This graduate textbook includes coverage of important topics that are not commonly featured in other textbooks on condensed matter physics, such as treatments of surfaces, the quantum Hall effect, and superfluidity. It avoids complex formalism, such as Green’s functions, which can obscure the underlying physics, and instead emphasizes fundamental physical reasoning. Intended for classroom use, it features plenty of references and extensive problems for solution based on the author’s many years of teaching in the Physics Department at the University of Michigan. This textbook is suitable for physics, chemistry and engineering graduate students, and as a reference for research students in condensed matter physics. Engineering students will find the treatment of the fundamentals of semiconductor devices and the optics of solids of particular interest.

Leonard M. Sander is Professor of Physics at the University of Michigan. His research interests are in theoretical condensed matter physics and non-equilibrium statistical physics, especially the study of growth patterns.
To Mae & Evelyn
Contents

- **Preface**
 - page xi

1 **The nature of condensed matter**
 1.1 Some basic orders of magnitude
 1.2 Quantum or classical
 1.3 Chemical bonds
 1.4 The exchange interaction
 Suggested reading
 Problems
 - page 1

2 **Order and disorder**
 2.1 Ferromagnets
 2.2 Crystals
 2.3 Other ordered states
 2.4 Order parameters
 2.5 Disordered condensed matter
 Suggested reading
 Problems
 - page 8

3 **Crystals, scattering, and correlations**
 3.1 Crystals
 3.2 Fourier analysis and the reciprocal lattice
 3.3 Scattering
 3.4 Correlation functions
 Suggested reading
 Problems
 - page 25

4 **Surfaces and crystal growth**
 4.1 Observing surfaces: scanning tunneling microscopy
 4.2 Surfaces and surface tension
 4.3 Roughening
 4.4 Equilibrium crystal shapes
 4.5 Crystal growth
 Suggested reading
 Problems
 - page 53
5 Classical and quantum waves 73
 5.1 Lattice vibrations and phonons 73
 5.2 Spin waves and magnons 102
 5.3 Neutron scattering 107
 5.4 Mössbauer effect 110
 5.5 Two dimensions 111
Suggested reading 112
Problems 112

6 The non-interacting electron model 114
 6.1 Sommerfeld model 114
 6.2 Thermally excited states and heat capacity 120
 6.3 Band theory 122
Suggested reading 135
Problems 135

7 Dynamics of non-interacting electrons 139
 7.1 Drude model 139
 7.2 Transport in Sommerfeld theory 141
 7.3 Semiclassical theory of transport 143
 7.4 Scattering and the Boltzmann equation 146
 7.5 Donors and acceptors in semiconductors 151
 7.6 Excitons 152
 7.7 Semiconductor devices 153
 7.8 Large magnetic fields 156
Suggested reading 168
Problems 169

8 Dielectric and optical properties 172
 8.1 Dielectric functions 172
 8.2 The fluctuation-dissipation theorem 174
 8.3 Self-consistent response 177
 8.4 The RPA dielectric function 181
 8.5 Optical properties of crystals 187
Suggested reading 189
Problems 189

9 Electron interactions 193
 9.1 Fermi liquid theory 193
 9.2 Many-electron atoms 198
 9.3 Metals in the Hartree–Fock approximation 202
 9.4 Correlation energy of jellium 205
 9.5 Inhomogeneous electron systems 210
 9.6 Electrons and phonons 216
<table>
<thead>
<tr>
<th>ix</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.7 Strong interactions and magnetism in metals</td>
<td>220</td>
</tr>
<tr>
<td>Suggested reading</td>
<td>224</td>
</tr>
<tr>
<td>Problems</td>
<td>224</td>
</tr>
<tr>
<td>10 Superfluidity and superconductivity</td>
<td>226</td>
</tr>
<tr>
<td>10.1 Bose–Einstein condensation and superfluidity</td>
<td>227</td>
</tr>
<tr>
<td>10.2 Helium-3</td>
<td>235</td>
</tr>
<tr>
<td>10.3 Superconductivity</td>
<td>236</td>
</tr>
<tr>
<td>10.4 Microscopic theory</td>
<td>241</td>
</tr>
<tr>
<td>10.5 Ginsburg–Landau theory</td>
<td>253</td>
</tr>
<tr>
<td>10.6 Josephson effect</td>
<td>259</td>
</tr>
<tr>
<td>Suggested reading</td>
<td>261</td>
</tr>
<tr>
<td>Problems</td>
<td>261</td>
</tr>
</tbody>
</table>

References

Index
This book is intended as a textbook for a graduate course in condensed matter physics. It is based on many years’ experience in teaching in the Physics department at The University of Michigan. The material here is more than enough for a one-semester course. Usually I teach two semesters, and in the second, I add material such as the renormalization group.

In this book advanced techniques such as Green’s functions are not used. I have tried to introduce as many of the concepts of modern condensed matter physics as I could without them. As a result, some topics that are of central importance in modern research do not appear.

The problems are an integral part of the book. Some concepts that are used in later chapters are introduced as problems.

Students are expected to have a good background in statistical physics, non-relativistic quantum theory, and, ideally, know undergraduate Solid State physics at the level of Kittel (2005).

I decided to write this book as a result of coming back to teaching Condensed Matter after a number of years covering other subjects. I had hoped to find a substitute for the grand old standards like Ziman (1972) or Ashcroft & Mermin (1976) which I used at the beginning of my teaching career. Though there are newer texts that are interesting in many ways, I found that none of them quite fit my needs as an instructor. It is for the reader to decide how well I have succeeded in giving a modern alternative to the classics – they are very hard acts to follow.

Many people have helped me in writing this book. Craig Davis and Cagilyan Kurdak have been remarkably generous with their time, and found many errors. Jim Allen and Michal Zochowski have given valuable advice. I would like to particularly thank Brad Orr, Andy Dougherty, Dave Weitz, Jim Allen, Roy Clarke, and Meigan Aronson for figures. And, of course, my students have given invaluable feedback over more than three decades.