
Cambridge University Press & Assessment
978-0-521-87308-6 — Purity, Spectra and Localisation
Mike Prest
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

1

Pp conditions

We start by introducing some elementary but possibly unfamiliar concepts:

pp conditions and pp-types. These are used throughout the book. The link be-

tween pp conditions and functors is mentioned, though briefly; much more will be

made of this later. The main theme of this chapter is the link between pp conditions

and finitely presented modules. Free realisations of pp conditions are introduced.

Elementary duality, which links pp conditions for right and left modules, is defined.

This duality will be one of our main tools.

1.1 Pp conditions

After defining pp conditions and giving examples in Section 1.1.1 it is noted

in Section 1.1.2 that these define functors from the category of modules to that

of abelian groups. There is a potentially checkable criterion, 1.1.13, for impli-

cation of pp conditions, that is, for inclusion of the corresponding functors. In

Section 1.1.3 we see that the set of pp conditions in a given number of free

variables forms a modular lattice.

1.1.1 Pp-definable subgroups of modules

This section introduces pp (positive primitive) conditions and the sets they define

in modules. The concept is illustrated by a variety of examples.

Consider a finite homogeneous system of R-linear equations:

n�

i=1

xirij = 0 j = 1, . . . , m.

Here the xi are variables, the rij are elements of a given ring R and this is a system

of equations for right R-modules.
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4 Pp conditions

We also write this as

m�

j=1

n�

i=1

xirij = 0.

The symbol
�

is taken from mathematical logic and denotes conjunction, that is,

“and”. This system of equations may be regarded as a single condition, » (x) say,

on the tuple x = (x1, . . . , xn) of variables.

The solution set to » (x) in any right R-module M is

» (M) =

ù
ú
ûa = (a1, . . . , an) * Mn :

m�

j=1

n�

i=1

airij = 0

ü
ý
þ .

This is an End(M)-submodule of Mn, where the action of End(M) on Mn is the

diagonal one: f a = (f a1, . . . , f an) for f * End(M) and a * Mn. It is not in

general an R-submodule of Mn.

The simplest examples of such conditions » are those of the form xr = 0 for

some r * R. In this case » (M) = {a * M : ar = 0} = annM (r), the annihilator of

r in M. Indeed any condition of the type above may be regarded as the generalised

annihilator condition xH = 0, where H is the n × m matrix (rij )ij . Then » (M)

is just the kernel of the map, x �³ xH from Mn to Mm which is defined by right

multiplication by the matrix H ; a map of left End(M)-modules.

Such annihilator-type conditions will not be enough: we close under projections

to obtain generalised divisibility conditions.

Thus, given a subgroup » (M) as defined above, consider its image under pro-

jection to the first k, say, coordinates:
ù
ú
ûa = (a1, . . . , ak) * Mk : # ak+1, . . . , an * M such that

m�

j=1

n�

i=1

airij = 0

ü
ý
þ .

The condition Ç(x) = Ç(x1, . . . , xk), which is such that this projection of » (M) is

exactly its solution set, Ç(M), in M , can be written

#xk+1, . . . , xn

m�

j=1

n�

i=1

xirij = 0.

This can be abbreviated as

#x �» (x, x �) where x = (x1, . . . , xk) and x � = (xk+1, . . . , xn).

Any condition Ç of this form is a pp condition and any subgroup of Mk of the

form Ç(M) is said to be a pp-definable subgroup of M or, more accurately, a

subgroup of Mk pp-definable in M. The terminology “pp”, an abbreviation of
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1.1 Pp conditions 5

“positive primitive”, is from logic and refers to the formal shape of the condition.

The terms finitely matrizable subgroup and subgroup of finite definition are

also used, following Zimmermann, respectively Gruson and Jensen, for what is

here called a pp-definable subgroup. Note that Ç(M) is a submodule of End(M)M
k ,

where End(M) has the diagonal action.

In the above condition Ç the variables x1, . . . , xk are said to be free (to be

replaced by values) whereas xk+1, . . . , xn are bound (by the existential quantifier).

We write Ç or Ç(x1, . . . , xk) depending on whether or not we wish to display the

free variables. A condition like » with no bound variables, that is, a system of

linear equations, is a quantifier-free pp condition.

The simplest examples of pp conditions which are not annihilator conditions

are divisibility conditions of the form #y (x = yr). The solution set in M to

this condition is Mr = {mr : m * M}. Any pp condition can be expressed as a

generalised divisibility condition: if Ç(x) is #y (x y)H = 0, where (x y) should

be read as the row vector with entries those of x followed by those of y, then,

writing H as a block matrix H =

�
A

2B

�
, this condition may be rewritten as

#y(xA = yB), and may be read as B | xA, (“B divides xA”).

Examples 1.1.1. (a) Let R = Z and let p be a non-zero prime.

Let M = Z
(I )
p be an elementary abelian p-group, where the index set I may be

infinite and where Zp denotes the group with p elements. The condition x = x,

which we write in preference to the equivalent x0 = 0, defines all of M and

the condition x = 0 defines the zero subgroup. There are no more pp-definable

subgroups because, for any two non-zero elements a, b of M there is f * End(M)

such that f a = b.

If, instead, we take M = Z
(I )
pn , for some n, then the pp-definable subgroups of M

will be M > Mp = annM (pn21) > · · · > Mpn21 = annM (p) > 0. Clearly these

are pp-definable, by both annihilation and divisibility conditions, and there are no

more pp-definable subgroups because there are no more End(M)-submodules.

Taking M = Zp2 · Zp3 , again we obtain a chain

M > Zp2 · pZp3 > pZp2 · p2
Zp3 > pZp2 · pZp3 > 0 · p2

Zp3 > 0.

One may compute the cyclic End(M)-submodules to see that there are no more

pp-definable subgroups.1

Take M = Z2 · Z3 for an example where the pp-definable subgroups do not

form a chain.

1 In contrast to the erroneous diagram at [495, p. 22].
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6 Pp conditions

In all those examples the pp-definable subgroups were exactly the End(M)-

submodules (4.4.25 says why) but that is not general nor even typical. For instance,

a left coherent ring R which is not left noetherian has, by 2.3.19, left ideals which

are not pp-definable as subgroups of the ring regarded as a right module, RR , over

itself.

(b) If R is any ring and L =
�n

1 Rri is a finitely generated left ideal of R, then

L is a pp-definable subgroup of RR . A defining condition for L is #y1, . . . , yn (x =�n
1 yiri), for which we may alternatively use matrix notation,

#y (x y)

û
üüüý

1

2r1

...

2rn

þ
ÿÿÿ� = 0,

or “dot-product” notation, #y (x = y · r).

(c) Let R = k�X, Y : YX 2 XY = 1� be the first Weyl algebra over a field, k,

of characteristic zero. Because R is a Dedekind (though not commutative) domain

([441, 5.2.11]), it is the case, see 2.4.10 and 2.4.15, that pp conditions for R-

modules are simple combinations of basic annihilation and divisibility conditions.

Since k is in the centre of R, multiplication by any element of k on an R-module

M is an R-endomorphism of M . Therefore every pp-definable subgroup of M is

a vector space over k.

Every non-zero R-module is infinite-dimensional as a vector space over k: if M

is finite-dimensional, with k-basis a1, . . . , an say, then annR(M) =
�n

1 annR(ai),

is a co-finite-dimensional two-sided ideal of R so, since this ring is simple ([441,

1.3.5]), equals R. It will be shown, 8.2.28, that if M is a finitely generated module

over this ring, then every pp-definable subgroup of M is either finite-dimensional or

co-finite-dimensional. If, further, M is simple and End(M) = k, for example, if M

is simple and k is algebraically closed (see 8.2.27(3)), then every finite-dimensional

subspace of M is pp-definable. But there will be co-finite-dimensional subspaces

of M which are not pp-definable: for example, if k, hence R, is countable, then

there are only countably many pp conditions but there are uncountably many

co-finite-dimensional subspaces.

Similar remarks apply to Verma modules over U (sl2(k), where k is an alge-

braically closed field of characteristic 0 (§8.2.4).

(d) Over a von Neumann regular ring every pp condition is equivalent to one

which is quantifier-free, that is, to a system of linear equations, and this property

characterises these rings (2.3.24).

It is easy to produce pp conditions more complicated than those above.
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1.1 Pp conditions 7

Example 1.1.2. Let k be a field and let R be the string algebra (Section 8.1.3)

k[a, b : ab = 0 = ba = a2 = b3], the k-path algebra of the Gelfand–Ponomarev

quiver GP2,3 (p. 584). Take M to be the string module shown.

v2

a

����
��

��
�� b

���
��

��
��

�
v4

a

����
��

��
�� b

���
��

��
��

�

v1 v3 v5

b

���
��

��
��

�
v7

a

����
��

��
��

v6

Thus, as a k-vectorspace, M has basis v1, . . . , v7 and the actions of a and b are

determined by their actions on the vi , which are as shown. The convention is that

the actions not shown are 0. So v7a = v6 and v7b = 0.

There is a natural “pp-description” Ç(x) of the element v1 * M , namely

xa = 0 ' #y (x = ya ' #z (yb = za ' #w (zb2 = wa ' wb = 0))),

which rearranges to standard form as

#y, z,w (xa = 0 ' x = ya ' yb = za ' zb2 = w ' wb = 0).

Clearly v1 * Ç(M) but note that v6 also satisfies the condition Ç: directly or

by 1.1.7, having noted that v2 �³ v7, v4 �³ 0, v7 �³ 0 defines an endomorphism

of M taking v1 to v6. One may check that Ç(M) = v1k · v6k. This subspace,

which is ker(b2) · a, can therefore be defined more simply by the pp condition

#y (x = ya ' yb2 = 0) but one may produce arbitrarily complicated examples

along these lines.

Example 1.1.3. Let Q be the quiver �D4 which is as shown.

1
³1

���
��

��
��

2

³2

����
��

��
�

0

4

³4

���������
3

³3

���������

Take R to be any ring and let M be an R-representation (Section 15.1.1) of �D4.

Thus M is given by replacing each vertex by an R-module and each arrow by an

R-linear map; M may be regarded as a module over the path algebra R�D4. The

pp-definable subgroups of M include:
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8 Pp conditions

each “component” Mei , where ei is the idempotent of the path algebra

corresponding to vertex i;

the image of each arrow im(³i) = M³i (³i may be regarded as an element of

R�D4);

any R-submodule of Me0 obtained from these four images via intersection

and sum. There is quite a variety of these.

For example, suppose that k is a field, that V is a k-vector space and that f is an

endomorphism of V. We can “code up” the structure (V, f ) in a k-representation,

Mf , of �D4 as follows.

Set V0 = V · V and let ³1, . . . , ³4 be, respectively, the inclusions of the fol-

lowing subspaces: V · 0, 0 · V , � = {(a, a) : a * V }, Gr(f ) = {(a, f a) : a *

V }. Consider the following pp condition Ã(x, y) with free variables x, y:

x = xe1 ' y = ye1 ' # u2, u4, u3 (u2 = u2e2 ' u4 = u4e4 ' x³1 + u2³2

= u4³4 ' u3 = u3e3 ' y³1 + u2³2 = u3³3).

Unwinding this condition, one can see that Ã(a, b) holds, that is, (a, b) * Ã(M),

iff a * V (V identified with V · 0) and b = f a.

Thus, for example, #xÃ(x, y) and Ã(x, 0) define, respectively, the image and

kernel of f as subspaces of V · 0. The pp condition Ã2(x, y) which is #z (Ã(x, z) '

Ã(z, y)) defines the graph of the action of f 2 on V , etc.

If, in place of �D4 we were to take the “5-subspace quiver” which has an ad-

ditional vertex and an arrow pointing from it to vertex 0, then we could code

up2 any additional endomorphism, g, of V via its graph as with f above. Thus

pp conditions may be used to define the action of any (non-commutative) polyno-

mial in f and g. Therefore the set of pp-definable subgroups is, in the case of this

5-subspace quiver, “wild”.

Example 1.1.4. Let �A1 be the quiver shown, the Kronecker quiver

1

³
��

³

�� 2

and let M be any representation (over k). The subgroup, conveniently (and cor-

rectly if one thinks in terms of representations rather than modules) denoted

M³³21, that is, {a * Me1 : ³(a) * im(³)}, is pp-definable. Similarly M³³21³,

M³³21³³21, . . . are pp-definable subgroups of M . For each » * k, so is the sub-

group {a * Me1 : ³(a) = »³(a)}.

2 More precisely, interpret, in the sense of Section 18.2.1.
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1.1 Pp conditions 9

Example 1.1.5. Let D be a division ring. If M is any D-module, then End(M) acts

transitively on the non-zero elements of M , so the only pp-definable subgroups of

M are 0 and M.

Sometimes we will use the following notation from model theory: if Ç is

a condition with free variables x, we write Ç (x) if we wish to display these

variables, and if a is a tuple of elements from the module M , then the notation

M |= Ç (a), read as “M satisfies Ç (a)” or “a satisfies the condition Ç in M”, means

a * Ç (M), where Ç (M) denotes the solution set of Ç in M. We could dispense

with this notation but much of the relevant literature makes use of it and we find

it an efficient notation.3

Proposition 1.1.6. ([731, 6.5]) Suppose that R is a local ring with (Jacobson)

radical J and suppose that J 2 = 0. Then the pp-definable subgroups of RR are R,

J and the left ideals of finite length (that is, of finite dimension over the division

ring R/J ).

Proof (in part). All the left ideals listed are pp-definable: if r is any non-zero

element of J , then J is defined by xr = 0 and if L f RR is of finite length,

generated by r1, . . . , rn say, then L is defined by the pp condition #y1, . . . , yn (x =�n
1 yiri).

Suppose, for a contradiction, that some infinitely generated left ideal L were

pp-definable, say L = Ç(R). Zimmermann, see [731], deals with this by working

directly with the matrices involved in the pp condition. Here we give an alternative

proof in the case that the radical is split, i.e., R = J + D · 1, where D = R/J .

In that case if (s»)»*� is a D-basis for J , then X» �³ s» induces an isomorphism

D[X» (» * �)] / �(X»Xµ)»,µ� � R, where �(X»Xµ)»,µ� denotes the ideal gener-

ated by all the products X»Xµ. Let Ã be any automorphism of the D-vectorspace J

and let ³Ã : R ³ R be the map induced by the endomorphism of the polynomial

ring which takes X» to the linear combination of the Xµ with image Ãs»: clearly

³Ã is an automorphism of the ring R. Applying ³Ã to the elements of R appearing

in the pp condition Ç gives a pp condition, ÇÃ say, and clearly ÇÃ (R) = ³Ã (L).

Suppose now that R is countable. Since L is infinite-dimensional it has un-

countably many images, ³Ã (L), as Ã varies. But, because R is countable, there are

only countably many pp conditions ÇÃ : a contradiction.

For the general case suppose that Ç(x) is #y » (x, y), where » is a quantifier-free

pp condition (a system of linear equations). Choose a countable subset, T , of L

which is linearly independent over D. For each t * T choose s = (s t
1, . . . , s

t
n)

from R such that » (t, s) holds, that is, (t, s) * » (R). Let �� ¦ � be such that all

3 Under our notational conventions, writing Ç (a) already implies that the length of a equals that of x.
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10 Pp conditions

t * T and all corresponding s t
i lie in the subring of R generated by 1 together with

the s» with » * ��. If necessary put an additional » with X» /* L into �� Let D�

be a countable sub-division-ring of D such that every d * D appearing in Ç, or in

any expression of a t * T or an s t
i as a linear combination of the s», is in D�. Then

R� = D�[X»(» * ��)]/�(X»Xµ)»,µ� is a countable local ring with radical squared

0 and, by construction, Ç(R�) = L + R� < J �, giving a contradiction.

There is generalisation of this at 4.4.15.

1.1.2 The functor corresponding to a pp condition

In this section a criterion (1.1.13, 1.1.17) for one pp condition to be stronger than

another is established.

Each pp condition Ç defines a functor, FÇ , from the category, Mod-R, of right

R-modules to the category, Ab, of abelian groups. On objects the action of FÇ is

M �³ Ç(M). If f : M ³ N is a morphism in Mod-R, then FÇf is defined to be

the restriction/corestriction of f to a map from Ç(M) to Ç(N ); this is well defined

by the following lemma.

Lemma 1.1.7. If f : M ³ N is a morphism and Ç is a pp condition, then

f (Ç(M)) f Ç(N ).

Proof. The condition Ç(x) has the form #y » (x, y), where » is a finite system

of R-linear equations. Let a * Ç(M), so there is a tuple b from M such that

(a, b) * » (M). Note that f preserves solutions of R-linear equations: f (
�

i airi +�
k bksk) =

�
i f (ai)ri +

�
k f (bk)sk . So (f a, f b) * » (N ), hence f a * Ç(N ),

as required.

If the pp condition Ç has free variables x = (x1, . . . , xn), then, observing that

Ç(M) f Mn, we see that FÇ is a subfunctor of the nth power of the forgetful

functor from Mod-R to Ab.

It is an important property of these pp-defined functors that they commute with

direct limits, 1.2.31, as well as products, 1.2.3. The full story is given by 10.2.30

(and 18.1.19).

Corollary 1.1.8. If Ç is a pp condition and M is any module, then Ç(M) is closed

under the (diagonal) action of End(M), that is, Ç(M) is a submodule of End(M)M
n,

where Ç has n free variables.

Corollary 1.1.9. If Ç is a pp condition with one free variable, then Ç(RR) is a left

ideal of R.
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1.1 Pp conditions 11

Corollary 1.1.10. If M is any module and Ç is a pp condition with n free variables,

then M · Ç(R) f Ç(M) f Mn.

Proof. By M · Ç(R) is meant {
�m

j=1 aj rj : aj * M, rj * Ç(R), m g 1}. This is

generated by its subgroups a · Ç(R) for a * M , and these are the images of Ç(R)

under the morphisms (r1, . . . , rn) �³ (ar1, . . . , arn) from Rn to Mn.

Example 1.1.11. Suppose that C is a finitely presented module, say C =
�n

1 ciR

with defining relations
�n

1 cirij = 0, j = 1, . . . , m. That is, there is an exact

sequence Rm ³ Rn ³ C ³ 0 where the map between the free modules is given

by left multiplication, on column vectors, by the matrix (rij )ij .

Define » to be the quantifier-free pp condition
�m

1

�n
1 xirij = 0. Then F» �

HomR(C,2), as functors from Mod-R to Ab. For, if M is any module, then a mor-

phism f : C ³ M is determined by the images, f c1, . . . , f cn, of c1, . . . , cn, and

the tuple (f c1, . . . , f cn) satisfies all the equations
�n

1 xirij = 0. Conversely, any

n-tuple, (a1, . . . , an), of elements of M which satisfies » determines, by sending

ci to ai , a morphism from C to M. So the functors F» and HomR(C,2) (usually

we write just Hom(C,2) or even (C,2)) agree on objects and it is easy to see that

they agree on morphisms, hence are isomorphic by the natural4 transformation

· : Hom(C,2) ³ F» defined by ·M : f * Hom(C,M) �³ (f c1, . . . , f cn) * Mn

at each module M .

Since » was an arbitrary quantifier-free pp condition this shows that quantifier-

free pp conditions correspond exactly to representable functors. A more precise

statement is at 10.2.34.

Example 1.1.12. Let R = Z. The torsion functor, M �³ ÇM = {a * M : an =

0 for some n * Z, n �= 0} is an infinite sum of pp-defined subfunctors of the for-

getful functor, namely the M �³ annM (n) for n * Z, n �= 0, and plausibly is not

itself defined by a single pp condition. Indeed, it is not isomorphic to a pp-defined

functor: various proofs are possible; for example, if Ç (2) were of the form FÇ(2),

then the class of torsion groups would be definable (by the pair (x = x)/Ç(x)) in

the sense of Section 3.4.1 but that is clearly in contradiction to 3.4.7.

The next result gives the condition, in terms of the defining matrices, for one

pp condition to imply another and hence for two pp conditions to be equivalent in

the sense of having identical solution sets in every module (that is, they define the

same functor). Our approach follows [564, p. 124 ff.], see also [497, p. 187].

If Ç and Ë are pp conditions such that Ë(M) f Ç(M) in every module M , then

we say that Ë implies or is stronger than Ç and write Ë ³ Ç or, more often,

4 Once a generating tuple for C has been chosen.
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12 Pp conditions

Ë f Ç (reflecting the ordering of the solution sets). It will be seen later, 1.2.23,

that it is enough to check this in every finitely presented module.

We write Ç c Ë and say that these pp conditions are equivalent if Ç g Ë and

Ç f Ë . In all these definitions Ç and Ë are assumed to have the same number of

free variables.5 By a pp-pair Ç/Ë we mean a pair of pp conditions with Ç g Ë .

It was observed earlier that every pp condition with free variables x can be

written in the form B | xA, that is, #y (yB = xA), for some matrices A,B. The

following implications between such divisibility conditions are immediate:

B | xA ó BC | xAC for any matrix C;

B | xA ó B0 | xA if B = B1B0 for some matrices B1, B0;

B | xA ó B | xD if A = A0B + D for some matrices A0,D.

A consequence of the proof of the next lemma is that every implication between

pp conditions is obtained by a sequence (of length no more than three) of such

implications.

Lemma 1.1.13. ([495, 8.10]) Let Ç(x), being #y (x y)HÇ = 0, and Ë(x), being

#z (x z)HË = 0, be pp conditions. Then Ë f Ç iff there are matrices G =

�
G�

G��

�

and K such that

�
I G�

0 G��

�
HÇ = HËK , where I is the n × n identity matrix, n

being the length of x, and 0 denotes a zero matrix with n columns.

Proof. Suppose that Ë is B � | xA� and Ç is B | xA, so HË =

�
A�

2B �

�
and HÇ =

�
A

2B

�
.

(ñ) With an obvious notation, let us write the three types of immediate implica-

tion seen above as, respectively,

�
A

2B

�
ó

�
AC

2BC

�
,

�
A

2B1B0

�
ó

�
A

2B0

�
,

�
A0B + D

2B

�
ó

�
D

2B

�
. Suppose that we have the matrix equation in the state-

ment of the result: so A 2 G�B = A�K and 2G��B = 2B �K. Then

�
A�

2B �

�
ó

�
A�K

2B �K

�
(first type) =

�
A 2 G�B

2G��B

�
ó

�
A 2 G�B

2B

�
(second type) ó

�
A

2B

�

(third type), as required.

(ó) Suppose that the matrices A�, B � are n × m and l × m respectively. Let M

be the module freely generated by elements x1, . . . , xn, y1, . . . , yl subject to the

5 Rather, to be in the same number of free variables: see the footnote 3 of Chapter 3.
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