Seedling Ecology and Evolution

Seedlings are highly sensitive to their environment. After seeds, seedlings typically suffer the highest mortality rate of any life history stage. This book provides a thoughtful and comprehensive review by leading researchers of the interconnected topics that constitute seedling ecology and ecophysiology, focusing on how and why seedlings are successful. It considers the importance of seedlings in plant communities; environmental factors with special impact on seedlings; the morphological and physiological diversity of seedlings, including mycorrhizae; the relationship of the seedling with other life stages; seedling evolution; and seedlings in human-altered ecosystems, including deserts, tropical rainforests, and habitat-restoration projects. The diversity of seedlings is portrayed by specialized groups, such as orchids, bromeliads, and parasitic and carnivorous plants. This important text sets the stage for future research and is valuable to graduate students and researchers in plant ecology, botany, agriculture, and conservation.

The editors are well known for their work in soil seed-bank ecology. Mary Allessio Leck, Emeritus Professor of Biology, Rider University, has worked on seed ecology of tidal freshwater wetland species, and on wetland education for urban youth; V. Thomas Parker, Professor of Biology, San Francisco State University, on tidal wetland, chaparral, and mycorrhizal ecology, and Arctostaphylos evolution; and Robert L. Simpson, Professor of Biology and Environmental Science, University of Michigan – Dearborn, on freshwater wetland ecology and the natural history of Michigan.
Seedling Ecology and Evolution

Editors

Mary Allessio Leck
Emeritus Professor of Biology, Rider University, USA

V. Thomas Parker
Professor of Biology, San Francisco State University, USA

Robert L. Simpson
Professor of Biology and Environmental Science, University of Michigan – Dearborn, USA
Contents

<table>
<thead>
<tr>
<th>Contributors</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword by Peter J. Grubb</td>
<td>xiii</td>
</tr>
<tr>
<td>Preface</td>
<td>xvii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xix</td>
</tr>
</tbody>
</table>

Part I | Introduction

Chapter 1 | Why seedlings? | 3
Mary Allessio Leck, Robert L. Simpson, and V. Thomas Parker

1.1 Seedlings as part of a plant’s life cycle | 3 |
1.2 Vulnerabilities and bottlenecks | 6 |
1.3 Making it: filters, safe sites, and establishment | 7 |
1.4 Seedlings: a primer | 8 |
1.5 What seedlings can tell us | 10 |
1.6 The scope of *Seedling Ecology and Evolution* | 12 |

Part II | Seedling diversity

Chapter 2 | Seedling natural history | 17
Mary Allessio Leck and Heather A. Outred

2.1 Introduction | 17 |
2.2 The seedling stage and fate of seedlings | 17 |
2.3 Seedling types | 20 |
2.4 Seedling diversity – morphology | 24 |
2.5 Seedling diversity – ecophysiology | 31 |
2.6 Vivipary and seedling equivalents | 33 |
2.7 Longevity | 36 |
2.8 Dispersal | 37 |
2.9 Environmental filters and safe sites | 38 |
2.10 Summary | 41 |
2.11 Acknowledgments | 41 |
Appendices | 42 |

Chapter 3 | Specialized seedling strategies I: seedlings in stressful environments | 56
José M. Facelli

3.1 Introduction | 56 |
3.2 Seedling establishment in dense shade | 60 |
3.3 Effects of litter on seedling establishment | 64 |
3.4 Seedling establishment in dry environments | 65 |
3.5 Seedling establishment in saline environments | 68 |
CONTENTS

3.6 Seedling establishment in cold environments 70
3.7 Physical damage to seedlings 73
3.8 Interactive effects of stress agents and biological interactions 75
3.9 Overview: adaptations of seedlings to stressful environments 76
3.10 Acknowledgments 78

Chapter 4 Specialized seedling strategies II: orchids, bromeliads, carnivorous plants, and parasites 79

Dennis F. Whigham, Melissa K. McCormick, and John P. O'Neill

4.1 Introduction 79
4.2 Epiphytic and terrestrial orchids 80
4.3 Bromeliads 85
4.4 Carnivorous plants 88
4.5 Parasitic plants 91
4.6 Summary and future needs 99
4.7 Acknowledgments 100

Part III Seedling morphology, evolution, and physiology

Chapter 5 Embryo morphology and seedling evolution 103

Karl J. Niklas

5.1 Introduction 103
5.2 Embryophyte phylogeny 106
5.3 Embryo structure 108
5.4 Embryophyte embryogenesis 112
5.5 Phylogenetic patterns 122
5.6 Concluding remarks 128

Chapter 6 Regeneration ecology of early angiosperm seeds and seedlings: integrating inferences from extant basal lineages and fossils 130

Taylor S. Feild

6.1 Introduction 130
6.2 Previous views of ancestral angiosperm ecology and seed/seedling morphology 132
6.3 The phylogenetic revolution: inferences on early angiosperm regeneration ecology from extant basal angiosperms 135
6.4 Functional biology of basal angiosperm seeds 136
6.5 Functional biology of basal angiosperm seedlings 142
6.6 Outlook and recommendations for future research 146
6.7 Acknowledgments 149
CONTENTS

Chapter 7
Physiological and morphological changes during early seedling growth: roles of phytohormones

Elizabeth J. Farnsworth

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction: phytohormones, molecular biology, and the “real world” of early seedling ecology</td>
<td>150</td>
</tr>
<tr>
<td>7.2 Seedling responses to light</td>
<td>156</td>
</tr>
<tr>
<td>7.3 Seedling responses to temperature</td>
<td>159</td>
</tr>
<tr>
<td>7.4 Seedling responses to water</td>
<td>161</td>
</tr>
<tr>
<td>7.5 Seedling responses to nutrients</td>
<td>163</td>
</tr>
<tr>
<td>7.6 Insights and common themes</td>
<td>166</td>
</tr>
<tr>
<td>7.7 Summary</td>
<td>170</td>
</tr>
<tr>
<td>7.8 Acknowledgments</td>
<td>171</td>
</tr>
</tbody>
</table>

Chapter 8
Seedling ecophysiology: strategies toward achievement of positive net carbon balance

Kaoru Kitajima and Jonathan A. Myers

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>172</td>
</tr>
<tr>
<td>8.2 Seed reserve utilization</td>
<td>173</td>
</tr>
<tr>
<td>8.3 Ontogenetic trajectories of seedling carbon balance</td>
<td>175</td>
</tr>
<tr>
<td>8.4 Species differences in inherent relative growth rate (RGR)</td>
<td>177</td>
</tr>
<tr>
<td>8.5 Opportunistic versus conservative strategies</td>
<td>178</td>
</tr>
<tr>
<td>8.6 Carbohydrate reserves</td>
<td>182</td>
</tr>
<tr>
<td>8.7 Phenotypic plasticity</td>
<td>185</td>
</tr>
<tr>
<td>8.8 Concluding remarks</td>
<td>187</td>
</tr>
<tr>
<td>8.9 Acknowledgments</td>
<td>188</td>
</tr>
</tbody>
</table>

Chapter 9
The role of symbioses in seedling establishment and survival

Thomas R. Horton and Marcel G. A. van der Heijden

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 Introduction</td>
<td>189</td>
</tr>
<tr>
<td>9.2 Ectomycorrhizal fungi and seedling establishment</td>
<td>199</td>
</tr>
<tr>
<td>9.3 Arbuscular mycorrhizal fungi and seedling establishment</td>
<td>207</td>
</tr>
<tr>
<td>9.4 Other plant symbionts and seedling establishment</td>
<td>209</td>
</tr>
<tr>
<td>9.5 Conclusions</td>
<td>212</td>
</tr>
<tr>
<td>9.6 Acknowledgments</td>
<td>213</td>
</tr>
</tbody>
</table>

Part IV
Life history implications

Chapter 10
The seedling as part of a plant’s life history strategy

Angela T. Moles and Michelle R. Leishman

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Introduction</td>
<td>217</td>
</tr>
</tbody>
</table>
CONTENTS

10.2 The trade-off between offspring production and seedling survival 218
10.3 Understanding seed and seedling ecology as parts of a plant's life history strategy 227
10.4 Correlations between seed and seedling strategy and other aspects of plant ecology 229
10.5 Seed and seedling strategies within species 232
10.6 Implications of a holistic understanding of plant life history strategies 235
10.7 Conclusions 237

Chapter 11 Seedling recruitment and population ecology

Ove Eriksson and Johan Ehrlén

11.1 Introduction 239
11.2 The causes of seedling mortality 241
11.3 Recruitment limitation 245
11.4 Seedling recruitment and population dynamics 248
11.5 Genetic structure and selection in seedling populations 251
11.6 Concluding remarks 254
11.7 Acknowledgments 254

Chapter 12 Seedling communities

Jon E. Keeley and Phillip J. van Mantgem

12.1 Introduction 255
12.2 Internal drivers 255
12.3 External drivers affecting seedling communities 265
12.4 Seedling community assembly rules 269
12.5 Conclusions 273

Chapter 13 Spatial variation in seedling emergence and establishment – functional groups among and within habitats?

Johannes Kollmann

13.1 Introduction 274
13.2 Description of the seedling stage 276
13.3 Definition of spatial scales 279
13.4 Microhabitat effects on seedling dynamics 280
13.5 Habitat effects on seedling dynamics 282
13.6 Landscape effects on seedling dynamics 285
13.7 Region effects on seedling dynamics 286
13.8 Biome effects on seedling dynamics: seed size and seedling survival 287
13.9 Synthesis 289
13.10 Acknowledgments 292
Part V | Applications

Chapter 14 | Does seedling ecology matter for biological invasions? 295
Laura A. Hyatt
14.1 Introduction 295
14.2 Invasive seedlings 296
14.3 Invasive effects on native seedlings 303
14.4 Conclusions 305
14.5 Acknowledgments 306

Chapter 15 | The role of seedlings in the dynamics of dryland ecosystems – their response to and involvement in dryland heterogeneity, degradation, and restoration 307
Bertrand Boeken
15.1 Introduction 307
15.2 Importance of the seedling stage 308
15.3 Seedlings and spatial heterogeneity of drylands 312
15.4 Seedlings and dryland system degradation 322
15.5 Conclusions 330

Chapter 16 | Anthropogenic disturbance in tropical forests: toward a functional understanding of seedling responses 332
James W. Dalling and David F. R. P. Burslem
16.1 Introduction 332
16.2 Significance of the seedling stage for forest management 334
16.3 Effects of human disturbances on seedling regeneration 335
16.4 Application of seedling functional ecology to tropical forest management and restoration 341
16.5 Future directions 349
16.6 Acknowledgments 351

Chapter 17 | Seedling establishment in restored ecosystems 352
Susan Galatowitsch
17.1 Introduction 352
17.2 Selecting initial community composition for restoration 353
17.3 Creating safe sites to promote seedling establishment 359
17.4 Managing biotic interactions that affect seedling survival and growth 364
CONTENTS

17.5 Mimicking the effects of disturbances in restoration 368
17.6 Conclusions 369

Part VI Synthesis

Chapter 18 The seedling in an ecological and evolutionary context 373

V. Thomas Parker, Robert L. Simpson, and Mary Allessio Leck

18.1 Introduction 373
18.2 Dispersal, seed bank dynamics, and seedling banks 374
18.3 Dynamics of individual seedlings 376
18.4 Seedlings in heterogeneous environments 378
18.5 Alternative strategies 381
18.6 Conclusions 385

References 391
Index 501

© Cambridge University Press www.cambridge.org
Contributors

Bertrand Boeken
Ben-Gurion University of the Negev
The Wyler Department of Dryland Agriculture
Jacob Blaustein Institutes Sede Boker Campus for Desert Research
Ben-Gurion, Israel

David F. R. P. Burslem
University of Aberdeen
Department of Plant and Soil Science
Aberdeen, Scotland, UK

James W. Dalling
University of Illinois, Urbana-Champaign
Department of Plant Biology
Urbana, Illinois, USA

Johan Ehrlén
Stockholm University
Department of Botany
Stockholm, Sweden

Ove Eriksson
Stockholm University
Department of Botany
Stockholm, Sweden

José M. Facelli
The University of Adelaide
Discipline of Ecology and Evolutionary Biology
School of Earth and Environmental Sciences
Adelaide, Australia

Elizabeth J. Farnsworth
New England Wild Flower Society
Framingham, Massachusetts, USA

Taylor S. Feild
The University of Tennessee
Ecology and Evolutionary Biology
Knoxville, Tennessee, USA

Susan Galatowitsch
University of Minnesota
Department of Horticultural Science
St. Paul, Minnesota, USA

Peter J. Grubb
University of Cambridge
Department of Plant Sciences
Cambridge, UK

Thomas R. Horton
State University of New York
College of Environmental Science and Forestry
Syracuse, New York, USA

Laura A. Hyatt
Rider University
Biology Department
Lawrenceville, New Jersey, USA

Jon E. Keeley
United States Geological Survey
Sequoia and Kings Canyon Field Station
Three Rivers, California, USA
and
University of California – Los Angeles
Department of Ecology and Evolutionary Biology
Los Angeles, California, USA

Kaoru Kitajima
University of Florida
Department of Botany
Gainesville, Florida, USA
and
Smithsonian Tropical Research Institute
Apartado, Balboa, Panama
Johannes Kollmann
University of Copenhagen
Department of Agriculture and Ecology
Frederiksberg C, Denmark

Mary Allessio Leck
Rider University
Biology Department
Lawrenceville, New Jersey, USA

Michelle R. Leishman
Macquarie University
Department of Biological Sciences
Sydney, Australia

Melissa K. McCormick
Smithsonian Environmental Research Center
Edgewater, Maryland, USA

Angela T. Moles
University of New South Wales
School of Biological, Earth, and Environmental Sciences
Sydney, Australia

Jonathan A. Myers
Louisiana State University
Department of Biological Sciences
Division of Systematics, Ecology, and Evolution
Baton Rouge, Louisiana, USA

Karl J. Niklas
Cornell University
Department of Plant Biology
Ithaca, New York, USA

John P. O'Neill
Smithsonian Environmental Research Center
Edgewater, Maryland, USA

Heather A. Outred
Massey University
College of Science
Institute of Molecular Biosciences
Palmerston North, New Zealand

V. Thomas Parker
San Francisco State University
Department of Biology
San Francisco, California, USA

Robert L. Simpson
The University of Michigan – Dearborn
Department of Natural Sciences
Dearborn, Michigan, USA

Marcel G. A. van der Heijden
Agroscope Reckenholz-Tanikon Research Station ART
Zurich, Switzerland

Phillip J. van Mantgem
United States Geological Survey
Sequoia and Kings Canyon Field Station
Three Rivers, California, USA

Dennis F. Whigham
Smithsonian Environmental Research Center
Edgewater, Maryland, USA
Foreword

The properties of seedlings are potentially important to all plant ecologists, whether they be interested chiefly in understanding seminatural indigenous vegetation, invasive plants, or the problems of restoration. In seminatural vegetation, seedling properties may determine the climatic regions occupied on a continental scale and the habitats occupied within a landscape, the ability of one species to coexist with another in a community, and the abundance of one species relative to another at a given time and place. The requirements of seedlings often determine the sites in which potentially invasive species can succeed and whether a given approach to restoration of seminatural vegetation is effective.

During the last 40 years, there has been a steady increase in the amount of research by ecologists on the properties of seedlings as opposed to those of mature plants. Great pioneers such as F. E. Clements and E. J. Salisbury appreciated the importance of studying seedlings, although papers on experimental studies on seedlings were uncommon before the 1960s. Several factors have driven the increase in work on seedlings. Here I emphasize seven.

First, there has been a desire to seek generalizations about seedlings. For example, how does relative growth rate vary with the mass of reserves in the seed, and how does it differ at a given seed-reserve mass between plants of different growth forms (such as tree vs. herb), or species from different kinds of habitat (where the vegetation shows high and low productivity, respectively)? For the mechanistically minded, the key questions become (1) how do seedlings of species with smaller seeds have higher relative growth rates, and (2) how do species of different functional types have different relative growth rates at a given seed-reserve mass? Of course, the answers to these questions have turned out to be related to our increased understanding of the ecophysiology of the vegetative organs of the adult plant, at least of the leaves – there still is much to learn regarding stems and roots.

Second, there has been a realization that differences among species with regard to the requirements of juveniles may play a significant role in making possible long-term coexistence of species in communities. Within a community, the conditions vary more at the scale of the juvenile than of the adult, and juveniles are generally less tolerant of adverse conditions. Here, we are concerned not only with the seedling as defined in a very narrow sense, but also with plants in their first few weeks, months, years, or decades of life – depending on the type of vegetation.

Third, it seemed at one time that a seed number–seedling survival trade-off had considerable potential in explaining the coexistence of species that differ appreciably in seed size but have very
similar requirements for regeneration. In this event, most researchers have concluded that the trade-off by itself is not enough to explain the coexistence of the full range of seed sizes, either where greater survival results from greater competitive ability or where it results from greater tolerance of hazards during establishment.

Fourth, there has been a greatly increased appreciation that seedlings, more often than not, are in symbiosis with a type of micro-organism, most commonly with at least one arbuscular mycorrhizal fungus. Gradually, plant ecologists have come to realize that in one community, some plant species are more dependent on a symbiont than in others, and that symbionts of a given type can have inhibitory as well as stimulatory effects. There have been parallel advances in our knowledge of the seedlings of plants that are partially or wholly parasitic. There remains open the question of how much specialization exists in the relationship between plant species and their symbionts—a question that can now be tackled more satisfactorily as a result of the development of molecular techniques.

Fifth, the development of molecular biology has greatly increased the potential for advances in understanding the physiology of seedlings—particularly their tolerances of shade, drought, low nutrient supply, and excess salt. The same goes for our understanding of seedling development, including the part played by phytohormones.

Sixth, there has been a revolution in our thinking about the kinds of seeds of the most primitive angiosperms and the habitats in which they functioned. Also, there has been renewed attention to the earliest true seeds of gymnosperms and the analogous seed-like structures of certain tree lycophytes.

Seventh, in the last two decades, there has been a surge of interest in the long-standing problem of why some species are much more invasive than others and in the related issue of how to restore vegetation at degraded sites. Some of us feel that it is difficult to extract generalizations in these areas, and, in many cases, the key species are idiosyncratic in their requirements. Nevertheless, the great practical importance of the problems makes it imperative that they be tackled by some of the ablest ecologists. Every stage in a plant’s life cycle must be considered, but, in many cases, the seedling stage will turn out to be of critical importance.

With this background, we may welcome a new book that covers the whole range of issues I have outlined. An especially attractive feature of the book is that a good many of the schools of thought that have dominated developments in thinking are represented among the authors and, more specifically, that many of the authors have been among those who have taken leading roles in plant ecology in the last two decades.

Studies on seedlings, despite real advances, are still at an immature stage, and there remain significant disagreements. I cannot accept all of the assertions in this book and, indeed, I have argued in print with some of the authors. However, for me, this does not detract
from the value of the book. I strongly recommend it to all those who seek thoughtful, up-to-date reviews of the wide range of interconnected topics that constitute seedling ecology and ecophysiology.

Peter J. Grubb
Department of Plant Sciences
University of Cambridge
June 2007
Preface

Interest in developing this multiauthored book grew from our work with seeds and seed-bank ecology. While seed production and seed-bank dynamics are critical stages, what happens to seedlings is also fundamental to explaining field observations of vegetation dynamics and recruitment. Although several recent books discuss seedlings, indicating their importance to plant regeneration (Fenner, 2000) and to seed ecology (Fenner & Thompson, 2005), only one, Swaine (1996), focuses on seedling ecology; it, however, deals exclusively with tropical forest seedlings and is now more than 10 years old. A fourth volume, Forget et al. (2005), is primarily about seed predation and dispersal. Seedling Ecology and Evolution will complement these works and provide a more all-encompassing discussion. Moreover, it bridges the life-cycle gap following seeds (e.g. Baskin & Baskin, 1998) and seed banks (e.g. Leck et al., 1989). Additional information about regeneration strategies may be found in Harper (1977), Grubb (1977, 1998), and Grime (2001).

We acknowledge the importance of understanding seedling biology in agriculture and horticulture; however, seedlings are well studied in these settings, whereas in natural systems, seedlings are less studied, and the literature is more diffuse. This book explores seedling adaptations and constraints to regeneration in natural and disturbed systems, where a better understanding of seedlings would stimulate study and development of theory regarding this dynamic and often neglected part of the plant life cycle.

After seeds, seedlings typically suffer the highest mortality rate of any life history stage and, therefore, are important in the selection and evolution of species. Seedlings appear to be a “bottleneck” in plant establishment because they are particularly sensitive to the vagaries of the environment. Our purpose is to explore their ecology and evolution and, in the process, bring a diverse literature together for the first time – examining the diverse morphologies and physiologies of seedlings; environmental factors that impact seedlings; driving factors in the evolution of seedlings, including phylogenetic and ecophysiological constraints; seedlings in plant community dynamics, especially how they relate to species and community sustainability; seedling strategies and syndromes, including seedling banks; and the impact of human-generated perturbations, such as invasive species, desertification, and habitat fragmentation and restoration. To accomplish this, contributors were invited to explore a range of topics that are gathered in the book as follows:

- Part I – Introduction. Chapter 1 provides a review of seedling structure, as well as an introduction to the seedling stage of the seed plant life cycle.
- Part II – Seedling diversity. Chapters 2–4 consider aspects of seedling natural history, strategies in stressful habitats where shade,
drought, inundation, and other stressors affect establishment, and strategies of highly specialized plants, including epiphytes, orchids, and parasites.

• Part III – Seedling morphology, evolution, and physiology. Chapters 5–9 examine seedling evolution in the context of embryo evolution and the rise of angiosperm ecological diversity, as well as seedling morphological and developmental changes, phytohormones, maintenance of carbon balance, and the role of symbioses in establishment and survival.

• Part IV – Life history implications. Chapters 10–13 examine the trade-offs of the seedling stage with other stages, and seedlings in population and community contexts, as well as functional groups among and within habitats.

• Part V – Applications. Chapters 14–17 examine seedlings as the advancing front for biological invasions, in deteriorating ecosystems (e.g. deserts), in systems in which they are used for system maintenance (forests), and for restoration.

• Part VI – Synthesis. Chapter 18 considers the multiple perspectives presented by the chapters of this book, presents overarching seedling strategies, and summarizes areas for future study.

References

E-mail facilitated interaction with contributors and reviewers from around the world. We are grateful to those who reviewed and improved chapters: Lubomir Adamec, Institute of Botany – Trebon, Czech Republic; Mitch Aide, University of Puerto Rico, USA; Christopher Baraloto, University of Florida, USA; Carol Baskin, University of Kentucky, USA; Margaret Brock, wetland botanist, Tasmania, Australia; Hans Cornelissen, Vrije Universiteit, The Netherlands; Saarad DeWalt, Clemson University, USA; Ian Dickie, Land Care Research, NZ; Joan Ehrenfeld, Rutgers University, USA; Wayne Ferren, Maser Consulting, New Jersey, USA; Lorena Gomez-Aparicio, Universidad de Granada, Spain; Norma Good, botanist, New Jersey, USA; James Grace, United States Geological Survey, Wetlands Center, Louisiana, USA; Denise Hardesty, CSIRO Atherton, Australia; Colleen Hatfield, California State University – Chico, USA; Jose Hierro, Universidad Nacional de La Pampa, Argentina; Patricia Holmes, Cape Ecological Services, South Africa; Enrique Jurado, Universidad Autónoma de Nuevo León, Mexico; Anwar Maun, University of Western Ontario, Canada; Dan Metcalfe, CSIRO Atherton, Australia; Susan Mopper, University of Louisiana, USA; Kazuhide Nara, University of Tokyo, Japan; Susan Schwinning, Texas State University – San Marcos, USA; Anna Sher, University of Denver, USA; John N. Thompson, University of California – Santa Cruz, USA; Larry Tieszen, United States Geological Survey, South Dakota, USA; Barry Tomlinson, Harvard Forest, USA; Eric von Wettberg, University of California – Davis, USA; Michael Walters, Michigan State University, USA; Michael Williams, Butte College, USA; Amy Zanne, National Evolutionary Synthesis Center, North Carolina, USA; and Jess Zimmerman, University of Puerto Rico, USA.

We thank our colleagues, too many to mention, who contributed to the development of our ideas as this book evolved. We are especially grateful to the contributors who willingly devoted their time and creative energies to this book, and for their good humor in meeting deadlines and responding to our numerous queries. We also acknowledge the many others whose work has contributed to our understanding of seedling biology.

Our special thanks go to Jacqueline Garget of Cambridge University Press and Eleanor Umali of Aptara, who shepherded this book to completion; to Marian and Brewster Young, who lent their home in Monterey, California, for a work retreat; and especially to our spouses, Charles F. Leck, Alison Sanders, and Penelope Simpson, for their enthusiastic and enduring support of this project. Finally, we acknowledge the inspiration of particular seedlings, including Impatiens capensis (all); Bidens laevis and Polygonum bistortoides (Leck); Ambrosia trifida, Typha spp., and Zizania aquatica (Simpson); and Arctostaphylos canescens and Grindelia stricta var. angustifolia (Parker).