transfinite radical of mod-R
Contents

9.1.3 Powers of the radical and factorisation of morphisms 403
9.1.4 The transfinite radical and Krull–Gabriel/m-dimension 404
9.2 Fp-idempotent ideals 408

Appendix A Model theory 411
A.1 Model theory of modules 411

Part II Functors 417

10 Finitely presented functors 419
10.1 Functor categories 419
 10.1.1 Functors and modules 419
 10.1.2 The Yoneda embedding 425
 10.1.3 Representable functors and projective objects in functor categories 427
10.2 Finitely presented functors in (mod-R, Ab) 429
 10.2.1 Local coherence of (mod-R, Ab) 430
 10.2.2 Projective dimension of finitely presented functors 435
 10.2.3 Minimal free realisations and local functors 439
 10.2.4 Pp conditions over rings with many objects 442
 10.2.5 Finitely presented functors = pp-pairs 443
 10.2.6 Examples of finitely presented functors 446
 10.2.7 Free abelian categories 448
 10.2.8 Extending functors along direct limits 450
10.3 Duality of finitely presented functors 452
10.4 Finitistic global dimension 456

11 Serre subcategories and localisation 459
11.1 Localisation in Grothendieck categories 459
 11.1.1 Localisation 459
 11.1.2 Finite-type localisation in locally finitely generated categories 468
 11.1.3 Elementary localisation and locally finitely presented categories 473
 11.1.4 Finite-type localisation in locally coherent categories 480
 11.1.5 Pp conditions in locally finitely presented categories 485
11.2 Serre subcategories and ideals 487
 11.2.1 Annihilators of ideals of mod-R 487
 11.2.2 Duality of Serre subcategories 491

12 The Ziegler spectrum and injective functors 492
12.1 Making modules functors 492
 12.1.1 The tensor embedding 492
Contents

12.1.2 Injectives in the category of finitely presented functors 500
12.1.3 The Ziegler spectrum revisited yet again 502
12.2 Pp-types, subfunctors of \((R^n, -)\), finitely generated functors 503
12.3 Definable subcategories again 508
12.4 Ziegler spectra and Serre subcategories: summary 515
12.5 Hulls of simple functors 518
12.6 A construction of pp-types without width 521
12.7 The full support topology again 525
12.8 Rings of definable scalars again 527

13 Dimensions 533
13.1 Dimensions 533
13.1.1 Dimensions via iterated localisation 533
13.1.2 Dimensions on lattices of finitely presented subfunctors 535
13.2 Krull–Gabriel dimension 538
13.2.1 Definition and examples 538
13.2.2 Gabriel dimension and Krull–Gabriel dimension 542
13.3 Locally simple objects 544
13.4 Uniserial dimension 545

14 The Zariski spectrum and the sheaf of definable scalars 549
14.1 The Gabriel–Zariski spectrum 549
14.1.1 The Zariski spectrum through representations 550
14.1.2 The Gabriel–Zariski and rep-Zariski spectra 552
14.1.3 Rep-Zariski = dual-Ziegler 557
14.1.4 The sheaf of locally definable scalars 560
14.2 Topological properties of \(\text{Zar}_R\) 562
14.3 Examples 564
14.3.1 The rep-Zariski spectrum of a PI Dedekind domain 564
14.3.2 The sheaf of locally definable scalars of a PI Dedekind domain 566
14.3.3 The presheaf of definable scalars of a PI HNP ring 569
14.3.4 The presheaf of definable scalars of a tame hereditary artin algebra 572
14.3.5 Other examples 574
14.4 The spectrum of a commutative coherent ring 575

15 Artin algebras 582
15.1 Quivers and representations 582
15.1.1 Representations of quivers 582
15.1.2 The Auslander–Reiten quiver of an artin algebra 586
15.1.3 Tubes and generalised tubes 588
15.2 Duality over artin algebras 593
Contents

15.3 Ideals in mod-R when R is an artin algebra 596
15.4 mdim $\neq 1$ for artin algebras 599
15.5 Modules over group rings 600

16 Finitely accessible and presentable additive categories 603
16.1 Finitely accessible additive categories 603
16.1.1 Representation of finitely accessible additive categories 603
16.1.2 Purity in finitely accessible categories 609
16.1.3 Conjugate and dual categories 611
16.2 Categories generated by modules 612
16.3 Categories of presheaves and sheaves 617
16.3.1 Categories of presheaves 618
16.3.2 Finite-type localisation in categories of presheaves 619
16.3.3 The category Mod-O_X: local finite presentation 622
16.3.4 The category Mod-O_X: local finite generation 625
16.3.5 Pp conditions in categories of sheaves 627

17 Spectra of triangulated categories 630
17.1 Triangulated categories: examples 631
17.2 Compactly generated triangulated categories 636
17.2.1 Brown representability 637
17.2.2 The functor category of a compactly generated triangulated category 640
17.3 Purity in compactly generated triangulated categories 642
17.3.1 The Ziegler spectrum of a compactly generated triangulated category 648
17.3.2 The Ziegler spectrum of $D(R)$ 649
17.4 Localisation 651
17.5 The spectrum of the cohomology ring of a group ring 653

Appendix B Languages for definable categories 656
B.1 Languages for finitely accessible categories 656
B.1.1 Languages for modules 659
B.2 Imaginaries 660

Appendix C A model theory/functor category dictionary 663

Part III Definable categories 665

18 Definable categories and interpretation functors 667
18.1 Definable categories 667
18.1.1 Definable subcategories 667
18.1.2 Exactly definable categories 671
Contents

18.1.3 Recovering the definable structure 674
18.1.4 Definable categories 675
18.2 Functors between definable categories 677
18.2.1 Interpretation functors 680
18.2.2 Examples of interpretations 685
18.2.3 Tilting functors 687
18.2.4 Another example: lattices over groups 690
18.2.5 Definable functors and Ziegler spectra 692

Appendix D Model theory of modules: an update 696
Appendix E Some definitions 703

Main examples 718
Bibliography 720
Index 754
In his paper [726], on the model theory of modules, Ziegler associated a topological space to the category of modules over any ring. The points of this space are certain indecomposable modules and the definition of the topology was in terms of concepts from model theory. This space, now called the Ziegler spectrum, has played a central role in the model theory of modules. More than one might have expected, this space and the ideas surrounding it have turned out to be interesting and useful for purely algebraic reasons. This book is mostly about these algebraic aspects.

The central aim is a better understanding of the category of modules over a ring. Over most rings this category is far too complicated to describe completely so one must be content with aiming to classify the most significant types of modules and to understand more global aspects in just a broad sense, for example by finding some geometric or topological structure that organises some aspect of the category and which reflects the complexity of the category.

By “significant types of modules” one might mean the irreducible representations or the “finite” (finite-dimensional/finitely generated) ones. Here I mean the pure-injective modules. Over many rings this class of modules includes, directly or by proxy, the “finite” ones. There is a decomposition theorem which means that for most purposes we can concentrate on the indecomposable pure-injective modules.

The Ziegler spectrum is one example of an “organising” structure; it is a topological space whose points are the isomorphism classes of indecomposable pure-injectives, and the Cantor–Bendixson analysis of this space does reflect various aspects of complexity of the module category. There are associated structures: the category of functors on finitely presented modules; the lattice of pp conditions; the presheaf of rings of definable scalars. Various dimensions and ranks are defined on these and they are all linked together.
Here I present a cluster of concepts, techniques, results and applications. The inputs are from algebra, model theory and category theory and many of the results and methods are hybrids of these. The way in which these combine here is something which certainly I have found fascinating. The applications are mainly algebraic though not confined to modules since everything works in good enough abelian categories. Again, I have been pleasantly surprised by the extent to which what began in model theory has had applications and ramifications well beyond that subject.

Around 2000 it seemed to me that the central part of the subject had pretty well taken shape, though mainly in the minds of those who were working with it and using it. Much was not written down and there was no unified account so, foolhardily, I decided to write one. This book, which is the result, has far outgrown my original intentions (in length, time, effort, . . .). In the category of books it is a pushout of a graduate-level course and a work of reference.
Introduction

The Ziegler spectrum, Zg_R, of a ring R is a topological space. It is defined in terms of the category of R-modules and, although a Ziegler spectrum can be assigned to much more general categories, let us stay with rings and modules at the beginning. The points of Zg_R are certain modules, more precisely they are the isomorphism types of indecomposable pure-injective (also called algebraically compact) right R-modules. Any injective module is pure-injective but usually there are more, indeed a ring is von Neumann regular exactly if there are no other pure-injective modules (2.3.22). If R is an algebra over a field k, then any module which is finite-dimensional as a k-vector space is pure-injective (4.2.6). Every finite module is pure-injective (4.2.6). Another example is the ring of p-adic integers, regarded as a module over any ring between \mathbb{Z} and itself (4.2.8). The pure-injective modules mentioned so far are either “small” or, although large in some sense, have some kind of completeness property. There is something of a general point there but, as it stands, it is too vague: not all “small” modules are pure-injective. For example, the finite-length modules over the first Weyl algebra, $A_1(k)$, over a field k of characteristic zero are not pure-injective (8.2.35). They are small in the sense of being of finite length, but large in that they are infinite-dimensional. Nevertheless each indecomposable finite-length module over the first Weyl algebra has a pure-injective hull (a minimal pure, pure-injective extension, see Section 4.3.3) which is indecomposable. Indeed, associating to a finite-length module its pure-injective hull gives a bijection between the set of (isomorphism types of) indecomposable finite-length modules over $A_1(k)$ and a subset of the Ziegler spectrum of $A_1(k)$ (8.2.39).

Ziegler defined the topology of this space in terms of solution sets to certain types of linear conditions (5.1.21) but there are equivalent definitions: in terms of morphisms between finitely presented modules (5.1.25); also in terms of finitely presented functors (10.2.45). Ziegler showed that understanding this space, in the very best case obtaining a list of points and an explicit description of the topology,
is the key to answering most questions about the model theory of modules over the given ring. For that aspect one may consult [495]. Most subsequent advances have been driven more by algebraic than model-theoretic questions though much of what is here can be reformulated to say something about the model theory of modules.

Over some rings there is a complete description of the Ziegler spectrum (see especially Section 5.2 and Chapter 8); for $R = \mathbb{Z}$ the list of points is due to Kaplansky [330], see Section 5.2.1.

A module which is of finite length over its endomorphism ring is pure-injective (4.2.6, 4.4.24) but, unless the ring is right pure-semisimple (conjecturally equivalent to being of finite representation type, see Section 4.5.4), one should expect there to be “large” points of the Ziegler spectrum. Over an artin algebra a precise expression of this is the existence of infinite-dimensional indecomposable pure-injectives (5.3.40) if the ring is not of finite representation type. This is an easy consequence of compactness of the Ziegler spectrum of a ring (5.1.23). Even if one is initially interested in “small” modules, for example, finite-dimensional representations, the “large” modules may appear quite naturally: often the latter parametrise, in some sense or another, natural families of the former (e.g. 5.2.2, Sections 4.5.5 and 15.1.3). Examples of such large parametrising modules are the generic modules of Crawley-Boevey (Section 4.5.5).

A natural context for most of the results here is that of certain, “definable”, subcategories of locally finitely presented abelian categories: the latter are, roughly, abelian categories in which objects are determined by their “elements”, see Chapter 16. There are reasons for working in the more general context beyond simply wider applicability. Auslander and coworkers, in particular Reiten, showed how, if one is interested in finite-dimensional representations of a finite-dimensional k-algebra, it is extremely useful to move to the, admittedly more abstract, category of k-linear functors from the category of these representations to the category of k-vector spaces. It turns out that, in describing ideas around the Ziegler spectrum, moving to an associated such functor category often clarifies concepts and simplifies arguments (and leads to new results!). By this route one may also dispense with the terminology of model theory, though model theory still provides concepts and techniques, and replace it with the more widely known terminology of categories and functors. In particular, one may define the Ziegler spectrum of a ring as a topology on the (set of isomorphism types of) indecomposable injectives in the corresponding functor category (12.1.17). This topology is dual (Section 5.6) to another topology, on the same set, which one might regard as the (Gabriel-)Zariski spectrum of the functor category (14.1.6).

This equivalence between model-theoretic and functorial methods is best explained by an equivalence, 10.2.30, between the model-theoretic category of
“imaginaries” (in the sense of Section B.2) and the category of finitely presented functors. There is some discussion of this equivalence between methods, and see Appendix C, but I have tended to avoid the terminology of model theory, except where I consider it to be particularly efficient or where there is no algebraic equivalent. That is simply because it is less well known, though I hope that one effect of this book will be that some people become a little more comfortable with it. This does mean that those already familiar with model theory might have to work a bit harder than they expected: the terminological adjustments are quite slight, but the conceptual adjustments (the use of functorial methods) may well require more effort. It should be noted that much of the relevant literature does assume familiarity with the most basic ideas from model theory.

As mentioned already, it is possible to give definitions (5.1.1, 5.1.25) of the Ziegler spectrum of a ring purely in terms of its category of modules, that is, without reference to model theory or to any “external” (functor) category. In fact the book begins by taking a “naïve”, element-wise, view of modules and gradually, though not monotonically, takes an increasingly “sophisticated” view. I discuss this now.

I believe that there is some advantage in beginning in the (relatively) concrete context of modules and, consequently, in the first part of the book, modules are simply sets with structure and most of the action takes place in the category of modules. Many results are presented, or at least surveyed, in that first part, so a reader may refer to these without having to absorb the possibly unfamiliar functorial point of view.

Nevertheless, it was convincingly demonstrated by Herzog in the early 1990s that the most efficient and natural way to prove Ziegler’s results, and many subsequent ones, is to move to the appropriate functor category. Indeed it was already appreciated that work, particularly of Gruson and Jensen, ran, in places, parallel to pre-Ziegler results in the model theory of modules and some of the translation between the two languages (model-theoretic and functorial) was already known.

Furthermore, many applications have been to the representation theory of finite-dimensional algebras, where functorial methods have become quite pervasive. So, at the beginning of Part II, we move to the functor category. In fact, the ground will have been prepared already, in the sense that I call on results from Part II in more than a few proofs in Part I. The main reason for this anticipation, and consequent complication in the structure of logical dependencies in the book, is that I wish to present the functorial proofs of many of the basic results. The original model-theoretic and/or algebraic (“non-functorial”) proofs are available elsewhere, whereas the functorial proofs are scattered in the literature and, in many cases, have not appeared.
Introduction

In the second part of the book modules become certain types of functors on module categories: in the third part they become functors on functor categories. This third part deals with results and questions clustering around relationships between definable categories. Model theory reappears more explicitly in this part because it is, from one point of view, all about interpretabiliy of one category in another.

One could say that Part I is set mostly in the category $\text{Mod-}R$, that Part II is set in the functor category $(R\text{-mod}, \text{Ab})$ and that Part III is set in the category $(\text{R-mod, Ab})^{fp}, \text{Ab})$. The category, Ex$(\text{R-mod, Ab})^{fp}, \text{Ab})$, of exact functors on the category $(\text{R-mod, Ab})^{fp}$ appears and reappears in many forms throughout the book.

A second spectrum also appears. The Zariski spectrum is well known in the context of commutative rings: it is the space of prime ideals endowed with the Zariski topology. It is also possible to define this space, à la Gabriel [202], in terms of the category of modules, namely as the set of isomorphism types of indecomposable injectives endowed with a topology which can be defined in terms of morphisms from finitely presented modules. That definition makes sense in the category of modules over any ring, indeed in any locally finitely presented abelian category. Applied to the already-mentioned functor category (R-mod, Ab), one obtains what I call the Gabriel–Zariski spectrum. It turns out that this space can also be obtained from the Ziegler spectrum, as the “dual” topology which has, for a basis of open sets, the complements of compact open sets of the Ziegler topology. Much less has been done with this than with the Ziegler topology and I give it a corresponding amount of space. I do, however, suspect that there is much to discover about it and to do with it. The Gabriel–Zariski spectrum has a much more geometric character than the Ziegler spectrum, in particular it carries a sheaf of rings which generalises the classical structure sheaf: it is yet another “non-commutative geometry”.

Chapters 1–5 and 10–12, minus a few sections, form the core exposition. The results in the first group of chapters are set in the category of modules and lead the reader through pp conditions and purity to the definition and properties of the Ziegler spectrum. The methods used in the proofs change gradually; from elementary linear algebra to making use of functor categories. One of my reasons for writing this book, rather than being content with what was already in the literature, was to present the basic theory using these functorial methods since they have lead to proofs which are often much shorter and more natural than the original ones. The second group of chapters introduces those methods, so the reader of Chapters 1–5 must increasingly become the reader of Chapters 10–12.

Beyond this core, further general topics are presented in Chapters 6 and 14 (rings and sheaves of definable scalars, the Gabriel–Zariski topology) and in
Chapters 7 and 13 (dimensions). Chapter 9, on ideals in mod-R, leads naturally to the view of Part II.

Already that gives us a book of some 500 pages, yet there is much more which should be said, not least applications in specific contexts. At least some of that is said in the remaining pages, though often rather briefly. Chapter 8 contains examples and descriptions of Ziegler spectra over various types of ring. Some of the most fruitful development has been in the representation theory of artin algebras (Chapter 15). The theory applies in categories much more general than categories of modules and Chapters 16 and 17 present examples. In these chapters the emphasis is more on setting out the basic ideas and reporting on what has been done, so rather few proofs are given and the reader is referred to the original sources for the full story.

Though the book begins with systems of linear equations, by the time we arrive at Part III we are entering very abstract territory, an additive universe which parallels that of topos theory. Chapter 18 introduces this, though not at great length since this is work in progress and likely not to be in optimal form.

Ziegler’s paper was on the model theory of modules and, amongst all this algebraic development, we should not forget the open questions and developments in that subject, so Appendix D is a, very brief, update on the model theory of modules per se.

Beyond this, there is background on model theory in Appendices A and B, as well as general background (Appendix E) and a model theory/functor category theory “dictionary” (Appendix C).

Relationship with the earlier book and other work As to the relationship of this book with my earlier one *Model Theory and Modules* [495], this is, in a sense, a sequel but the emphases of the two books are very different. The earlier book covered model-theoretic aspects of modules and related algebraic topics, and it was written from a primarily model-theoretic standpoint. In this book the viewpoint is algebraic and category-theoretic though it is informed by ideas from model theory. No doubt the model theory proved to be an obstacle for some readers of [495] and perhaps the functor-category theory will play a similar role in this book. But I hope that by introducing the functorial ideas gradually through the first part of this book I will have made the path somewhat easier. Readers who have some familiarity with the contents of [495] will find here new results and fresh directions and they will find that the text reflects a great change in viewpoint and expansion of methods that has taken place in the meantime.

The actual overlap between the books is rather smaller than one might expect, given that they are devoted to the same circle of ideas. Part of the reason for this is that many new ideas and results have been produced in the intervening years.
Introduction

If that were all, then an update would have sufficed. But one of the reasons for my writing this book is to reflect the fundamental shift in viewpoint, the adoption of a functor-category approach, that has taken place in the area. Although, in this context, the languages of model theory and functor-category theory are, in essence and also in many details, equivalent (indeed, I provide, at Appendix C, a dictionary between them) there have proved to be many conceptual advantages in adopting the latter language. Readers familiar with the arguments of [495] or Ziegler’s paper, will see here how complex and sometimes apparently ad-hoc arguments become natural and easy in this alternative language. That is not to say that the insights and techniques of model theory have been abandoned. In fact they inform the whole book, although this might not always be apparent. Some model-theoretic ideas have been explicitly retained, for example the notion of pp-type, because we need this concept and because there is no algebraic name for it. On the other hand, there is no need in this book to treat formulas as objects of a formal language, so I refer to them simply as conditions (which is, in any case, how we think of them).

In the more model-theoretic approach there was a conscious adaptation of ideas from module theory (at least on my part, see, for example, [495, p. 173], and, I would guess, also by Garavaglia, see especially [209]), using the heuristic that pp conditions are generalised ring elements, that pp-types are generalised ideals (in their role as annihilators) and that various arguments involving positive quantifier-free types in injective modules extend to pp-types in pure-injective modules. Moving to the functor category has the effect of turning this analogy into literal generalisation. See, for example, the two proofs of 5.1.3 bearing in mind the heuristic that a pp-type is a generalised right ideal.

Various papers and books contain significant exposition of some of the material included here. Apart from my earlier book, [495], and some papers, [493], [497], [503], [511], there are Rothmaler’s, [620], [622], [623], the survey articles [61], [484], [568], [514], [728], a large part of the book, [323], of Jensen and Lenzing, the monograph, [358], of Krause and sections in the books of Facchini, [183], and Puninski, [564]. There is also the more recent [516] which deals with the model theory of definable additive categories.

In this book I have tried to include at least mention of all recent significant developments but, in contrast to the writing of [495], I have tried, with a degree of success, to restrain my tendency to aim to be encyclopaedic. There are some topics which I just mention here because, although I would have liked to have said more, I do not have the expertise to say anything more useful that what can easily be found already in the literature. These include: the work of Guil Asensio and Herzog developing a theory of purity in Flat-R (see the end of Section 4.6); recent and continuing developments around cotilting modules and cotorsion theories (see
the end of Section 18.2.3); work of Beligiannis and others around triangulated categories and generalisations of these (see Chapter 17).

Thanks, especially, to: Ivo Herzog who, in the early 1990s, showed me how Ziegler’s arguments become so much easier and more natural in the functor category; Kevin Burke, Bill Crawley-Boevey and Henning Krause who convinced me in various ways of the naturality and power of the functor category idiom and of the desirability of adopting it.

I am also grateful to a number of colleagues, in particular to Gena Puninski, for comments on a draft of this.

General comments Occasionally I define a concept or prove a result that is defined or proved elsewhere in the book. Oversights excepted, this is to increase the book’s usefulness as a reference. For example, if a concept is defined using the functor-category language, or in a very general context, it can be useful to have an alternative definition, possibly in a more particular context, also to hand.

I also play the following mean trick. In Part I, R is a ring and modules are what you think they are. In Part II, I reveal that R was, all the time, a small preadditive category and that what you thought were modules were actually functors. To have been honest right through Part I would have made the book even harder to read. In any case, you have now been warned.

Bibliography As well as containing items which are directly referenced, the bibliography is an “update” on that in [495], so contains a good number of items which do not occur in the bibliography of [495] but which continue or are relevant to some of the themes there. In particular I have tried to be comprehensive as regards including papers which fall within the model theory of modules, even though I have only pointed to the developments there.

Conventions and notations

Conventions A module will be a right module if it matters and if the contrary is not stated.

Tensor product \otimes means, unless indicated otherwise, tensor product over R, \otimes_R, where R is the ring of the moment.

By a functor between preadditive categories is meant an additive functor even though “additive” is hardly ever said explicitly.

“Non-commutative” means “not necessarily commutative”.

To say that a tuple of elements is from M is to say that each entry of the tuple is an element of M (the less accurate “in” in place of “from” may have slipped through in places).
The value of a function \(f \) (or functor \(F \)) on an element \(a \) (or object \(A \) or morphism \(g \)) is usually denoted \(fa \) (respectively \(FA \), \(Fg \)) but sometimes, for clarity or to avoid ambiguity, \(f(a) \) or \(f \cdot a \) (and similarly).

I make no distinction between monomorphisms and embeddings and my use of the terms is determined by a mixture of context and whim: similarly for map, morphism and homomorphism.

In the context of categories I write \(A \cong B \) if the categories \(A \) and \(B \) are naturally equivalent. Sometimes the stronger relation of isomorphism holds but we don’t need a different symbol for that.

Equality, “\(= \)”, often is used where \(\cong \) (isomorphism or natural equivalence) would be more correct, especially, but not only, if our choice of copy has not yet been constrained.

I write \(l(\bar{a}) \) for the length (number of entries) of a tuple \(\bar{a} \). By default a tuple has length “\(n \)” and this explains (I hope all) unheralded appearances of this symbol. If \(\bar{a} \) is a tuple, then its typical coordinate/entry is \(a_i \).

Tuples and matrices are intended to match when they need to. So, if \(\bar{a}, \bar{b} \) are tuples, then the appearance of “\(\bar{a} + \bar{b} \)” implies that they are assumed to have the same length, and the expression means the tuple with \(i \)th coordinate equal to \(a_i + b_i \). Similarly, if \(\bar{a} \) and \(\bar{b} \) are tuples and \(H \) is a matrix, then writing “\(\langle \bar{a} \bar{b} \rangle H = 0 \)” implies that the number of rows of \(H \) is the length of \(\bar{a} \) plus the length of \(\bar{b} \). The notations \(\langle \bar{a} \bar{b} \rangle \), \(\langle \bar{a} , \bar{b} \rangle \) and \(\bar{a} \bar{b} \) are all used for the tuple whose entries are the entries of \(\bar{a} \) followed by those of \(\bar{b} \).

If \(X \) is a subset of the \(R \)-module \(M^n \) and \(W \) is a subset of \(R^n \), then by \(X \cdot W \) we mean the subgroup of \(M \) generated by the \((a_1, \ldots, a_n) \cdot (r_1, \ldots, r_n) = \sum_{i=1}^n a_ir_i \) with \((a_1, \ldots, a_n) \in X \) and \((r_1, \ldots, r_n) \in W \). If, on the other hand, \(X \subseteq M \) and \(W \subseteq R^n \), then \(X \cdot W \) will mean the subgroup of \(M^n \) generated by the \((ar_1, \ldots, ar_n) \) with \(a \in M \) and \((r_1, \ldots, r_n) \in W \). Sometimes the “\(\cdot \)” will be omitted. So read this as “dot product” if that makes sense, otherwise diagonal product.

For matrices I use notation such as \((r_{ij})_{ij} \) meaning that \(i \) indexes the rows, \(j \) the columns and the entry in the \(i \)th row and \(j \)th column is \(r_{ij} \). I also use, I hope self-explanatory, partitioned-matrix notation in various places.

Notation such as \((M_i) \) is used for indexed sets of objects and I tend to refer to them (loosely and incorrectly – there may be repetitions) as sets.

If I say that a ring is noetherian I mean right and left noetherian: similarly with other naturally one-sided conditions.

The “radical” of a ring \(R \) means the Jacobson radical and this is denoted \(J(R) \) or just \(J \). The notation “rad” is used for the more extended (to modules, functors, categories) notion.
Conventions and notations

If \mathcal{C} is a category, then a class of objects of \mathcal{C} is often identified with the full subcategory which has these as objects.

The notation $(\text{co})\ker(f)$ and term (co)kernel are used for both the object and the morphism.

The notation \perp is used for both Hom- and Ext-orthogonality, depending on context.

The ordering on pp-types is by solution sets, so I write $p \geq q$ if $p(M) \geq q(M)$ for every M. Therefore $p \geq q$ iff $p \subseteq q$ (the latter inclusion as sets of pp conditions). This is the opposite convention from that adopted in [495]. There are arguments for both but I think that the convention here makes more sense.

If χ is a condition and \bar{v} is a sequence of variables, then writing $\chi(\bar{v})$ implies that the free variables of χ all occur in \bar{v} but not every component variable of \bar{v} need actually occur in χ.

I will be somewhat loose regarding the distinction between small and skeletally small categories, for instance stating a result for small categories but applying it to skeletally small categories such as mod-\mathcal{R}.

The term “tame (representation type)” sometimes includes finite representation type, but not always; the meaning should be clear from the context.

The term “torsion theory” will mean hereditary torsion theory unless explicitly stated otherwise.

Morphisms in categories compose to the left, so fg means do g then f. So, in the category \mathbb{L}^{eq}_R associated to the category of right \mathcal{R}-modules, pp-defined maps compose to the left. The action of these maps on right \mathcal{R}-modules is, however, naturally written on the right, so the ring of definable scalars of a right \mathcal{R}-module is the opposite of a certain endomorphism ring in the corresponding localisation of this category. I have tried to be consistent in this but there may be places where an op should be inserted.

The term “preprint” is used to mean papers which are in the public domain but which might or might not be published in the future.

Notations

The notation \mathbb{Z}_n is used for the factor group $\mathbb{Z}/n\mathbb{Z}$. The localisation of \mathbb{Z} at p is denoted by $\mathbb{Z}(p)$ and the p-adic integers by $\mathbb{Z}_p(p)$.

$\text{End}(A)$ denotes the endomorphism ring of A and $\text{Aut}(A)$ its automorphism group. The group, $\text{Hom}(A, B)$, of morphisms from A to B is usually abbreviated to (A, B). Similar notation is used in other categories, for example, if \mathcal{C}, \mathcal{D} are additive categories (with \mathcal{C} skeletally small), then $(\mathcal{C}, \mathcal{D})$ denotes the category of additive functors from \mathcal{C} to \mathcal{D}.
Introduction

\[R[X_1, \ldots, X_n] \] denotes the ring of polynomials with coefficients from \(R \) in indeterminates \(X_1, \ldots, X_n \) which commute with each other and with all the elements of \(R \); \(R \langle X_1, \ldots, X_n \rangle \) denotes the free associative \(R \)-algebra in indeterminates \(X_1, \ldots, X_n \); “non-commutative polynomials over \(R \)” with the elements of \(R \) acting centrally (\(R \) will be commutative whenever this notation appears).

Annihilators: \(\text{ann}_R(A) = \{ r \in R : ar = 0 \ \forall a \in A \} \), where \(A \subseteq M_R \), and the obvious modifications \(\text{ann}_R(a), \text{ann}_R(a_1, \ldots, a_n) \); \(\text{ann}_M(T) = \{ a \in M : at = 0 \ \forall t \in T \} \) where \(T \subseteq R \).

The socle, \(\text{soc}(M) \), of a module \(M \) is the sum of all its simple submodules.

\(\text{C}(R) \) denotes the centre, \(\{ r \in R : sr = rs \ \forall s \in R \} \), of the ring \(R \).

\(\text{pp}^n_R \) is the lattice of equivalence classes of pp conditions in \(n \) free variables for right \(R \)-modules.

\(\text{pp}^n(M) \) is the lattice of subgroups of \(M^n \) pp-definable in \(M \); this may be identified with \(\text{pp}^n_R \) modulo the equivalence relation of having the same value on \(M \).

\(\text{pp}^n(X) \) is \(\text{pp}^n_R \) modulo the equivalence relation of having the same value on every member of \(X \) and this is equal to \(\text{pp}^n(M) \) for any \(M \) with \(\langle M \rangle = X \).

\(\text{pp}^n(X) \) (for \(X \) a closed subset of the Ziegler spectrum) is \(\text{pp}^n(X) \) if \(X \) is a definable subcategory with \(X \cap Zg_R = X \).

\(\langle M \rangle \) is the definable subcategory generated by \(M \).

\(\langle \phi \rangle_M \) denotes the the image of \(\phi \in \text{pp}^n_R \) in \(\text{pp}^n(M) \) (similarly with \(X \) or \(\chi \) in place of \(M \)).

\(\langle \phi, \psi \rangle, \langle \phi, \psi \rangle_M, \langle \phi, \psi \rangle_X, \langle \phi, \psi \rangle_X \) (with the assumption \(\phi \geq \psi \)) denote the interval in the lattice \(\text{pp}^n_R \) between \(\phi \) and \(\psi \) and then the respective relativisations as above.

\(Zg(X) = X \cap Zg_R \), equipped with the relative topology, when \(X \) is a definable subcategory of \(\text{Mod-}R \).

\(\text{Latt}(\cdot) \) denotes the lattice of subobjects of \((\cdot) \); the lattice of finitely presented, respectively finitely generated, subobjects is indicated by superscript \(\text{fg} \), resp. \(\text{fp} \), or, if finitely generated = finitely presented, just by \(\text{f} \).

\(\text{Mod}(T) \) is the class of modules on which every pp-pair in \(T \) (a set of pp-pairs) is closed.

\(\text{pinj}_R \) denotes the class of indecomposable pure-injective right \(R \)-modules or, more usually, the set of isomorphism classes of these.

\(\text{Pinj}_R \) denotes the class (or full subcategory) of all pure-injective right \(R \)-modules.
proj-R denotes the class of finitely generated projective right R-modules. Flat-R denotes the class of all flat right R-modules and R-Flat the class of all flat left R-modules; and similarly, lower case indicates “small” (indecomposable, finitely presented, finitely generated, as appropriate), upper case indicates all.

The choice of subscript R or notation like -R is not significant (thus $\text{Inj}_R = \text{Inj}-R = \text{Inj}(\text{Mod}-R)$). What is significant is the notational difference between proj-A (or proj$_A$) and proj(A): the former refers to projective right modules over the category A, the latter to projective objects in the category A.

I will write, for instance, “the set of indecomposable injectives” even though it is the isomorphism types of these which form a set and which is what I really mean.

These are various ways of writing the same thing: $\bar{a} \in \phi(M); M \models \phi(\bar{a}); \bar{a}$ satisfies ϕ in $M; \phi(\bar{a})$ is true in $M; \bar{a}$ is a solution of ϕ in M. And similarly with a pp-type p in place of the pp condition ϕ.

$N|M$ means N is a direct summand of M.

Add(\mathcal{Y}), respectively add(\mathcal{Y}), denotes the closure of the class \mathcal{Y} under direct summands of arbitrary, respectively finite, direct sums.

Here are four notations for the same object: $L_{eq}^R; (\text{mod}-R, \text{Ab})^{fp}; \text{Ab}(R^{op}); \text{fun}-R$. Defined as different objects, these small abelian categories turn out to the same (that is, equivalent categories).
Introduction

Selected notations list

\(\text{supp}(M) \): support of \(M \)

\(\text{pp}^M(\vec{a}) \): pp-type of \(\vec{a} \) in \(M \)

\(H(M) \): pure-injective hull of \(M \)

\(H(\vec{a}) \): hull of \(\vec{a} \)

\(H(p) \): hull of pp-type \(p \)

\(E(M) \): injective hull of \(M \)

\(\langle M \rangle \): definable subcategory generated by \(M \)

\(\langle \phi \rangle \): pp-type generated by \(\phi \)

\(D\phi \): (elementary) dual of pp condition \(\phi \)

\(dF \): dual of functor \(F \)

\((M, \vec{a}) \): pointed module

\(\phi(M) \): solution set of \(\phi \) in \(M \)

\(R_M \): ring of definable scalars of \(M \)

\((A, -) \): representable functor

\((\star)_{(-)} \): localisation of \(\star \) at \(- \)

\((\phi / \psi), (F), (f) \): basic Ziegler-open sets

\([\phi / \psi]^c \): complement of \((\phi / \psi) \rceil \)

\((-)^{fp} \): subcategory of finitely presented objects

\(\text{Ext}^F \): extension of \(F \) to functor commuting with direct limits

\(\mathbb{L}^{eq+} \): category of imaginaries/pp sorts and maps

\(Zg_R, Zg(D) \): Ziegler spectrum

\(\text{Zar}_R \): rep-Zariski spectrum

\((\text{L})\text{Def}_R \): sheaf/presheaf of definable scalars

\(\text{pp}_R^\kappa \): lattice of pp conditions

\(\text{Latt}^\kappa \): lattice of “finite” subobjects

\(\text{fun}-R \) and \(\text{fun}^d-R \): functor category and dual functor category

\(w(-) \): width

\(\text{mdim}(-) \): m-dimension

\(\text{KGdim}(-), \text{KG}(-) \): Krull–Gabriel dimension

\(\text{Udim}(-), \text{UD}(-) \): uniserial dimension

\(\text{CB}(-) \): Cantor–Bendixson rank